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[1] An important step in projecting future climate change
impacts on extremes involves quantifying the underlying
probability distribution functions (PDFs) of climate
variables. However, doing so can prove challenging when
multiple models and large domains are considered. Here an
approach to PDF quantification using k-means clustering is
considered. A standard clustering algorithm (with k = 5
clusters) is applied to 33 years of daily January surface
temperature from two state-of-the-art reanalysis products,
the North American Regional Reanalysis and the Modern
Era Retrospective Analysis for Research and Applications.
The resulting cluster assignments yield spatially coherent
patterns that can be broadly related to distinct climate
regimes over North America, e.g., low variability over the
tropical oceans or temperature advection across stronger or
weaker gradients. This technique has the potential to be a
useful and intuitive tool for evaluation of model-simulated
PDF structure and could provide insight into projections of
future changes in temperature. Citation: Loikith, P. C.,
B. R. Lintner, J. Kim, H. Lee, J. D. Neelin, and D. E. Waliser
(2013), Classifying reanalysis surface temperature probability
density functions (PDFs) over North America with cluster analysis,
Geophys. Res. Lett., 40, 3710–3714, doi:10.1002/grl.50688.

1. Introduction

[2] Although global warming impacts on climate are often
framed in terms of mean change, the potential changes in
extremes arguably pose a greater concern for societal or
ecosystem adaptive capacity [Kharin et al., 2007; Trenberth
et al., 2007; IPCC, 2012]. Nonlinear relationships
between changing means and extremes suggest that even
small changes in the former can be associated with large
changes in the latter [Griffiths et al., 2005]. Quantifying
vulnerability to and risks associated with extreme climatic
events—and more critically, projecting how such risks
may change in the future—requires detailed knowledge
of the underlying probability distribution functions
(PDFs) of important climate variables. Furthermore, in

order to constrain uncertainties in model simulations of
future climate extremes, standardized metrics are required
to evaluate model fidelity.
[3] Because climate change may alter multiple moments of

the PDF of a climate variable [Hannachi, 2006], evaluation
metrics should give insight on multiple aspects of PDF
structure. For example, Donat and Alexander [2012] present
evidence of increasing variance in the Tropics since the mid-
twentieth century as well as a tendency toward more positive
skewness. Additionally, there can be considerable spatial
variation or dependence on small-scale processes in these
PDFs [Easterling et al., 2000; Diffenbaugh et al., 2005].
While some theoretical guidance exists for relating the
governing dynamics of a system to its PDF characteristics
[e.g., Bourlioux and Majda, 2002; Sura and Sardeshmukh,
2008; Neelin et al., 2010; Stechmann and Neelin, 2011],
further effort is needed to apply theoretical understanding
to climate variables in observations and models.
[4] Analyzing surface temperature (Ts) PDFs from the

Global Surface Summary of the Day product, Ruff and Neelin
[2012] documented non-Gaussian, often asymmetric long tails
occurring over a wide range of geographic and climatic set-
tings. They further noted how the details of the PDF tails
significantly impact the estimation of threshold exceedances.
For example, under a warming-induced shift of the distribution,
locations with high-side Gaussian tails would experience a
greater increase in a given warm threshold exceedance
relative to locations with a fat (e.g., exponential) tail.
[5] The size and scope of currently available observa-

tional and model data products present practical challenges
for generalizing the diagnosis, interpretation, validation,
and intercomparison of PDF characteristics. Consequently,
evaluation and comparison of large observational and
model data sets require the development of flexible yet
standardized and readily applicable diagnostics to facilitate
model evaluation, interpretation, and development. To that
end, we present results of a cluster analysis applied to Ts
PDFs obtained from two reanalysis products. Our results
demonstrate that a few stable PDF categories can be
obtained and related to some readily understood aspects of
different climatic regimes.

2. Data Sets and Methodology

[6] The North American Regional Reanalysis (NARR)
[Mesinger et al., 2006] is a high-resolution reanalysis product
covering North America. This data set is derived from a data
assimilation scheme with near-surface observations ingested
hourly and atmospheric profiles of temperature, winds, and
moisture from rawinsondes and dropsondes ingested every
3 h. The native NARR data are available on a Lambert
conformal grid (3-hourly, approximately 32 km).
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[7] Additionally, Ts data are analyzed from the Modern
Era Retrospective Analysis for Research and Applications
(MERRA), developed by NASA’s Global Modeling and
Assimilation Office and disseminated by the Goddard
Earth Sciences Data and Information Services Center
[Rienecker et al., 2011]. MERRA assimilates observations
from multiple sources including weather stations and
balloons, satellite data, ships, buoys, and aircraft. This data
product is defined on a global, regular uniform grid at a
spatial resolution of 0.5° latitude × 0.67° longitude, which
is coarser than NARR but finer than other widely used
reanalysis products. Because of the different grid nests for
NARR and MERRA, the latter covers more of the Earth at
lower latitudes than the NARR domain. While other
reanalysis products cover this domain, these two were
chosen because the relatively high resolution allows for
analysis of regional scale phenomena.
[8] To construct PDFs, daily January Ts data are first

