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POLYNOMIAL EXTENSION OPERATORS. PART II ∗

LESZEK DEMKOWICZ† , JAYADEEP GOPALAKRISHNAN‡ , AND JOACHIM SCHÖBERL§

Abstract. Consider the tangential trace of a vector polynomial on the surface of a tetrahedron.
We construct an extension operator that extends such a trace function into a polynomial on the
tetrahedron. This operator can be continuously extended to the trace space of H(curl ). Further-
more, it satisfies a commutativity property with an extension operator we constructed in Part I of
this series. Such extensions are a fundamental ingredient of high order finite element analysis.

Key words. Sobolev, polynomial, extension, tangential, normal, trace

AMS subject classifications. 46E35, 46E39, 65N30, 47H60, 11C08, 31B10

1. Introduction. This is the second in the series of papers devoted to con-
structing polynomial preserving continuous extension operators for Sobolev spaces
satisfying the commuting diagram

(1.1)

H1/2(∂K)
gradτ−−−−→ trcτ (H(curl ))

curlτ−−−−→ trcn(H(div))
yE

grad
K

yE
curl
K

yE
div
K

H1(K)
grad−−−−→ H(curl )

curl−−−−→ H(div),

where K is a tetrahedron, H1(K), H(curl ) and H(div) are the standard Sobolev
spaces on K, and the trace operators are

trcτ φ =
(
φ− (φ · n)n

)∣∣
∂K
, (tangential trace),

trcn φ = (φ · n)
∣∣
∂K
, (normal trace),

with n denoting the outward unit normal on ∂K. The first polynomial extension
operator in (1.1), namely E

grad
K , was constructed in Part I [9]. The current part

is devoted to the construction of E
curl
K . The differential operators gradτ and curlτ

in (1.1) denote the surface gradient and surface curl, respectively (see, e.g. [5] for
definitions of differential operators on non-smooth polyhedral surfaces).

There are many applications in the analysis of high order finite elements for such
an extension operator. Perhaps the most important one is in proving an approxi-
mation estimate for hp finite element spaces. Indeed, an approximation theory for
high order H(curl ) finite element spaces has been developed in [7] under the con-
jecture that such an extension operator exists. To describe one of the results there,
suppose T is a tetrahedral finite element mesh of a polyhedral domain Ω, and let
Vhp = {v ∈ H(curl,Ω) : v|K is a polynomial of degree at most pK for all mesh
elements K in T}. For any tetrahedron K, let ρK denote the diameter of the largest
ball contained in K and let hK denote the length of the longest edge of K. In fi-
nite element analysis, it is typical to assume that meshes are “shape regular”, i.e.,
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assume that there is a fixed positive constant γ such that maxK∈T hK/ρK < γ for
all meshes under consideration. In this situation, [7, Corollary 2] implies that, if an
H(curl ) polynomial extension exists, then there is a constant C depending only on
γ such that

(1.2) inf
vhp∈Vhp

‖v − vhp‖H(curl ) ≤ C
∑

K∈T

hr+1
K

ln pK

pr
K

(
|v|2Hr(K) + |curl v|2Hr(K)

)1/2

for any r > 1/2. Thus, as a consequence of our construction of E
curl
K , the approxima-

tion estimate (1.2) and other similar estimates in [7] are finally proved. The extension
operator is important also in the analysis of spectral mixed methods (see remarks at
the end of [11] for the need for an H(curl ) extension). Polynomial extensions also
play an important role in the construction of good shape functions and precondition-
ing [18].

We will keep the same notation as in Part I (summarized in [9, § 1.5]) and employ
the same overall technique developed there (summarized in [9, § 1.4]) for constructing
the H(curl ) extension operator. In particular, we start with a primary extension
operator, and then design suitable face, edge, and vertex correction operators to arrive
at the total extension operator. The construction of both the primary and correction
operators will be motivated by the need to satisfy the commutativity property in (1.1).
For example, to obtain an expression for theH(curl ) primary extension of v, denoted
by E

curl
v, we took the expression for E

gradu from [9] (see (B.1) in the current paper
for the correct expression), differentiated it, expressed the result in terms of gradτ u,
and then substituted gradτ u by v. Clearly, this will guarantee the commutativity
property E

curl
gradτ u = gradE

gradu. Such computations motivated the expressions
for face and edge corrections as well. The finalH(curl ) polynomial extension operator
and its properties are given in Theorem 7.2.

