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POLYNOMIAL EXTENSION OPERATORS. PART II *

LESZEK DEMKOWICZ!, JAYADEEP GOPALAKRISHNAN! AND JOACHIM SCHOBERLS

Abstract. Consider the tangential trace of a vector polynomial on the surface of a tetrahedron.
We construct an extension operator that extends such a trace function into a polynomial on the
tetrahedron. This operator can be continuously extended to the trace space of H(curl). Further-
more, it satisfies a commutativity property with an extension operator we constructed in Part I of
this series. Such extensions are a fundamental ingredient of high order finite element analysis.

Key words. Sobolev, polynomial, extension, tangential, normal, trace

AMS subject classifications. 46E35, 46E39, 656N30, 47H60, 11C08, 31B10

1. Introduction. This is the second in the series of papers devoted to con-
structing polynomial preserving continuous extension operators for Sobolev spaces
satisfying the commuting diagram
grad .
e

H'?(0K) tre, (H (curl)) LN tre, (H (div))
(11) lg%;ad le%xrl lsc}l(iv
HY(K) 224 H(curl) L. H(div),

where K is a tetrahedron, H'(K), H(curl) and H(div) are the standard Sobolev
spaces on K, and the trace operators are

tre, ¢ = (¢ — (¢ -n)n)|, ., (tangential trace),
tre, ¢ = (- ")‘01{’ (normal trace),

with n denoting the outward unit normal on K. The first polynomial extension
operator in (1.1), namely 8’%&‘1, was constructed in Part 1 [9]. The current part
is devoted to the construction of 8‘}}“1. The differential operators grad, and curl,
n (1.1) denote the surface gradient and surface curl, respectively (see, e.g. [5] for
definitions of differential operators on non-smooth polyhedral surfaces).

There are many applications in the analysis of high order finite elements for such
an extension operator. Perhaps the most important one is in proving an approxi-
mation estimate for hp finite element spaces. Indeed, an approximation theory for
high order H(curl) finite element spaces has been developed in [7] under the con-
jecture that such an extension operator exists. To describe one of the results there,
suppose T is a tetrahedral finite element mesh of a polyhedral domain 2, and let
Vip = {v € H(curl,Q) : v|g is a polynomial of degree at most px for all mesh
elements K in T}. For any tetrahedron K, let px denote the diameter of the largest
ball contained in K and let hx denote the length of the longest edge of K. In fi-
nite element analysis, it is typical to assume that meshes are “shape regular”, i.e.,
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assume that there is a fixed positive constant v such that maxxes hi/prx < v for
all meshes under consideration. In this situation, [7, Corollary 2] implies that, if an
H (curl) polynomial extension exists, then there is a constant C' depending only on
~ such that

. el MDE 1/2
(12) inf ||'U — vthH(curl) S C E h;l p |’U|§IT(K) + |CUI'1'U|?{7~(K)
U}LPGVhp KeT pK

for any r > 1/2. Thus, as a consequence of our construction of 8(1‘;‘(”1, the approxima-

tion estimate (1.2) and other similar estimates in [7] are finally proved. The extension
operator is important also in the analysis of spectral mixed methods (see remarks at
the end of [11] for the need for an H (curl) extension). Polynomial extensions also
play an important role in the construction of good shape functions and precondition-
ing [18].

We will keep the same notation as in Part I (summarized in [9, § 1.5]) and employ
the same overall technique developed there (summarized in [9, § 1.4]) for constructing
the H(curl) extension operator. In particular, we start with a primary extension
operator, and then design suitable face, edge, and vertex correction operators to arrive
at the total extension operator. The construction of both the primary and correction
operators will be motivated by the need to satisfy the commutativity property in (1.1).
For example, to obtain an expression for the H (curl ) primary extension of v, denoted
by €, we took the expression for &2y from [9] (see (B.1) in the current paper
for the correct expression), differentiated it, expressed the result in terms of grad._ u,
and then substituted grad, u by v. Clearly, this will guarantee the commutativity
property geurl grad, u = grad £2"*dy. Such computations motivated the expressions
for face and edge corrections as well. The final H (curl) polynomial extension operator
and its properties are given in Theorem 7.2.

Although we apply the same overall technique as in the H' case considered in
Part I [9] of this series, a major difference between the H (curl) case and the H! case
is that the trace space of the former is more complicated. Only recently has the trace
space of H(curl) on polyhedral domains been fully characterized in terms of certain
Sobolev spaces of negative index [5, 6]. In order to circumvent estimating negative
norms, we proceed by first developing a new technical tool, namely a decomposition
of the trace space, which when combined with commutativity, reduces the problem of
norm bounds for the extension to Sobolev norms of positive index only. This seems
to simplify the analysis considerably. Another new technique we introduce in this
paper is proving a norm estimate for primary extensions in fractional Sobolev norms
directly using Peetre’s K-functional and interpolation theory. Other new aspects
in the H(curl) arena not seen in the H! case include symmetrization of integrals
defining the extensions to obtain expressions invariant under relevant transformations.

We begin by describing the decomposition of trace space using regular functions
(Section 2). Then we study the primary extension from a plane (Section 3). The
primary extension will then be corrected using face and edge correction operators
given in Sections 4 and 5. The complete solution to the H (curl ) polynomial extension
on a tetrahedron is given in Section 7. Appendix A contains proofs of all technical
lemmas and Appendix B contains corrections to Part I.



2. A characterization of the trace space. For smooth vector functions ¢,
we denote their tangential and normal traces on 0K by

trer o = (¢ — (¢ n)n)‘ak’
tl"Cn¢7 = (¢ : n)‘aKu

where n denote the outward unit normal on K. It is well known that the operators
tre, and n X tre, extend continuously to H (curl ) and that their ranges are subspaces
of H™Y2(9K) [1, 5, 10]. Letting (-, -) denote the duality pairing between H~/2(9K)
and H'/?(0K), define H s(curl) for any subset S of K of positive measure by

Hjs(curl) ={¢ € H(curl): (n xtrc, ¢, ) =0 forall e HéK\S(K)},

where H é s (K ) denotes the subspace of functions in H' (K ) whose tangential traces
vanish on 0K \ S. In addition, we shorten H sk (curl) to simply Ho(curl).

We shall need the trace spaces of Hg g(curl) when S is composed of one or more
faces of K. Let F;; = F; U F; and Fij, = F; U F; U Fy,. We define the spaces by the
range of the trace map:

2.1) X Y2 = tre, H(curl), Xa;/z = tre; Ho p,(curl),
' X(I;jﬂ = tre, Ho r,; (curl ), X(;;J/If = tre; Ho,F,, (curl).

The above spaces X&}/Z, for all subscripts I in the set {i,4j,ijk}, are subspaces of
H~Y2(K). The precise subspace topology of X /2 in H™Y/2(§K) is given in [5].
One could attempt to use their techniques to characterize the subspace topologies of

all X 077 }/ 2, but for our purposes it seems better to proceed by endowing all the sets
in (2.1) with a natural quotient topology defined by

(2'2) ||'UHX*1/2 = trCTi(Il(;):v ||¢||H(cur1)v
where the infimum runs over all ¢ in H(curl) satisfying trc,(¢p) = v. Standard
arguments then prove the following facts: Under the quotient norm in (2.2), the

/

space X —1/2 g complete and the subsets X, } % are closed. Furthermore, there is a

linear continuous lifting operator E : X ~'/? — H/(curl) satisfying
(23)  EX,;? CHop(curl), tre,(Ev)=v, [|Ev|meur) = [v]x-12,

for all v € X2 We need to find an extension operator like E, but one that has
the additional polynomial preservation property.

We shall now characterize the H(curl) trace spaces using Sobolev spaces of
positive index, namely HY/2(0K), and HY? := trc, H*(K). The space HY? is
characterized in terms of the H'?norm of faces in [5], but we will simply work
with the natural norm H19||Hi/2 defined to be the infimum of [|@[ fr(cur1) over all
¢ € H'(K) for which trc, ¢ = 9. The idea for our characterization of the trace
space is best revealed for the first space in (2.1), as we see next.

ProrosiTION 2.1. The space XY2 admits the following stable decomposition:

X Y2 = grad, H'/?(0K) + HY?.
3



Proof. Consider any function v in X2 and its lifting Fv defined in (2.3). Since
K is convex, by the well known Helmholtz-Hodge decomposition for H(curl) (see
e.g. [10, Corollary 1.3.4] or [14]), there is a ¢ € H'(K) and ¥ € H'(K) such that

(2.4) Ev = grad ¢ + 9.

Applying the tangential trace operator to this decomposition, we obtain the required
decomposition:

v = grad_ (p|ox) + tre, ().