deseasonalized by removing the daily climatology over the
33 year (1979–2011) period; long-term linear trends are
also removed for individual grid points. Only January is
considered here for demonstration purposes. Anomalies are
computed so that all grid points have a mean of 0, allowing
for systematic comparison of PDFs across the domain.
Anomalies for all 1023 days are sorted into bins of 0.5K
width using d = 152 bins at all grid points and normalized
by the total number of days. While this results in many grid
points having multiple bins with zero counts, d = 152 was
necessary to span the range of temperature anomalies at all
grid points. Next, k-means cluster analysis is applied to
group the PDFs. Clustering is performed on the log of
probability (log10[bin count(i)/1023] where i = 1, 2,…, 152)
to increase the weight of distribution tails in the cluster-
ing. In other words, the clustering algorithm seeks k
sets among these vectors of length d of the log of

probabilities, over the data set of n spatial points, that
minimizes the within-cluster sum of squares of the dis-
tance in the d-dimensional space.
[9] Here, k = 5 clusters is used for demonstration purposes.

While the choice of k = 5 clusters is arbitrary, in a simple sen-
sitivity analysis in which the number of clusters was varied
from three to eight, we found the results for k = 5 to be
straightforward to interpret physically. The optimal number
of clusters and associated sensitivities will be explored in
more detail in ongoing work that applies this methodology
to evaluation of climate models.

3. Results and Discussion

[10] Figure 1 depicts the standard deviation (SD) and skew-
ness of the daily Ts variability. In general,MERRA has smaller
SD along the margins of sea ice (Labrador Sea, Bering Sea),
while NARR has smaller values over western Canada and
Alaska. The overall geographic pattern of skewness is very
similar in both products. Moreover, both products are able to
capture local features such as the band of positive skewness
over the coastal waters adjacent to California and much of
Baja California caused by offshore winds that induce strong
positive temperature excursions, e.g., the Santa Ana winds in
Southern California [Hughes and Hall, 2010]. Loikith and
Broccoli [2012] document a similar skewness structure using
coarser-resolution gridded daily Ts observations. In a simple
sensitivity analysis where the data were divided into two equal
temporal intervals, the SD and skewness values did not change
appreciably in most of the domain, suggesting that these pat-
terns and values are stable with respect to time period at least
over the late 20th and early 21st centuries.
[11] Although the spatial patterns of the second and third

moment statistics in Figure 1 capture important features of
daily Ts variability, PDF modality is not readily discernable

January Standard Deviation (NARR) January Standard Deviation (MERRA)

January Skewness (NARR) January Skewness (MERRA)
0 3 6 9 12

-1.5 0 1.5

Figure 1. Maps of the (top) standard deviation of January temperature and (bottom) skewness of January temperature for
(left) NARR and (right) MERRA.
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in terms of a single moment. In this sense, it may be instruc-
tive to consider diagnostics of the overall shape of the PDFs,
especially if such diagnostics are sufficiently limited, i.e., the
number of shape categories is small. To this end, we apply
the k-means cluster method. Figure 2 depicts the PDFs asso-
ciated with each of the clusters, showing cluster-mean PDFs
(thick lines) and ±1 SD (shading; calculated as the SD of all
the points of the cluster within each temperature bin). Maps
of the pointwise cluster assignments are in Figure 3. Here
the colors plotted on the map correspond to the individual
PDFs that comprise the mean PDFs in Figure 2, e.g., the

red curve in Figure 2 is the mean of the PDFs for each red-
shaded grid point in Figure 3. The mean SD and skewness
values, computed as the average of all grid points within
the cluster, are indicated in Figure 2. The clusters are
numbered based on the mean SD of all grid points within
the cluster from high (C1) to low (C5) SD values.
[12] The grid points falling into C1 consist largely of sub-

Arctic regions and are characterized by high temperature
variance, as evident by the wide PDF, and a relatively large
spread within the cluster, reflecting significant local
variations. This region matches the band of high SD in Ts

Figure 2. The mean PDF of each cluster for (left) NARR and (right) MERRA. Each curve is the average of the PDFs from
all grid points that were assigned to the indicated cluster. The shaded region surrounding each curve gives ±1 standard devi-
ation within each temperature bin computed from the set of PDFs over all the spatial points in the cluster. The black curve is a
Guassian fit to the core of the mean PDF for cluster 1, for reference. The y axis is the log of the probability (plotted on a linear
scale). The average standard deviation (SD) and skewness (SK) values for all the grid points assigned to each cluster are in-
dicated in the legend.