Although we apply the same overall technique as in the H1 case considered in
Part I [9] of this series, a major difference between the H(curl ) case and the H1 case
is that the trace space of the former is more complicated. Only recently has the trace
space of H(curl ) on polyhedral domains been fully characterized in terms of certain
Sobolev spaces of negative index [5, 6]. In order to circumvent estimating negative
norms, we proceed by first developing a new technical tool, namely a decomposition
of the trace space, which when combined with commutativity, reduces the problem of
norm bounds for the extension to Sobolev norms of positive index only. This seems
to simplify the analysis considerably. Another new technique we introduce in this
paper is proving a norm estimate for primary extensions in fractional Sobolev norms
directly using Peetre’s K-functional and interpolation theory. Other new aspects
in the H(curl ) arena not seen in the H1 case include symmetrization of integrals
defining the extensions to obtain expressions invariant under relevant transformations.

We begin by describing the decomposition of trace space using regular functions
(Section 2). Then we study the primary extension from a plane (Section 3). The
primary extension will then be corrected using face and edge correction operators
given in Sections 4 and 5. The complete solution to theH(curl ) polynomial extension
on a tetrahedron is given in Section 7. Appendix A contains proofs of all technical
lemmas and Appendix B contains corrections to Part I.
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2. A characterization of the trace space. For smooth vector functions φ,
we denote their tangential and normal traces on ∂K by

trcτ φ =
(
φ− (φ · n)n

)∣∣
∂K
,

trcn φ = (φ · n)
∣∣
∂K
,

where n denote the outward unit normal on ∂K. It is well known that the operators
trcτ and n×trcτ extend continuously toH(curl ) and that their ranges are subspaces

ofH−1/2(∂K) [1, 5, 10]. Letting 〈·, ·〉 denote the duality pairing betweenH−1/2(∂K)

and H1/2(∂K), define H0,S(curl ) for any subset S of ∂K of positive measure by

H0,S(curl ) = {φ ∈H(curl ) : 〈n× trcτ φ, ψ〉 = 0 for all ψ ∈H1
∂K\S(K)},

whereH1
∂K\S(K) denotes the subspace of functions inH1(K) whose tangential traces

vanish on ∂K \ S. In addition, we shorten H0,∂K(curl ) to simply H0(curl ).
We shall need the trace spaces of H0,S(curl ) when S is composed of one or more

faces of K. Let Fij = Fi ∪ Fj and Fijk = Fi ∪ Fj ∪ Fk. We define the spaces by the
range of the trace map:

(2.1)
X−1/2 = trcτ H(curl ), X

−1/2
0,i = trcτ H0,Fi(curl ),

X
−1/2
0,ij = trcτ H0,Fij (curl ), X

−1/2
0,ijk = trcτ H0,Fijk

(curl ).

The above spaces X
−1/2
0,I , for all subscripts I in the set {i, ij, ijk}, are subspaces of

H−1/2(∂K). The precise subspace topology of X−1/2 in H−1/2(∂K) is given in [5].
One could attempt to use their techniques to characterize the subspace topologies of

all X
−1/2
0,I , but for our purposes it seems better to proceed by endowing all the sets

in (2.1) with a natural quotient topology defined by

(2.2) ‖v‖X−1/2 := inf
trcτ (φ)=v

‖φ‖H(curl ),

where the infimum runs over all φ in H(curl ) satisfying trcτ (φ) = v. Standard
arguments then prove the following facts: Under the quotient norm in (2.2), the

space X−1/2 is complete and the subsets X
−1/2
0,I are closed. Furthermore, there is a

linear continuous lifting operator E : X−1/2 7→H(curl ) satisfying

(2.3) EX
−1/2
0,I ⊆H0,FI (curl ), trcτ (Ev) = v, ‖Ev‖H(curl ) = ‖v‖X−1/2 ,

for all v ∈ X−1/2. We need to find an extension operator like E, but one that has
the additional polynomial preservation property.

We shall now characterize the H(curl ) trace spaces using Sobolev spaces of

positive index, namely H1/2(∂K), and H1/2
τ := trcτ H

1(K). The space H1/2
τ is

characterized in terms of the H1/2-norm of faces in [5], but we will simply work
with the natural norm ‖ϑ‖

H
1/2
τ

defined to be the infimum of ‖φ‖H(curl ) over all

φ ∈ H1(K) for which trcτ φ = ϑ. The idea for our characterization of the trace
space is best revealed for the first space in (2.1), as we see next.

Proposition 2.1. The space X−1/2 admits the following stable decomposition:

X−1/2 = gradτ H
1/2(∂K) + H1/2

τ .