Its stability follows from the continuity of the trace maps. Indeed, there are positive
constants C7 and Cs such that

ol /2 om) + Il trer ¥l gz < Cy (el x) + 190l e ()
< Gy HE'U”H(curl) = Cy H’UHX*I/%

where we have also used the stability of the decomposition in (2.4). O

Although the trace spaces in (2.1) were defined on the whole boundary 0K, by
virtue of Proposition 2.1, we can now speak of its restrictions on faces. Indeed, it is
well known that the restriction to a face Fj is a continuous operation from H'/2(9K)
into H'/2(F}). Moreover, letting Hl/Q(Fl) denote the space of tangential vector func-
tions on Fj whose two components are in H'/?(F}), the restriction operator is also a
continuous map from H/? into HY?(F) (this follows, e.g., from the characteriza-
tion of H'/? in terms of standard Sobolev spaces found in [5]). Therefore, given any
ve X Y2 decomposing it by Proposition 2.1 as v = grad. ¢ + 1 we can define the
restriction operator R; by

(2.5) Ry = grad, (¢[,) + (¥|,)-

Clearly, R; coincides with the usual restriction operator when applied to smooth v.
Moreover, by the stability of the decomposition, R; is a continuous map from X —1/2
into grad, HY/?(F}) + H'? (F7). We define the trace spaces on one face as the range
of this restriction operator:

(26)  XTVAR)=RX TV ol = it wlxos,

where the infimum runs over all w in X /2 satisfying Rjw = wv. The space

X ~Y2(F)) is complete under the above norm and the subsets X&}/Q(Fl) = RlX&}ﬂ

are closed. It is easy to verify that R; has a continuous right inverse L; : X -1/ 2(F;) —
X2 satisfying

(2.7) LiX,*(R) C Xo1% ILwllx-e = |vlx-1r2m). RiLiv=wv,

for all v in X V2(F).
We will now show that these trace spaces on the face F; can be characterized
using subspaces of H'/?2 (F}) with zero boundary conditions. Recall the definitions

4
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FiG. 1. Notations in the proof of Theorem 2.1

of Hé/IQ(Fl) for I € {i,ij,ijk} from Part I [9]: Using )\; to denote the barycentric
coordinates of K, let
Hy/P(F) = H'2(F) N L3, (F)
1/2
Hy(F) = HY2(F) 0 L3, (F) 0 L}y, (F)
1/2
Hy /i (F1) = HY(E) 0 L (F) 0 L3 () 0 LR, (F).

&

Here L? Y (F7) is the Lebesgue space of functions that are square integrable with
weight 1/);, so clearly, the functions in Hé/IQ(Fl) vanish weakly on certain parts of
the boundary 0F;. Also, let H é/ 12 (F}) denote the set of tangential vector functions
on F; whose two components are in Héy/f (F1). Then we have the following theorem
(where, like everywhere else in this paper, the indices i, j, k, [ are a permutation of
0,1,2,3).

THEOREM 2.1. The spaces X ~/?(F}) and Xo_}m(Fl) of traces on F; for all I in
{i,4j,ijk} admit the stable decompositions

X V2(F) = grad, H'*(F) + H'?(F),
Xy 2 (F) = grad, Hy// (F) + HY [ ().

Proof. The first decomposition follows immediately from Proposition 2.1 (by
restricting to Fy), so let us prove the second. Let v be any function in X(;}N(FZ) and

(2.8) ¢ = E(Lw),

where E and L; are as in (2.3) and (2.7), respectively. Then, by the above mentioned
properties of these operators, ¢ is in H g, (curl, K).

We need to expand the domain K. Let a; denote the vertices of K. Let a;; =
2a; — a; and a; j, = 2ay, — a;. Then, depending on I in {i,ij,ijk}, define Fy; by

Fi; = conv(Fy,a;;,a;), Fij;=conv(F;;, Fjp), Fijg =conv(F;, Fjg, Fr).
5



where conv(---) denotes the convex hull of its arguments. The expanded domain
is defined by K; = conv(Fr,a;) (this domain, for the case I = ij is illustrated in
Fig. 1). Tt is easy to prove that the trivial extension of ¢ defined by

~ ¢ onkK,
d)_{o Onk[\K,

is in H(curl, K;).

Next, we borrow a technique found in [4, Lemma 2.2] (see also [16, Proposition 5.1]
and other related references mentioned there). We start by decomposing a& using the
Helmholtz-Hodge decomposition on K; to get

(2.9) ¢=gradp+v,  with pe H(K;), ¥ € H'(K)).

Note that we used the convexity of K to conclude the regularity of ¢ and 1. Observe
that since d) vanishes on K\ K, the gradient of ¢ must coincide with 1 there. Hence
<p]l~(I\K € H*(K; \ K).

Therefore, there exists an H?-extension (see, e.g. [19, Theorem VI.3.5, pp. 181], or

our volume extension constructions in [8]) of ¢ to all K;, which we denote by '
Then

(2.10) ¢ =grad ¢’ + v, with ¢ =@ —¢', " =grady’ + 1.

Clearly, ¢ is in Hl(IN(I) and ¢ is in Hl(IN(I). Moreover both ¢” and 4" vanish
on K7\ K.

The required decomposition is now obtained by applying tre, to (2.10). Indeed,
combining the definition of ¢ in (2.8) with (2.10), we obtain

v = Rytre,(¢) = Ry tre-(¢) )
(2.11) = gradT(gol"Fl) + Ry tre, .

Since ¥ is in H'(K;), its trace 1#'/‘};1 [ isin (H'/2(Fy;))? and all three components
of this trace vanish on F 71\ Fl. Moréover, since the tangential component of this
trace on I} coincides with R; trc, 1", we conclude that the last term in (2.11) is in
H1/2(Fl) Moreover, since ¢ vanishes on K; \ K, its trace appearing in (2.11) is
in H1/2(Fl). Thus the components in the decomposition (2.11) are in the required
spaces.

The stability of the decomposition (2.11) follows from the stability of the decom-
position (2.9), the H?-continuity of the map ¢ — ¢’, the continuity of various trace
maps, and the continuity of the operators E and L;. O

Remark 2.1. The decomposition of Theorem 2.1 has a regular part, namely

H, 12 7 (F7), and a non-regular part, namely grad . Hé /IZ(FZ) (which is generally only in

H_1/2(Fl)). It is important to note that the theorem lets us choose the regular part
to be a vector function with zero boundary conditions on all its components. Note
also that the decomposition is not an orthogonal decomposition in L?(F}).

6



Remark 2.2. The decomposition of Theorem 2.1 gives an equivalent norm on the
trace space. E.g., from the results of [5, 6], it follows that the trace space X172 (F1)
coincides with the space

H Y*(curl,, ) .= {ve H Y2(R): curl,v € H'?(F)}

: 1/2
normed with |[v]| gg-1/2(cu1, 1) = (||1)H§{,1/2(F1) + || curl, UH%I,I/Q(FZ)) where curl,

denotes the scalar surface curl. Then our results imply that for any v in X ~/2(F),
if v = grad.. ¢, + ¢, denotes the decomposition given by Theorem 2.1, the norms

||’U||X*1/2(Fl)a H’UHH*U?(curlT,Fl)v and ||90v||H1/2(Fl) + vaHHl/?(Fl)v
are equivalent norms.

3. Primary extension operator. We first display the expression for the pri-
mary extension when the data function v is smooth tangential vector function on the
z-y plane (or the z-y face of the reference tetrahedron K, which we denote by F').
The expression is

11—t (10
(3.1) ey (z,y,2) = 2/ / 0 1]v(x+sz,y+tz)dsdt
070 st

which by a change of variable can also be expressed as

z 0

curl B 3 T+ r4y+z—T _ o
(3.2) EMv (2,y,2) = 0 z v(z,y) dydz.
e Sy F—z Y-y

We derived this expression motivated by the commutativity property we need, namely
grad €22y, = £ grad_u. Indeed, we took the expression for €24 from (B.1), dif-
ferentiated it, expressed the result in terms of grad, u, and then substituted grad u
by v to obtain (3.1). (This calculation is implicit in the proof of Theorem 3.2(1) to
be given shortly, so we do not display it here.)

To assert the polynomial preservation properties of this operator, we need more
notation. The space of vector functions on any domain D whose components are
polynomials of degree at most p is denoted by P, (D) and its subspace of homogeneous
polynomials of degree p is denoted by P,(D). The Nédélec subspace (of the first
kind) [15] of P41, denoted by N, (D), is defined by

N,(D) ={vp+71pi1: v, € Py(D), and rp+1 € Ppy1(D) satisfies 41 - @ = 0}.
It is easy to see that
(3.3) g€ N,(D) ifandonlyif ¢qé€ Ppyi(D)andgq-xe€ Pyq(D).

In these characterizations of IN,(D), the vector @ is the coordinate vector in the
Fuclidean space in which D lies, so it can have two or three components.