NARR

MERRA

Figure 3. Maps of cluster assignments for (top) NARR and (bottom) MERRA. The assignment is color coded to match the
colors in Figure 2, and the associated cluster number is indicated on the map.
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(Figure 1) and includes the transition zone from predomi-
nantly negative skewness to the south and positive skewness
to the north reflected in the symmetrical PDF. This region is
subject to strong anomalous Ts advection associated with
synoptic-scale weather events [Loikith and Broccoli, 2012]
across a gradient such that either colder or warmer air masses
can be advected into the region.
[13] C2 exhibits relatively high variance and encompasses

the Arctic as well as the continental midlatitudes. The Arctic
is an area of predominantly positive skewness, while a
mixture of negative and positive skewness occurs over the
continental midlatitudes (Figure 1). This combination is
reflected in the symmetrical mean PDF. While the two
regions described by this cluster have little in common clima-
tologically, different mechanisms may allow for similar PDF
characteristics, especially variance. The Arctic (C2) has
lower variance than areas to the south (C1) since the region
is among the coldest in the hemisphere, thus precluding
outbreaks of extreme cold air (in an anomalous sense) that
can occur at lower latitudes. The midlatitude region is within
the main storm track but has lower variance compared
with areas immediately to the north (C1) due in part to the mod-
ification of extreme cold air masses as they move equatorward.
[14] C3 encompasses the southwestern United States,

northern Mexico, and the coastal waters of southern Alaska,
the northern Gulf of Mexico, and the western Atlantic
Ocean. Included in C3 are coastal regions of high temperature
gradient on the West Coast and regions of high oceanic
temperature gradient off the East Coast of the U.S.
Comparing to Figure 1, C3 includes some ocean regions with
relatively high variance as well as the southwestern portion of
the continent which has relatively low variance for a continen-
tal region. The mean PDF also exhibits negative skewness,
especially evident over coastal Alaska. Here, the negative
skewness is likely caused by extreme cold outbreaks associ-
ated with advection from the continental interior combined
with a limited warm tail associated with the moderating effect
of the ocean. The region over the Atlantic has high storm
frequency in the winter, which elevates the temperature SD
relative to other marine regions.
[15] C4 and C5, describing the midlatitude oceans and

Tropics, respectively, have the smallest variance of the five
clusters, associated with a smaller temperature gradient in the
Tropics and with the moderation of advective effects by ocean
heat capacity over C4. A substantial part of C4 is also to the
south of the main storm track. C5 is south of the storm track
and experiences smaller effects by midlatitude synoptic-scale
weather variability. The mean PDF of C4 (and C5 for

NARR) is characterized by a long cold tail, likely reflecting
the occasional incursion of cold air masses from across the
temperature gradient on the midlatitude side. The relatively
short warm tail likely reflects the small gradient toward
warmer tropical temperatures; as such, it is not possible to
strongly increase temperatures by warm advection.
[16] The approach described here yields a first view of

regional distributions of PDFs; however, to emphasize
differences in PDF shape, cluster analysis is applied to
PDFs computed from anomalies normalized by their SD. If
all the distributions were Gaussian, the normalization would
tend to collapse them into a single cluster, so this approach
can be anticipated to give a view of the prevalence of non-
normality. Figure 4 shows an example in which three clusters
are used to group PDFs of normalized temperature anoma-
lies. The PDF cluster assignments reflect the higher-order
moments of skewness and kurtosis. While skewness appears
to be the most apparent characteristic for clustering, kurtosis
is also influential with C1 having the highest kurtosis.

4. Summary and Conclusions

[17] Variations in Ts PDFs over a large geographic area
encompassing North America and surrounding oceans are
examined using simple k-means clustering. In both data sets,
the cluster analysis yields stable, spatially coherent patterns
that can be understood in terms of distinct Ts regimes, such
as smaller variability over tropical oceans and larger variability
over the high-latitude continental interior. The shape of the
reconstructed PDF for each cluster, along with the geographi-
cal distribution of the clusters, fits well with physical interpre-
tations in terms of temperature advection in the presence of a
maintained background temperature gradient and advection
by synoptic-scale events. In general, temperature variances
appear to be the leading determinant in defining clusters.
Skewness also affects some cluster assignments, suggesting
that cluster-based approaches are useful for identifying regions
with common PDF shape. By normalizing the temperature
anomalies by their SD, it is possible to use cluster analysis to
group PDFs based on higher moment statistics, providing
important information for characterizing regional sensitivity
of temperature extremes to future warming.
[18] Future work will focus on developing the cluster

analysis approach outlined in this paper for categorizing
PDF characteristics in regional climate model simulations
for the purpose of evaluating model data against observa-
tions/reanalysis. While other methodologies exist for system-
atic PDF evaluation, the ability of this tool to be used over
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Figure 4. Same as Figure 2, except the cluster analysis is applied to PDFs of normalized temperature anomalies and only
k = 3 clusters was used. The average skewness (SK) and kurtosis (KT) of all points in each cluster is indicated in the legend.
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large domains or numbers of grid points makes it particularly
versatile. For example, Perkins et al. [2007] developed and
applied a PDF skill score for model evaluation over
Australia using relatively homogenous subregions. Their
technique provides a concise and standardized way to evalu-
ate models; however, the clustering method has the advan-
tage that it works over large inhomogeneous domains.
Furthermore, this approach may serve to identify regions
where future changes in Ts or other climate variables are
likely to be relatively homogeneous. As such, this method
may provide a foundation for elucidating changes in future
climate extremes.
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