3



Proof. Consider any function v inX−1/2 and its lifting Ev defined in (2.3). Since
K is convex, by the well known Helmholtz-Hodge decomposition for H(curl ) (see
e.g. [10, Corollary I.3.4] or [14]), there is a ϕ ∈ H1(K) and ψ ∈H1(K) such that

(2.4) Ev = gradϕ+ψ.

Applying the tangential trace operator to this decomposition, we obtain the required
decomposition:

v = gradτ (ϕ|∂K) + trcτ (ψ).

Its stability follows from the continuity of the trace maps. Indeed, there are positive
constants C1 and C2 such that

‖ϕ‖H1/2(∂K) + ‖ trcτ ψ‖H
1/2
τ

≤ C1

(
‖ϕ‖H1(K) + ‖ψ‖H1(K)

)

≤ C2 ‖Ev‖H(curl ) = C2 ‖v‖X−1/2 ,

where we have also used the stability of the decomposition in (2.4).

Although the trace spaces in (2.1) were defined on the whole boundary ∂K, by
virtue of Proposition 2.1, we can now speak of its restrictions on faces. Indeed, it is
well known that the restriction to a face Fl is a continuous operation from H1/2(∂K)

into H1/2(Fl). Moreover, letting H1/2(Fl) denote the space of tangential vector func-
tions on Fl whose two components are in H1/2(Fl), the restriction operator is also a

continuous map from H1/2
τ into H1/2(Fl) (this follows, e.g., from the characteriza-

tion of H1/2
τ in terms of standard Sobolev spaces found in [5]). Therefore, given any

v ∈ X−1/2, decomposing it by Proposition 2.1 as v = gradτ ϕ+ψ we can define the
restriction operator Rl by

(2.5) Rlv = gradτ (ϕ
∣∣
Fl

) + (ψ
∣∣
Fl

).

Clearly, Rl coincides with the usual restriction operator when applied to smooth v.
Moreover, by the stability of the decomposition, Rl is a continuous map from X−1/2

into gradτ H
1/2(Fl) +H1/2(Fl). We define the trace spaces on one face as the range

of this restriction operator:

(2.6) X−1/2(Fl) = RlX
−1/2, ‖v‖X−1/2(Fl)

:= inf
Rlw=v

‖w‖X−1/2 ,

where the infimum runs over all w in X−1/2 satisfying Rlw = v. The space

X−1/2(Fl) is complete under the above norm and the subsets X
−1/2
0,I (Fl) = RlX

−1/2
0,I

are closed. It is easy to verify thatRl has a continuous right inverse Ll : X−1/2(Fl) 7→
X−1/2 satisfying

(2.7) LlX
−1/2
0,I (Fl) ⊆X−1/2

0,I , ‖Llv‖X−1/2 = ‖v‖X−1/2(Fl)
, RlLlv = v,

for all v in X−1/2(Fl).

We will now show that these trace spaces on the face Fl can be characterized
using subspaces of H1/2(Fl) with zero boundary conditions. Recall the definitions
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ai
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aj

ãi,j

ãi,k

ãk,i

ãk,j

KK̃ij

Fig. 1. Notations in the proof of Theorem 2.1

of H
1/2
0,I (Fl) for I ∈ {i, ij, ijk} from Part I [9]: Using λi to denote the barycentric

coordinates of K, let

H
1/2
0,i (Fl) = H1/2(Fl) ∩ L2

1/λi
(Fl)

H
1/2
0,ij(Fl) = H1/2(Fl) ∩ L2

1/λi
(Fl) ∩ L2

1/λj
(Fl)

H
1/2
0,ijk(Fl) = H1/2(Fl) ∩ L2

1/λi
(Fl) ∩ L2

1/λj
(Fl) ∩ L2

1/λk
(Fl).

Here L2
1/λi

(Fl) is the Lebesgue space of functions that are square integrable with

weight 1/λi, so clearly, the functions in H
1/2
0,I (Fl) vanish weakly on certain parts of

the boundary ∂Fl. Also, let H
1/2
0,I (Fl) denote the set of tangential vector functions

on Fl whose two components are in H
1/2
0,I (Fl). Then we have the following theorem

(where, like everywhere else in this paper, the indices i, j, k, l are a permutation of
0, 1, 2, 3).

Theorem 2.1. The spaces X−1/2(Fl) and X
−1/2
0,I (Fl) of traces on Fl for all I in

{i, ij, ijk} admit the stable decompositions

X−1/2(Fl) = gradτ H
1/2(Fl) +H1/2(Fl),

X
−1/2
0,I (Fl) = gradτ H

1/2
0,I (Fl) +H

1/2
0,I (Fl).