The expression in (3.1) will give an extension operator on any other tetrahe-
dron K once we use certain mappings, which we now define. Let Tk denote the
affine homeomorphism mapping K to K and let T}, denote its Jacobian matrix, i.e.,
[TII{(@)]U = 8[TK(5B)]1/8553 Define

(34) \IJK(’U,) :’U,OTK7 @K(U) = (Tll()t(’vOTK).



It is well known that (see e.g. [10] or [15]) ®x is a one-to-one map from P,(K) onto
P,(K), from N,(K) onto N,(K), and from H (curl, K) onto H(curl, K). Also,

(3.5) ® i (gradu) = grad(V i (u)).

Similarly, letting T’ denote the affine homeomorphism that maps F one-one onto a
general face F} of K, we define U, and @5, as above. Then it is easy to check that

(3.6) tre, (grad Vi (u))|p = ®F, (grad, u)

for any smooth function v on K. The primary extension on a general tetrahedron K
lifting from the face F; is now given by

(3.7) el =@ oMo By

In order to bring out the symmetry in the extension expressions, rather than
simplify the mapped expression in (3.7), we will use affine coordinates. To illustrate
this technique, first write a smooth tangential vector function given on face Fj as

(3.8) v = Z U grad; Am,
me{i,j,k}

with three smooth components v,,. Such a decomposition of v into component func-
tions v, is always possible, but is not unique. Indeed v,, for all m in {4, j, k} coincides
with one function @ if and only if v is zero. With v, as in (3.8), we can now rewrite
the primary extension operator on K as follows:

| +z prtytz—T z O ] V4 O
gewly, 23 / / z <_1> Vo + 0 U1 + z V2 dﬂdi
-z Y-y r— y—y

// Z ( Z/VW) grad \,, dy dz,

T3()\0 A1,A2)

where we have used the barycentric coordinates A; of the tetrahedron, as well as
the barycentric coordinates A¢(s) of the region of integration Tg(/\o,)\l,)\g) C F,
and the fact that the two-dimensional measure |F | equals 1/2. The symbol e will
generically denote the barycentric coordinates of whatever region of integration is
under consideration, e.g., in the above, since the reglon is T3(Mo, A1, A2), they are
M= (F—2)/z, \a = (J—y)/z and Xy = 1 — A\; — Xo. Note also that in the above,
we have continued to use the notations in [9], e.g., for any permutation {i,j, k,} of
{0,1,2,3}, define Ty(r;,rj,ry) = {x € F : )\fl (x) > rg for £ =4, j, and k}, where
M=\ |/ (for m =i, j, or k) are the barycentric coordinates of Fj.

Now, to obtain the extension lifting into a general tetrahedron K from its face
F;, we only need to identify parts of the above expression that remain invariant under
the previously mentioned mappings. Thus

1

url

(3.9)  E"v (N A, Ak A) = A2 Z Dpv(s) grad A, ds
Tl()\i7)\j7)\k) me{l"]’k}

where

(3.10) Dpv(8) = vp(s) — Z Xe(s) ve(s)

tedizg,k}
8



and A(s), for £ in {i, ], k}, are the barycentric coordinate functions of the region
of integration Tj(\;, Aj, Ax), considered with its node enumeration inherited from K.
Since the component representation in (3.8) is not unique, we must check that defi-
nitions like (3.10) are not affected, inasmuch as two different representations of the
same function does not yield different results. That this is indeed the case, is readily
checked: If v = 0, then v,, = v for all m, which implies that D,,v = 0, so 8‘"“ v=0.
We can also readily verify that the expressions for £ in (3.9) and (3.7) coincide.

We prove the properties of this primary extension operator in the next theorem.
There are two new ingredients worth noting in the proof of continuity of Sfurl. The
first is the technique of proving continuity from H'/?(F}) into H*(K) using Peetre’s
K-functional. (Note that this continuity only involves Sobolev norms of positive
order.) The second is the technique of using continuity on positive order Sobolev
spaces to obtain continuity on the trace space contained in the negative order Sobolev
space H™Y2(F)). (In [9, Appendix B], we provided an alternate technique for proving
the continuity using the Fourier transform.) We display the K-functional technique
while proving the following lemma in Appendix A.

LEMMA 3.1. Let 0(x,y) be a smooth function on the unit triangle F (including
the boundary 8F) Then the map Ky defined for smooth functions u(x,y) on a by

1—t
Kou (z,y, 2 // 0(s,t) u(x + sz,y + tz) dsdt,

satisfies
1Koull g ) < Collullgorogiy,  for allue HY2(E),

with some Cy > 0 that depends only on H9||W11(F) and H9||L1(6F)'
We shall use this lemma in the proof of the following theorem.
THEOREM 3.2. The primary extension operator Sfurl has the following properties:
grad (£5%) = & (grad, u) for all u in HY/?(F).
& s a continuous map from HY*(F)) into H'(K).
&5 s a continuous map from X ~Y*(F)) into H(curl, K).
The tangential trace of E™v on Fy equals v for all v in X ~V/?(F).
If v is in P,(Fy), the extension £™v is in Py(K). If v is in the Nédélec
space N, (F}), its extension E§™v is in N, (K).
Proof. Proof of (1): First, consider a smooth function u(z,y) on the face F of K.

Recall the expression for €84 on K (see [9] or apply (B.1) to K) and differentiating
it, we have

AR

1-t
grad &84y, = 2grad/ / u(z + sz,y + tz) dsdt
0Jo

1—t (10
:2// 0 1]grad, u(z+ sz,y+tz)dsdt
st

(3.11) =& grad_u.

Here we have viewed gradients as column vectors, so the matrix above multiplies
grad, u = (O,u, Oyu)’.



For the case of general K, observe that 2% = Wt 0 €224 o Uy . Then

grad €2y = grad (W' o €8 o U )

=& grad(V (V' o 80 Upu)) by (3.5)

= &' grad (&8 (U u))

= &' (grad, (U pu)) by (3.11)
= &£ (@ (grad, u)) by (3.6)

— &/ (grad, u) by (3.7),

for all smooth functions u. Now, by [9, Theorem 2.1], which asserts the continuity of
&8y on H'/2(F), we have

grad
gl

1€7" grad, u|l = || grad & %ul| < Cllull /2 (r)-

Hence the operator & extends continuously to the space grad H/2(F), so the
commutativity property holds for all u € H'Y?(F).

Proof of (2): The continuity of € on HY2(F) follows by applying Lemma 3.1
to each of the components of £"v in (3.1). Since the Jacobian of the affine trans-
formation mapping functions on K to K is bounded, the result follows for 8?‘”1 on
any K.

Proof of (3): Given any v in X ~Y/2(F}), decompose it using Theorem 2.1 to get

v =grad, ¢+ 1, with ¢ € HY2(F), ¥ € H'/?(F).
Then

€7 0l mr(eurt) = || grad(EF™90) + €' pcur), by item (1),
< H‘gzgradéf’HHl(K) + ||Slcur11/’||Hl(K),
< C (6l /20y + [Wlrsamy ) By item (2) & [9, Theorem 2.1],
< Cllvllx-1/2(5 by stability (Theorem 2.1).

Proof of (4): Set z =0 in (3.1). Then the result is obvious for smooth functions
v. Because of the continuity of ", the result follows for all functions in X ~Y/2(F)).

Proof of (5): It suffices to prove the polynomial preservation properties on the
reference tetrahedron K because ® preserves the polynomial spaces.

So, consider a v € Pp(ﬁ ). Then, each of the components of the integrand defining
the extension €"v in (3.1) is a polynomial in z,y and z with coefficients depending
on s and t. Hence, after integrating over s and ¢, we continue to have a polynomial
in x,y, and z of total degree at most p in x,y and z for each component.

Now suppose v € IN,,. Observe that

x

11—t L0
y | €My = 2/ / (x y 2)|0 1) v(x+szy+tz)dsdt
00 st

z
L T+ sz
:2/0/0 (y+t2)'v($+82,y+tz)d5dt7
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By (3.3), v -« is a polynomial of degree at most p + 1, hence the integrand in the
last integral is a polynomial in z + sz and y + tz of degree at most p + 1. Therefore,
by repeating the argument of the previous paragraph, we find that «x - ey is a
polynomial of degree at most p + 1. Hence by (3.3), €"v is in N,. O

As in the H' case described in [9], the next step is to solve the two-face problem,
for which we shall need a correction operator.

4. Face corrections. In general, the tangential traces of 8?‘”11) are not zero on
faces other than F) even when v is a smooth function that vanishes on 0F;. Therefore,
we must add a face correction. The face correction can be thought of as the solution to
the H (curl) two-face problem: This problem concerns a polynomial v defined on F;
such that v-t|g;, = 0, where  is the unit tangent vector along the edge £ connecting
a; and a;. The problem is to find a polynomial extension with zero tangential trace
on the face Fj.