Proof. The first decomposition follows immediately from Proposition 2.1 (by

restricting to Fl), so let us prove the second. Let v be any function in X
−1/2
0,I (Fl) and

(2.8) φ = E(Llv),

where E and Ll are as in (2.3) and (2.7), respectively. Then, by the above mentioned
properties of these operators, φ is in H0,FI (curl ,K).

We need to expand the domain K. Let ai denote the vertices of K. Let ãi,j =

2aj − ai and ãi,k = 2ak − ai. Then, depending on I in {i, ij, ijk}, define F̃I,l by

F̃i,l = conv(Fl, ãi,j , ãi,k), F̃ij,l = conv(F̃i,l, F̃j,l), F̃ijk,l = conv(F̃i,l, F̃j,l, F̃k,l).
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where conv(· · · ) denotes the convex hull of its arguments. The expanded domain

is defined by K̃I = conv(F̃I,l,al) (this domain, for the case I = ij is illustrated in
Fig. 1). It is easy to prove that the trivial extension of φ defined by

φ̃ =

{
φ on K,

0 on K̃I \K,

is in H(curl , K̃I).

Next, we borrow a technique found in [4, Lemma 2.2] (see also [16, Proposition 5.1]

and other related references mentioned there). We start by decomposing φ̃ using the

Helmholtz-Hodge decomposition on K̃I to get

(2.9) φ̃ = gradϕ+ψ, with ϕ ∈ H1(K̃I), ψ ∈H1(K̃I).

Note that we used the convexity of K̃I to conclude the regularity of ϕ and ψ. Observe
that since φ̃ vanishes on K̃I \K, the gradient of ϕ must coincide with ψ there. Hence

ϕ
∣∣

eKI\K
∈ H2(K̃I \K).

Therefore, there exists an H2-extension (see, e.g. [19, Theorem VI.3.5, pp. 181], or

our volume extension constructions in [8]) of ϕ to all K̃I , which we denote by ϕ′.
Then

(2.10) φ̃ = gradϕ′′ +ψ′′, with ϕ′′ = ϕ− ϕ′, ψ′′ = gradϕ′ +ψ.

Clearly, ϕ′′ is in H1(K̃I) and ψ′′ is in H1(K̃I). Moreover both ϕ′′ and ψ′′ vanish

on K̃I \K.
The required decomposition is now obtained by applying trcτ to (2.10). Indeed,

combining the definition of φ in (2.8) with (2.10), we obtain

v = Rl trcτ (φ) = Rl trcτ (φ̃
∣∣
K

)

= gradτ (ϕ′′
∣∣
Fl

) +Rl trcτ ψ
′′.(2.11)

Since ψ′′ is in H1(K̃I), its trace ψ′′
∣∣

eFI,l
is in (H1/2(F̃I,l))

3 and all three components

of this trace vanish on F̃I,l \ Fl. Moreover, since the tangential component of this
trace on Fl coincides with Rl trcτ ψ

′′, we conclude that the last term in (2.11) is in

H
1/2
0,I (Fl). Moreover, since ϕ′′ vanishes on K̃I \ K, its trace appearing in (2.11) is

in H
1/2
0,I (Fl). Thus the components in the decomposition (2.11) are in the required

spaces.

The stability of the decomposition (2.11) follows from the stability of the decom-
position (2.9), the H2-continuity of the map ϕ 7→ ϕ′, the continuity of various trace
maps, and the continuity of the operators E and Ll.

Remark 2.1. The decomposition of Theorem 2.1 has a regular part, namely

H
1/2
0,I (Fl), and a non-regular part, namely gradτ H

1/2
0,I (Fl) (which is generally only in

H−1/2(Fl)). It is important to note that the theorem lets us choose the regular part
to be a vector function with zero boundary conditions on all its components. Note
also that the decomposition is not an orthogonal decomposition in L2(Fl).
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Remark 2.2. The decomposition of Theorem 2.1 gives an equivalent norm on the
trace space. E.g., from the results of [5, 6], it follows that the trace space X−1/2(Fl)
coincides with the space

H−1/2(curlτ , Fl) := {v ∈H−1/2(Fl) : curlτ v ∈ H−1/2(Fl)}

normed with ‖v‖H−1/2(curlτ ,Fl)
:=

(
‖v‖2

H−1/2(Fl)
+ ‖ curlτ v‖2

H−1/2(Fl)

)1/2
where curlτ

denotes the scalar surface curl. Then our results imply that for any v in X−1/2(Fl),
if v = gradτ ϕv +ψv denotes the decomposition given by Theorem 2.1, the norms

‖v‖X−1/2(Fl)
, ‖v‖H−1/2(curlτ ,Fl)

, and ‖ϕv‖H1/2(Fl) + ‖ψv‖H1/2(Fl)
,

are equivalent norms.