We begin, as before, with the case of the reference tetrahedron K. Suppose v
is a polynomial defined on the z-y face F such that v - t| By = U where t is the
unit tangent vector along the edge. Then, we will first give an operator that maps
v to a polynomial in K whose tangential trace on the z-y face vanishes, and whose
tangential trace on the y-z face coincides with that of the primary extension of w.
Then subtracting this operator from the primary extension, we can solve the two-face
problem. Define the face correction by

Scurl

a:—l—z

+a:—|—z //1 t(1_8>'”(S($+2),y+t(:c+z))dsdt.

Before we give the properties of this correction operator, we briefly indicate how
we derived the above expression. As in the case of the primary extension, we obtained
the expression above by computing the gradient of the corresponding H' operator,
namely the operator Sgl ad given in (B.2) and observing what is needed for satisfying

t [s t
//1 0 1] v(s(z+2),y+tx+z))dsdt
(4.1) ot

a commutativity property. Indeed, recalling the expression for Eg rady; and differenti-
ating,

grad sfgladu :%ﬂ grad £82(0, y, x + 2) + €5*(0, y, v + 2) grad (w i 2)

1—t (s 1
= 0 1] grad +z2),y+tlx+ ds dt
=/ 0 1) grad uls(e+ 2)y-+ila-+2) ds

(4.2) //1 t s(x +2),y+tx + 2)) dsdt.

tTarae (x—i—z

Therefore, in order to verify the commutativity E%liﬂ(gradq. u) = grad(c‘iif1 “u), we
need to express the last term above in terms of grad . u alone.

Since such a situation will recur often in this paper, we now describe our approach
to handle this in some detail. To convert (4.2) into an expression depending on
grad_ u alone, recall that in the context of the two-face problem, we only need the

11



T (@t )yt +2)

Fia. 2. Integration paths symmetrizing the face correction 8}““'0

commutativity for functions u that vanish along the edge on the y-axis. So we can
apply the fundamental theorem of calculus and write

(a+2)
(4.3) u(s(x +2),y +t(z+2)) = /0 ((1)) -grad, u(r,y 4+ t(z+ 2)) dr.

Here we have chosen one of the many possible paths of integration. However, this
choice is not invariant under affine automorphisms of K (that fix a1 and a3), because
it can be mapped into the path in

(a+2)
(4.4) u(s(x+2z2),y+t(x+2)) = /0 (_11) -grad, u(r,y+ (s+t)(x+2)—r) dr.

Hence, we must replace u(s(z + z),y + t(z + 2)) in (4.2) by the average of the right
hand sides of (4.3) and (4.4). (The paths in both the integrals are illustrated in Fig. 2,
from which the symmetry with respect to the interchange of the two vertices on the
y-axis is obvious.) After this replacement of u in (4.2), we have

rad €224y =
& Fy T+ z

1— tl s(z+z)
+(£C+Z // / (>~grad7u(r,y+t(x+z))drdsdt

+(:v+z //1 tl/ HZ)( )'gradru(ﬁy‘i‘(S+t)($+2)—r)drd5dt.

The last two terms above can be simplified so that the entire sum matches the expres-
sion for S%irl(gradT u) given by (4.1). The details are in the proof of the following

1—t (5 1
// 0 1]grad, u(s(x+z),y+t(z+2))dsdt
0J0 s t

lemma (in Appendix A), which gives several symmetry preserving ways to rewrite
integrals of a scalar function in terms of its derivatives. This completes the discussion

12



(a) (b) (c)

FiG. 3. Integration paths for Lemma 4.1.

motivating the definition of the face correction operator in (4.1). A rigorous proof of
the required commutativity property using the following lemma is in the proof of the
succeeding proposition.
LEMMA 4.1. Let u(s,t) be a smooth function on the unit triangle I .
1. If u(0,t) = 0 then (integration along the two paths in Fig. 3(a) yields)

[fovwn=b ] (12 o%)

2. If u(s,0) =0 then (integration along the two paths in Fig. 3(b) yields)

//u(s,t)dsdt:%// ((—S)%-ﬁ-(l )gt) dsdt.

3. If u(s,1 —s) =0 then (integration along the two paths in Fig. 3(c) yields)

[ ] (o) s

Before we give the proposition detailing the properties involving our face correc-
tion, it will be useful to generalize the lifting (4.1) to a general tetrahedron K. We can
do this via the earlier mappings (cf. (3.7)), but it is more elegant to use affine coordi-
nates. We first split the given smooth tangential vector function v into components
U as in (3.8). Then substituting

(N (VY g (O
v = 1 Vo 0 U1 1 (%)
into the integrands in (4.1) and simplifying, we have

23 (
(A1 +A3)

s t
0 1)v= Dov grad \g + Dyv grad /\2)
st

1 _OZ <1—$> ,_ Argrad s — Asgrad Ay

T+ z - ()\1 +)\3)3 1Y

13



where Dyv is as in (3.10) but now with Xj (s) in (3.10) denoting the barycentric coor-
dinates of the current region of integration, namely that of T3(0, Ag, A2). Thus (4.1)

becomes
A dX3 — )\ d\ o
%:ulv _ MigradAs — Asgrad Ay // Dy di dj
! 2|F| (A1 + A3)3
(4.5) N T3(0,A2,20)
m / (Dov grad \g + Dov grad \s) dz dy.
! 3) T5(0,\2,)0)

In generalizing this operator as an extension into a general tetrahedron K from face
Fy, the region of integration becomes T7(0, \;, Ax) (so we scale by the Jacobian) and A,
becomes the affine coordinates of this region. Thus we have the following expression

_ Ajgrad A — \jgrad \; /
Scurl _ D d
2F| (N + \)3 vas

(4.6) HOAs M)

Al
FEGTy L e [ D s
me{j,k} T1(0,X,Ak)

which coincides with the expression in (4.5) when (7,7,k) = (1,2,0). Clearly, if all
the components of v coincide with a single function (so that v vanishes), the result
of this extension is zero, so it is well defined. Note that this expression is symmetric
with respect to indices j and k.

Now we can solve the H(curl) two-face problem mentioned in the beginning
of this section by subtracting the above operator from the primary extension. The
operator that solves the two-face problem is

(4.7) Ey = € — ERMw.

The following continuity from a positive order Sobolev space is established in Ap-
pendix A:

LEMMA 4.2. Scurl is a continuous map from Hé{f (Fy) into H(curl).
Nonetheless, we need its continuity of Scurl from an H(curl) trace space. This is
proved in the next proposition, where we also prove its other properties.

PROPOSITION 4.1. The two face extension 8“”1 satisfies the following:

1. Commutativity: Scurl grad, u = grad(c‘ilgfladu) for all u € Hé/f(Fl)

2. Continuity: 8““ ertends to a continuous operator from X j/ 2(Fl) into
H(curl).

3. Extension property: For all v € X 1/2(Fl),

tres (E5470)| , =0, tre. (€M), = .

4. Polynomial preservation: Suppose v € P,(F}) is such that v -t = 0 on the
edge Ej,. Then the extension Scurlv is in P,(K). If in addition v is in the
Nédélec space N,(F}), then its extension SZC-:;H'U is in N, (K).

Proof. Proof of (1): It suffices to prove this identity for smooth functions u on
F; vanishing on the edge where )\; is zero. Indeed, once the identity is established for
such functions, the continuity of 8’;{?';1 established in [9] implies that the operator Scurl

14



extends continuously to grad H, 3742 (F}) wherein the commutativity property holds (by
a minor modification of the argument in the proof of Theorem 3.2(1)). Furthermore,
grad

because of Theorem 3.2(1), we only need to prove that Scurl grad, u = grad (%" u),
or as usual, only its analogue on the reference tetrahedron K, namely

(4.8) 8(;;lirl(grad7 u) = grad(S%iadu).

Here 8?1 24 is the corresponding operator given in [9] and u(z, y) is a smooth function
vanishing on the y-axis.

To prove (4.8), we start by computing the gradient on the right hand side of (4.8),
which we have already done in (4.2). To convert (4.2) into an expression depending on
grad u alone, we use Lemma 4.1. Applying Lemma 4.1(2) to the last term in (4.2)
we get

1—t
(:v—i—z // s(x+2),y+t(x+z)) dsdt

:(Hz //1 t1<1_ %—t%) (s(2 + 2),y + t(x + 2)) ds dt,

hence

1—t (s 1
gradg%%rladu_x-l-Z/O/O (S) 1 grad, u(s(x + 2),y +t(x + 2)) dsdt

1 —z 1 p1-t 1—s
0 / < > -grad,_ u(s(z + z),y + t(z + 2)) dsdt,
r+z\ 0.Jo —t

which is the same as E%liﬂ(gradq. u).
Proof of (2): To prove the continuity estimate, apply Theorem 2.1 and decom-
pose v as

v=grad, ¢+,  with ¢ € Hy/ (F), and ¢ € HY/}(F).
Then,

€50 r(ourt) = || grad(E55*0) + €51 | arieurt), by commutativity,

< C<|¢”H(§ff(ﬂ) + ||¢|Héfi2(Fz))’ by [9, Prop. 3.1] & Lem. 4.2,

< Cl|v]| y-1/2 by Theorem 2.1.
0,7

(Fp)?

Proof of (3): Since A\; =0 on Fj,

1
tre, (E7")|p, = TRV Z Dpv(s) grad, A, ds, by (3.9),
HA TZ(OA' )\k)me{ZJk}

trcT(S%'fllvHFi m // Z Dpv grad_ )\, ds, by (4.6),
Ti(0,7;,A),) MELLK}
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as tre. (A; grad \; — A\ grad \;)|r, = 0. Therefore,

trcT(SC”rlvﬂF = tre, (& — 8;1”111;)

r =0.

Proof of (4): As in the proof of Theorem 3.2(5), it suffices to prove the polynomial
preservation properties for the expression (4.1) on K.

Any polynomial v(z,y) in P,,(F ) whose tangential component along the y-axis
vanishes, can be written as

(4.9) w(o,y) = (vl (,y) )

w2 (2, y)
for some vy € Py(F) and vy € P,_1(F). This implies

v(x,y) = v — grad, (zv,) + grad, (zv;)

(v — v —x0yvy
= < s — 20,01 ) + grad._ (zv1)

=z v+ grad_(zv1),
—811)1

Vo — 8y1)1

where v = < > € P, ,(F). With this decomposition,

ERMy = EX7 (2D + grad, (zv1)),
_ ggrl(x ?) + grad gi}“ad (zv1), by commutativity.
1

By the polynomial preservation properties of 8’? ad established in [9], the last term is
1

clearly in P,(K). For the remaining term, referring to (4.1), we find that

1-t (st
gourly = // 0 1) s(a+2)8(s(x+2),y+te+2)dsdt +
s t

Cx+2
//1 t (1_8) “s(z+2)0(s(a + 2),y + t(z + 2)) dsdt,

T+ z

so the « + z term in the denominator cancels out. Since v € Pp_l(F'), by arguments
similar to the proof of Theorem 3.2(5), we find that S%irlv is in P,(K).
To prove that the Nédélec space is preserved, observe that (4.1) implies

x 1—t
curl T+ Z)
gZ/ €% v = x—i—z// (y—l—t :zr—l—z)) cv(s(z+ 2),y+t(x + 2)) dsdt.
If visin N,,(F), then by (3.3), the integrand is a polynomial of degree at most p + 1.
Furthermore, since v has the form in (4.9), the integrand has s(z + z) as a scalar
factor. Hence the x + 2 term in the denominator cancels out. Usual arguments then
yield that « - 8%‘?11} is in P,4+1(K), so we can finish the proof by appealing to (3.3)
again.
16



5. Edge corrections. As in the H! case, edge corrections are necessary now,
because successive applications of different face corrections alter the previously zeroed
tangential traces. Consider the three-face problem of finding a polynomial extension of
v given on face F] that has zero tangential trace on F; and F; whenever v is a smooth
function whose tangential component vanishes on edges E;; and Ej;;. To solve this
intermediate problem, we define the next operator.

Beginning with the case of the reference tetrahedron K, let v be a smooth function
on the z-y face F whose tangential components along the edges on = and y axes vanish.
Define the edge correction for the edge along the z-axis by

1—-t
e (z,y,2) = x+y+z // (—t)'”(S(I+y+2)vt($+y+z))dsdt

(5.1) +x+y+z //1 t<1__t) v(s(z+y+2),t(x+y+2))dsdt

2 /1/1—t
4
r+y+zJoJo

As in the previous sections, we next generalize this expression to the case of the
edge E; of the general tetrahedron K. Split v into component form as in (3.8) and
substitute into (5.1). A few simplifications then transform the above expression to

st
tlv(s(x+y+2),tlx+y+2)) dsdt.
t

Ao grad A3 — A3 grad )\,
2| F[ (1= Ao)?

EXN (x,y,2) = / Dyv di dij

T5(0,0,A0)

/ Dov dF dij
T5(0,0,X\0)

/ Dov d dj.

Tg(0,0,)\o)

Ao grad A3 — Az grad )\
2|F| (1 — Xo)?

Az grad )\
[F (1= X)?

Thus we obtain the general formula on any tetrahedron K:

Amgrad \; — \; grad A //
Scurl Dm d
E;,l e;k} 2|le| ( - vV as
me{j,
(5.2) T,(0,0,M;)
Al grad /\ / Dy ds.
F‘l .
| a T,(0,0,1;)

where D,,v is as defined in (3.10) but now with X;(s) denoting the barycentric coor-
dinates of the current region of integration 7;(0,0, ;). It is easy to check that if all
v; = ¥, then the expression above vanishes, so it is independent of the non-uniqueness
in the splitting of (3.8).

Let us now solve the three-face problem. The required extension operator is

1 1 1 1 1
(53) 8;3;11[‘ — Scur 8Cur 8Cur + 8%];17[,
17



whose properties appear in the next proposition. As in the case of the face correction,
to analyze this operator, we first establish a continuity property in a positive order

Sobolev space, as seen in the next lemma (proved in Appendix A).
curl

LeEMMA 5.1. &) is a continuous operator from Hé/é(Fl) into H(curl).
We use this together with the trace decomposition to prove the required continuity
from the trace space. All the properties of this extension we shall need are in the next
proposition.
PROPOSITION 5.1. The three face extension Sfjmld satisfies the following:

1. Commutativity: Sf]uf] grad,_ u = grad(é’fﬁdu) for all u € Hé/j(Fl)
2. Continuity: fjufl extends to a continuous operator from Xo_jjm (F}) into
H(curl).
3. Extension property: For all v € X(;;-/Q(Fl),
trcT(?,%fflv)’Fi =0, trcT(SEﬁ?v)‘FJ_ =0, trcT(SE;flv)‘Fl = .

4. Polynomial preservation: Suppose v € P,(F}) is such that v -t = 0 on the
edges Ej, and E,,. Then the extension SZC-;?'U is in Py(K). If in addition v
is in the Nédélec space Ny(F}), then Sfﬁlv is in Np(K).

Proof. Proof of (1): We will prove that

(5.4) Eazl(gradq. u) = grad(c‘,’zf;du)

for a smooth function u(x, y) that vanishes along the  and y edges. The required com-
mutativity property stated in item (1) then follows by arguments similar to those de-
tailed in the proof of Proposition 3(1), which we shall not repeat here. To prove (5.4),
we start by computing the gradient of the expression for EgEradu given in [9] (or ob-
tained by applying (B.3) to K): ”

9, 1 p1-s (s
grad(£2y :7// s t)grad, u(s(z+y+2),t(r+y+2)) dtds
o= [ (50 +y+2), 1w+ -+ 2)
2 —Z 1 1—s
5.5 +—= | -z Fy+2),ta+y+z) dtds.
65) FEem L] wtste sy ttesy o) deas

Tty

We must now express the last integral in terms of surface gradients alone. Since u
vanishes along the x and y-axis, we can apply parts (1) and (2) of Lemma 4.1 to
the last term in (5.5). (While applying this lemma, as is clear from its proof, we
are integrating along the path shown in Fig. 4, obtained by combining the paths in
Fig. 3(a) and 3(b). Hence the symmetries with respect to the z-edge are not lost.)

9, 11—t (S ¢
grad(e2y) = —— / / s tlgrad,u(s(x+y+z2),t(x+y+2z)) dsdt
Fos r+y+zJoJo s t

+ﬁy+z gz /01/0“( __ts)'gradw(s<x+y+z>,t(a:+y+z)) ds dt

O 1 pl—t s

N _yz /0/0 (1—t>'gradr“(s(x+y+Z),t(x+y+z))dsdt,
18



(s(@ +y+2),tz +y+2)

FiG. 4. Integration paths symmetrizing the edge correction

This expression is the same as (5.1) with grad, « in place of v, so (5.4) follows.
Proof of (2): We use the regular decomposition again: By Theorem 2.1,

v=grad, ¢+,  with¢ € Hy/ (F), and ¢ € Hy/2(F).

Applying the three face extension to this decomposition,
|‘£§;§lv|‘H(curl) = H grad(ggrelld(b) =+ 8CH?¢”H (curl)> by CommUtatiVity (item (1))a
< C<”¢|H§Z(Fz) + |¢||Hé,/fj(Fz))’ by [9, Prop. 4.1] and Lemma 5.1,

< Clvl y-1/2 by Theorem 2.1.
0,ij

(F1)?

Proof of (3): To show that trcT(F,;ﬁ’flv)’Fi =0,

, by (47)
F;

= — tre, (ERT)|p, + tre, (EF v)| 7, by Prop. 4.1(3).

trcT(Sfﬁl )| = trcT(Scurl’U) - trcT(E%f}v) + trCT(S%fll,lv)

Now, by (4.6) and (5.2),

trcT(S(Er}v) m // Z D,,v grad, )\, ds
T(0, 00, M0) meée{i,k}

Ajgrad N — A\ grad, )\

D;v ds, and
2[Fy (Aj + A)? ’
TZ(O )\z;>\k)
Am grad_ )\, — N grad. A, //

t - Scurl _ Dm d
re, (€%, v) = Z S IEENE vds

me{i,j} T1(0,0,\%)

Al grad AL /

Dyvd
|Fl| 1 — /\k kU dS.
1(0,0,A%)
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These two expressions coincide on F; because on F; we have \; = 0, grad. \; = 0,
Aj+ X =1— A, and T;(0, Ai, Ax) = T3(0,0, Ag). Hence

(5.6) tre, (EFv — EFN v)|F,

and so trcT(Sfﬁlvﬂ r, = 0. That trcT(ng‘fflvﬂ r; = 0 now immediately follows because
the expression for the three face extension Ef} " is symmetric with respect to 7 and j.

The third identity trc, (€} "v)|, = v holds because all the correction operators have
vanishing tangential traces on Fj.

Proof of (4): To show that the expression in (5.1) is in P,(K) is easy. Indeed,
since v has vanishing tangential components along both the z and y-axes, it has the
form v(z,y) = (zvi(z,y),yva(z,y))". Hence the denominator term z +y + 2 in (5.1)
cancels out showing that Ecurlv is in P,(K).

If v is in N, (F), then since (5.1) implies

x 1—t
curl = _ x—i—y—i—z)
y 8Eoev_x+y—|—z// (a:+y+z)) v(s(ety+a) oty ) dsdt,

z

and (3.3) implies @ - v is in P,y (F), we have @ - 8%;’;11) is in P,11(K). This proves
the last statement of the proposition. O

6. Extension of a tangential face bubble. Now consider a tangential vector
function on the face F; of a general tetrahedron K, whose tangential components
along all the three edges of Fj vanish. The four-face problem is the problem of finding
an extension of v into K whose tangential traces are zero on all the other three faces
of K.

We have all the main ingredients to solve the four-face problem right away. The
required extension operator is

curl _ curl curl curl curl
(6.1) Eijrav =& - &y, E (SFm,z” - 3Eml,zv)a

me{i,jk}

where £" is the primary extension operator defined in (3.9), Scurl is the face correc-
tion operator defined in (4.6), Ecurll is the edge correction operator defined in (5.2),

and 8%};“ is a vertex correction operator defined by

(6.2) Ecuﬂ Z (Am grad \; — A\ grad \,,) // D,v ds
—~ 2|7
me{i,j,k}

where D,,v is as defined before in (3.10) but now with Xj(s) in (3.10) denoting the
barycentric coordinates of Fy, i.e., now \; = Aj| .

PROPOSITION 6.1. The four-face extension Ecurll satisfies the following:

1. Commutativity: Scurll grad, u = grad(Slg;Z%u) for all u € Hé/jk (F7).

2. Continuity: Swuél is a continuous map from X j]/:(Fl) into H(curl).

url

3. Extension property: For all v € X 1/ x (F1), the tangential traces of €7 v
on all faces of the tetrahedron are zero except for the face F;, where it equals v.
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4. Polynomial preservation: Suppose v € P,(F;) is such that v-t =0 on OF;.
Then the extension Sf;l,gllv is in Pp(K). Furthermore, if v is in the Nédélec

space N, (Fy), then its extension Scurllv is in N, (K).
Proof. Proof of (1): We have already proven the commutativity properties of all
the operators in (6.1) except Ef};rl. Therefore, it is enough to prove that

(6.3) Ecurl grad_u = grad(c“:%,fadu), for all u € H0/2 (F),

ijk

for the operator 5%};3(1 defined in (B.4). Furthermore, by mapping, it is enough to
prove (6.3) for the specific case of the reference tetrahedron with [ = 3. In this case,
the left hand side of (6.3) simplifies to

1—s
£ (v) (2,4,2) = / / (‘) 1) dsdi
1—2—
1 pl—s 1—5 1 pl—s —g
// < >-vdsdt+ —Zz // ( )~vdsdt
0 J0 —t y 0Jo 1—t
1 p1-s [ —% 0
= // 0 —z | vdsdt.
070 r—s y—t
When v = grad, u, because u vanishes on the boundary, by integration by parts, we
can rewrite the above as

0

1 pl—s
gcurl(gradT u)=1,0 / / <:'z> -grad, u(s,t) dsdt
1/ Jo Jo
0
=0 //Qu ) ds dt, by Lemma 4.1(3),
1
= grad(E’%,r:du).

Proof of (2): First observe that the continuity of the vertex correction Sf};rl from

H é/ 5 . (F1) into H'(K) is obvious. To obtain the continuity stated in the proposition,
we use Theorem 2.1: Split

v=grad, ¢+,  with ¢ € H)? (F), and ¢ € HY/? ().

curl

Then by the commutativity property already proved, Suk v o= grad(Sng%@

curl

4.%. Hence, using the obvious continuity of Scurl : Hé/fjk( 1) — HY(K), we
have

url
|| lv”H(curl < C(||¢||H1/2 ) + ||1/}||H(1,/12]k(Fl))’ by [97 Pl"OP~ 51]7

< Cl|v]l -1/2 by Theorem 2.1.
0,ij

k(Fl)7

Proof of (3): To prove the extension property, we first rewrite the terms in (6.1)
as

( ) Sfjulgll 8curl (8curl _8%1krllJ ) (Scurl S%HEII ) (8CEI'ZIZ Scurl )
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Note that in the course of the proof of Proposition 5.1(3), we have shown that
trcT(SC“rl - 8%113_’11;) vanishes on F; — see (5.6). Hence the middle two terms in (6.4)
have Vanlshing tangential traces on F;. The first term also has vanishing tangential
trace on F; by Proposition 4.1(3). Hence,

tI’CT(Scur]l’UMFZ _ trc‘r(amt;ll 8Curl )|F¢
Am d_N — A d. A\,
= Z ( gra T L= lgra |F1 // Dm'U dS
3 o[ (1 - 0)°
me{j.k} Tl (0,0,0)

B Z (Am grad_ \; — A\, grad, A

m F;
T u Dyvds =0,
2|F| ,g
L

because, on the face F;, we have \; = 0, grad_\; = 0, and 7;(0,0,0) = F;. Since

Sf;‘gll is symmetric with respect to 7,7, and k, the above implies that the tangential

me{i,j,k}

trace vanishes on F; U F; U Fj,. That tre,( Cu,i ,v) coincides with v on F; follows
because all correction operators in (6.1) have Vanlshlng tangential traces on Fj, while
the primary extension reproduces v as its tangential trace on Fj.

Proof of (4): From the expression (6.2), it is clear that the vertex correction is a
lowest order function in the Nédélec space (a Whitney form). Hence, the polynomial
preservation property follows from the already established results in Proposition 4.1(4)
and Proposition 5.1(4). O

7. Extension from the whole boundary of the tetrahedron. Consider any
function v in the trace space of H(curl) on 0K, i.e., v € X 1/2. Let us now solve
the problem of extending this function from 0K into K in a polynomial preserving
way. The construction, at this stage, is completely analogous to the H' case: Define

U; = &,

U; =& w,, where w; = R;(v — tre, U;),

U, = SC‘“,;Iwk, where wy, = Ry (v — tre, U; — tre, Uj),
Sfféllwl, where w; = Rj(v — tre, U; — tre,; U; — tre, Uy),

where R; is the restriction to face Fy defined in (2.5), and the extensions €§", Ef';rl,

geml and Scfél are as defined in (3.9), (4.7), (5.3), and (6.1), respectively. The total

ij,k >
extension operator is then defined by

(7.1) el =U,+U; +U, +U,.
LEMMA 7.1. The functions w;, wy, and w; defined above satisfy
lwjll x 12,y < Cllvlix 172,
Jeol-172 ) < Cloll-sre,
01l 1725 < Clloll 172
We then have our main result:
THEOREM 7.2. The operator 8([‘;?“ in (7.1) has the following properties:

1. Continuity: €M™ is a continuous operator from X /2 into H(curl).
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2. Commutativity: grad(€8*%u) = €52 (grad, u) for all u in H/?(K).

3. Extension property: The tangential trace trcT(S(}}lrlv) coincides with v for
all v in X~ Y/2,

4. Full polynomial preservation: If v is the tangential trace of a polynomial
in Py(K), then v is in Py(K).

5. Nédélec polynomial preservation: If v is the tangential trace of a function
in Np(K), then E52™v is in N,(K).

Proof. The proof follows by combining the previous results. E.g., the proof of
continuity follows by combining the continuity of v — w,, for m = j, k,l (Lemma 7.1),
the continuity of the primary extension (Theorem 3.2), and the continuity of the
intermediate extension operators Sf)ujrl (Proposition 4.1), 8;:]1121 (Proposition 5.1) and

f;‘,gll (Proposition 6.1). The proof of the commutativity property similarly follows
because each of the intermediate operators satisfy commutativity properties. The
remaining properties are also proved similarly. O

One consequence of the above theorem is that the so called “optimal polynomial
extension” can be bounded using the “optimal H (curl) extension”. To be precise,

considering any polynomial trace w, = trc,(W,,) for some W, in IN,(K), we have

(72) inf N ”UPHH(curl,f() <C inf N HU”H(curl,f()'
U,eN,(K), UeH(curl ,K),
tre (Up)=w, tre (U)=w,

The infimum on the left is achieved by the optimal polynomial extension, while that
on the right by the optimal H(curl) extension. (Note that the reverse inequality
trivially holds with C' = 1.) Inequality (7.2) is a corollary of Theorem 7.2 applied on
the reference element K: We bound the left infimum by ||8§3(“1wp|| H(curl K)» @PPLY
Theorem 7.2(1), and use the quotient norm definition of the trace norm (2.2) to
prove (7.2).

To investigate the dependencies on the tetrahedral size hx = diam(K), we can
use (7.2) and the mappings Tk and ®g introduced in (3.4). Let us first define a
suitably scaled norm by

1/2
2l et = (h;2||u||i2<m n |cur1u||i2<m) |

Defining the “matrix curl” [Curl(w)]mn = Ontm — Omiy, it is easy to see that
(7.3) Curl(® g (u)) = (Ty)" Curl(w) Ty

Then standard scaling arguments show that there are constants Ci,Cy depending
only on the shape regularity of K (but not on hg) such that

(74) Cl”“‘”%(,curl < hKH‘I)K(u)Hi(ﬁcur] < CQHuH%(,curl'

Therefore, mapping over both sides of (7.2) from K to K, we find that there is a
C3 > 0 (depending on Cy,C5) such that

(75) inf H UPH%(,curl S C3 inf ”UH%(,curl
U,eN,(K), UecH(curl ,K),
tre, (Up)=w), tre. (U)=w,

holds for any tetrahedron K.
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As a final remark, we discuss how to apply our results to curved finite elements.
Let K be a “curved tetrahedron” in the sense of [3], i.e., we assume that K is the
image of K under the map

T=T+S :K+—R?

where T : R3 — R3 is an invertible affine map and S : K—R3isa “perturbative”
map which is twice continuously differentiable (C?) and generally nonlinear. Under
appropriate bounds on S(@) (T")~" and the second derivatives of S, it is proved in [3]
that 77! : K — K exists and is C2. The Nédélec space on the curved element K,
which we continue to denote by N, (K), is now defined by N,(K) = & (N, (K))
where @ is now defined analogously to (3.4) but with 7" in place of Tk, namely,
®(v) = (T")!(v o T). With this (possibly nonlinear) ®, we now have

3
[Curl(®(w))]mn = [(T")" Carl(@) T |yn + Y (0Tl — Om i) w0 Ty,
=1

but the last term vanishes as 0,7Y,, — OmTy, = OnOnT; — 0m0, Ty = 0. Hence, we
continue to have the identity (7.3). The affine homeomorphism 7' maps K onto a
(straight) tetrahedron K which “approximates” the curved element K. Set hx to be
the diameter of K. With this reinterpretation of hx, mapping from our result (7.2)
on the reference element, and using the mapped estimates of [3], we find that (7.5)
holds even for the curved tetrahedron K.

Appendix A. Proofs of the lemmas.

We now prove all the lemmas in the order in which they appeared in the previous
sections. For these proofs, we will use the lemmas established in [9], as well as a few
new auxiliary results. We begin with the following auxiliary lemma:

Lemma A1, Let S, = {(2',y,2') € K: 2/ =2z}, 0(z,y) be a smooth function
on F, and

1
Gou(w:2) = [ 8(s,1=5) ula -+ s,y + (1= 5)2) ds,
0
1
Gru(z,y,2) = / 0(0,t) u(x,y + tz) dt,
0
1
Gou (x,y,2) = / 0(s,0) u(x + sz,y) ds.
0
Then, for any 0 < z < 1,

\/EHGO“HL%SZ) < ||9HL1(E12)||U||L2(F)
[Grullrzs.) < ||9HL1(E20)||U||L2(F)7

[Gaullrz(s.) < ||9HL1(E01)||U||L2(F)'

Proof. The three estimates have very similar proofs, so we will only prove the last
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one:

|Gaul2a s, _//}/Ole(s,o) I
// (/ 0(s1,0) u(z + s12,y) dSl)(/ 0(s2,0) u(z + s22,y) d82> dx dy
:/0/0 8(s1,0) 9(52,0)</S[u(x—|—812,y) (@ + $22,7) d:cdy)dsldsQ

by Fubini’s theorem. Now applying Cauchy-Schwarz inequality to the integral over
S in the parentheses above, and increasing the integration domain to all (z,y) in F,
we obtain

dx dy

1 p1
(Gl sy < [ [ 16051,0) OO0 ull il s

= ([ o) |ds> .

from which the last estimate of the lemma follows. O
Next, we present a result for the integral operator

1—t
Kou (z,y, 2 // 0(s,t) u(x + sz,y + tz) dsdt,

with a smooth kernel 6. This is a smoothing integral, but the smoothness of the
resulting function degenerates as z — 0. The following lemma quantifies this by
examining norms of derivatives on slices S, (see Fig. 5) parallel to and approaching
the z-y plane.

LEMMA A.2. Let 0(z,y) be a smooth function on F. Then the map Ko de-
fined above for smooth functions u(z,y) on F', extends to a continuous operator from
L2(F) into L*(K). Moreover, letting S, = {(«',y/,2') € K : 2’ = z}, the following
inequalities hold for any 0 < z < 1:

(A.1) 1Koullrzs.) < mullullpz gy,
(A.2) | grad(Kou)|| L2(s.) < k2 2_1HUHL2(F)7
(A.3) [ grad(Xou)ll2(s.) < wall grad, ull 2z,
1/2
where k1 = H9||L1(F), Ko = 2V/3 (H9||€V11(F + H9||L1(8F)) ,and K3 = \/§H9”L1(ﬁ)-

Proof. The proof of the first estimate (A.1) is similar to the proof of Lemma A.1,
so we omit it. To prove the second estimate (A.2), we rewrite the expression for Kou
as

1- t
(A4) Kou (x,y, 2 // (s,t) u(x + sz,y +tz) dsdt

+z prtytz— z’ _ _
=[] oL LYy el ) dyf
z T y z

z



Fic. 5. The value of Kgu at a point (z,y,z) in the slice S. is determined by integrating
u over the triangle in the x-y plane shown above. Even if u(x,y) is not differentiable, Kou can
be differentiable. But the derivatives of Kgu degenerate as z — 0, unless u is differentiable (see
Lemma A.2).

and differentiate it (so that no derivatives fall on u). Then we obtain the following
identity:

1 —fKaseu + Gou — Giu
(A.5) grad(Kpu) = 2 —Ko,ou + Gou — Gau ,
—2Kgu — K(so,0+t0,0)u + Gou

where X, (appearing above with o = 946,00, and s0s0 + t9;0) denotes the same
expression as on the right hand side of (A.4), but with (s, t) replaced by a(s,t). By
applying Lemma A.1 and (A.1) to estimate the terms on the right hand side of (A.5),
we obtain (A.2).

To prove the last estimate of the lemma, we express grad(Xpu) differently from
(A.5), this time letting all the derivatives fall on wu:

1,1t 1 0
grad(Kou) = / / 0(s,t) |0 1| grad, u(z+ sz,y+tz) dsdt
070 st
fK@(amu)
= Ko (0yu)
Ko (&cu) + Ko (8yu)

Thus, (A.3) follows by applying (A.1) to each term on the right hand side above. O

Proof of Lemma 3.1. (The K-functional technique.) We use the real method
of interpolation of spaces [2] and Peetre’s K-functional [17]. It is well known [12, 13]
that an equivalent norm on space H/?(F) is

S 1/2
lell ooy = ( [k dt) ,

where the K-functional is defined by

2 _ 2 2 2
K(tau) - u:g;gul HU’O”L2(F) +1 ||u1||H1(F)'

26



The infimum is taken over all decompositions u = ug +uy of u in H'/2(F) with ug
in L2(F) and uy in H'(F'). For such a decomposition, (A.2) and (A.3) of Lemma A.2
gives

ngadeguoni2 < CZ_QHUOHiz(p)v

(Sz)
H grad Kt‘)ulH;(sz) < C||U1||§11(p)7

where S, is the slice defined previously (see Fig. 5). Using these to estimate the
H'(K)-norm, we have

1
1Koull3p i) = / <|j<9u||L2(S )+ [lgrad (%o (uo + i )H2L2(Sz) >dz

<0 [Tl + 7 (Wl + 2l )

where we have also used (A.1) of Lemma A.2. Taking the infimum over all the
decompositions,

1
Hﬂ((;uHHl < C'/O 2K(z,u)?dz < C |||u”|i11/2(ﬁ)' a
Proof of Lemma 4.1. The proofs of the first, second, and third identities rely
on an application of the fundamental theorem of calculus along the integration paths
shown in Fig. 3(a), 3(b), and 3(¢), respectively. Since the three proofs are very similar,

we will only prove the first identity.
First, integrating du/ds along the vertical path in Fig. 3(a), we have

11—t
/ / u(s,t) dsdt
o Jo B

1 1 s
= / / / Ou (s t) ds'ds dt (Fundamental theorem of calculus)
0,70 0, 63
17 01—t
/ / / ds —(s',t) ds'dt (Fubini’s theorem)
017014
= / (I-t—s —(s,t) dsdt (change of variable: s’ — s).
0 0 Os

Next, we integrate along the slanted line in Fig. 3(a) to get

//1 tus’td // (a, 8 — a) dadf (setting a = 5, B =s+1)
/01/05/0ada u(d, 3 —a') da’dadp
/01 /OB /OB % - %) (o, 8 —a') dd’dadf3
:/01 /Oﬁ /a da ((% —(;%f) (o', — o) da'dp
/0 /O(ﬁ_a) (@‘5) (a, 8 — @) dadf
A‘ t

17 01—
0 0
/ t (_u — _u) (s,t) dsdt (by a change of variable).
0



Taking the average of the two identities we get the first identity of the lemma. ad
Next, let us prove the continuity of the face and edge correction operators. Recall

the averaging operators Ag, BY and the interpolatory operators Jy, Ly analyzed in [9,
Appendix Al:

1 pl—s
(A.6) A (y, 2) :2// 0(s,1) u(sz,y +t2) dtds,
0J0

HU Z) = e S ulsz,tz S.
(A7) Byu (z) 2/0/0 0(s, t)u(sz,tz) dtd
(A.8) Joo (z,y,2) = 0(z,y,2) oy, x + 2),

(A.9) Lo (z,y,2) = 0(z,y, 2) b(x +y + 2),

which we used in the analysis of the H! face and edge correction operators. We will
use them here in the H(curl) case as well.

Proof of Lemma 4.2. Combining the two terms in the definition of the face
correction (4.1), write

11—t (3s—1)z 3zt
t
Eg”lv = / / 0 2z vislrt+z) yt+te+2)) dsdt.
070 2zs+x(l —s) 2zt —uat Tz

In terms of the operators in (A.6) and (A.8), this expression becomes

v Jﬁl OAgl’Ul—i-Jﬁl OAgQ'UQ
(A.10)  &¥ (v;) = Jg, 0 APvy
Js, 0 A% vy 4 Jp, 0 APvy + J5, 0 Af0vg — Jg, 0 Agﬁmvg

with
3s—1 3t z
91: ) 92:_5 93:17 61: )
(A.11) 2 2 T+ z
' 01 =s s =125 go—t, f— "
4 — ) 5 — 2 9 6 — Uy 2_$+Z'

Since |3;| are bounded, we can apply [9, Lemma A.3] to conclude that the map
Js, + L2(Fy) — L*(K) is continuous. In addition, for the specific 3; and [
in (A.11) above, we have

I3, (0:0) — Jp,(¢/2) I3, (0:0) + Jp,(¢/2)
grad(Jp, ¢) = I3, (0y9) , grad(Jp,¢) = I3, (0y )
Jﬁl (6Z¢) + Jﬁz ((b/z) JBQ (6Z¢) - JBQ ((b/z)

Applying [9, Lemma A.3] again to these gradients, we conclude that the map
(A.12) Jp,: L3 (F)NHN(F) +— HY(K)

is continuous. Furthermore, since the functions 6; in (A.11) are smooth, applying [9,
Lemma A.1], we find that

(A.13) Af L3 (Fy) — L3,.(F)nHNF)
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is continuous. Combining the continuity of the maps in (A.12) and (A.13), we get
that each of the operators in (A.10) of the form Jg, o Agj is continuous from Lf/m (F3)
into H'(K).

Since Héy/f (F) = H/2(F)n L?,,,(Fy), the continuity of the two-face extension
Efjﬂ =gt — Siljfll, now follows from the continuity of £ proved in Theorem 3.2
and the continuity of the face correction established above. O

Proof of Lemma 5.1. Let us first consider the expression (5.1) for the edge
correction, summing its the three terms, namely

(A.14)
(3s—1)z 3zt
t
E%rlv :// 3zs z(3t—1) viswty+2)tr+y+z) ds dt.
so\z(l—s) —ys+2zs —at+y(l—1)+22t rry+z

Using the BY in (A.7) and the Ly in (A.9), we can rewrite this expression as
(A.15)

e L53OB31’01 LﬁaoBgz'UQ
2 L BY + B2%)v, — Ly, o B*v, L BYs + B2%2)y, — Ly, o B2%
s © (By® + B3 *)v1 B2 © D271 B, © (By® + B3 ?)vz B O Do "V2
with
3s—1 t S T Y
01 = 0 ==, 0 = -, = — =<
(A.16) ! 2 272 572 b THy+ 2 Pz T+y+ 2
' 0 _3t—1 0 _1-s P 1t B — z
4 — 2 ) 5 — 2 6 — 2 ) 3_$+y+2’

Note that the above 3; take values in the bounded interval [0, 1]. Hence [9, Lemma A.4]
implies that Lg, : L?,(Eo3) — L*(K) is continuous. However, since

1 y+2 x  [(VlEtyta)
d(L =—— | - ol L
grad(Lg, v¥(z)) CESTERSE _z ¢(ar+y+z)+x+y+z z,giZig )

Lg,(¥/2) + Lg,(¥/2) Lp, (¢")
= —Lg, (¥/2) + | Ls, (¥') |,
—Lg, (¥/2) Lg, (¢")

and since similar identities hold for the gradients of Lg,v and Lg,1, applying [9,
Lemma A.4] to the components of these gradients, we find a stronger continuity
property, namely

(A17) Lg, = L*(Eog) N HE(Eos) — H'(K)
is continuous. Next, since 6; in (A.11) are smooth, applying [9, Lemma A.2], we also
have
9. A~ ~ ~ ~
(A.18) By’ L, (F3) N LY, (Fs) — L*(Eos) N H 2 (Eos).

Since all the operators in (A.15) are of the form Lg, o ng, combining the continuity
properties of (A.17) and (A.18), we find that the edge correction

(A.19) EQN L3 (P)N LY, (F)? — H'(K)
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is continuous.

The required continuity of the three-face extension £ = g5 — Ecurl es

il = ot
S'E’;{ , now follows from the continuity of (A.19), the continuity of the face corrections

(established in the proof of Lemma 4.2) and the continuity of the primary extension
(Theorem 3.2). O

Proof of Lemma 7.1. By the definition of the space X, I/ (Fp), its norm is

||’LU|| —1/2,m — inf ||UH —-1/2.
I X0 17 (F) Rju=wjueXg | ~1/2 X
Hence
||wJ||X 1/2( < H’U tre, UiHX*1/2

< ol 12+ [ tre, €M) 1o
< vl x-1/2 + C’HﬁfurlvHH(curl) by trace theorem
< vl x-12 + Cllvl x-1/2(R,) by Theorem 3.2
< Clvlx-1/2 by (2.6).

The remaining estimates are proved similarly. a

Appendix B. Corrigendum to Part I.

Factors of Jacobian determinants of integral transformations are missing in several
expressions of Part I [9]. While these errors do not alter the findings of [9], we collect
the corrected expressions here, because we rely on them heavily in this paper.

All the corrections are to replace a factor of 2 by 1/|Fj| in the following occurrences
(which are all expressions for extensions on tetrahedra that are not the reference
tetrahedron): Definitions in [9, Eq. (2.3), pp. 3012] (primary extension), [9, Eq. (3.2),
pp. 3014] (face correction), [9, Eq. (4.3), pp. 3016] (edge correction), and the definition
of the vertex correction appearing in the display after (5.2) in [9, pp. 3018], should
be corrected as follows, respectively:

1
IR u(s) ds,
TL(>\'L;>\j;>\k)

Al
B.2 gerady — A / d
( ) Flu |Fl|()\ +)\l) (8) S,

(B.1) gerady =

T1(0,0;,2%)
B.3 garady, //
( ) Ei, l |E 1 ).

TZ(O 0,M)

oy
B4 gerady . 2L //us ds
. TR )

Additionally, replace 2 by 1/|F}| in [9, Line 18, pp. 3015], [9, Eq. (4.7), pp. 3017],
and in the fourth line from the bottom in [9, pp. 3017].
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