3. Primary extension operator. We first display the expression for the pri-
mary extension when the data function v is smooth tangential vector function on the
x-y plane (or the x-y face of the reference tetrahedron K̂, which we denote by F̂ ).
The expression is

E
curlv (x, y, z) = 2

∫ 1

0

∫ 1−t

0




1 0
0 1
s t


v(x + sz, y + tz) ds dt(3.1)

which by a change of variable can also be expressed as

E
curlv (x, y, z) =

2

z3

∫ x+z

x

∫ x+y+z−ex

y




z 0
0 z

x̃− x ỹ − y



 v(x̃, ỹ) dỹ dx̃.(3.2)

We derived this expression motivated by the commutativity property we need, namely
gradE

gradu = E
curl gradτ u. Indeed, we took the expression for E

grad from (B.1), dif-
ferentiated it, expressed the result in terms of gradτ u, and then substituted gradτ u
by v to obtain (3.1). (This calculation is implicit in the proof of Theorem 3.2(1) to
be given shortly, so we do not display it here.)

To assert the polynomial preservation properties of this operator, we need more
notation. The space of vector functions on any domain D whose components are
polynomials of degree at most p is denoted by Pp(D) and its subspace of homogeneous
polynomials of degree p is denoted by P̄ p(D). The Nédélec subspace (of the first
kind) [15] of P p+1, denoted by Np(D), is defined by

Np(D) = {vp + rp+1 : vp ∈ P p(D), and rp+1 ∈ P̄ p+1(D) satisfies rp+1 · x = 0}.

It is easy to see that

(3.3) q ∈Np(D) if and only if q ∈ P p+1(D) and q · x ∈ Pp+1(D).

In these characterizations of Np(D), the vector x is the coordinate vector in the
Euclidean space in which D lies, so it can have two or three components.

The expression in (3.1) will give an extension operator on any other tetrahe-
dron K once we use certain mappings, which we now define. Let TK denote the
affine homeomorphism mapping K̂ to K and let T ′

K denote its Jacobian matrix, i.e.,
[T ′

K(x̂)]ij = ∂[TK(x̂)]i/∂x̂j . Define

ΨK(u) = u ◦ TK , ΦK(v) = (T ′
K)t(v ◦ TK).(3.4)

7



It is well known that (see e.g. [10] or [15]) ΦK is a one-to-one map from Pp(K) onto

Pp(K̂), from Np(K) onto Np(K̂), and from H(curl , K̂) onto H(curl ,K). Also,

(3.5) ΦK(grad u) = grad(ΨK(u)).

Similarly, letting TFl
denote the affine homeomorphism that maps F̂ one-one onto a

general face Fl of K, we define ΨFl
and ΦFl

as above. Then it is easy to check that

(3.6) trcτ (grad ΨK(u))|F̂ = ΦFl
(gradτ u)

for any smooth function u on K. The primary extension on a general tetrahedron K
lifting from the face Fl is now given by

(3.7) E
curl
l = Φ−1

K ◦ E
curl ◦ ΦFl

.

In order to bring out the symmetry in the extension expressions, rather than
simplify the mapped expression in (3.7), we will use affine coordinates. To illustrate
this technique, first write a smooth tangential vector function given on face Fl as

(3.8) v =
∑

m∈{i,j,k}

vm gradτ λm,

with three smooth components vm. Such a decomposition of v into component func-
tions vm is always possible, but is not unique. Indeed vm for all m in {i, j, k} coincides
with one function v̄ if and only if v is zero. With vm as in (3.8), we can now rewrite
the primary extension operator on K̂ as follows:

E
curl
v =

2

z3

∫ x+z

x

∫ x+y+z−ex

y




z 0
0 z

x̃− x ỹ − y




(
−1
−1

)
v0 +




z
0

x̃− x



 v1 +




0
z

ỹ − y



 v2 dỹ dx̃

=
1

|F̂ | λ2
3

∫∫

T3(λ0,λ1,λ2)

2∑

m=0

(
vm −

2∑

ℓ=0

λ̃ℓvℓ

)
gradλm dỹ dx̃,

where we have used the barycentric coordinates λi of the tetrahedron, as well as
the barycentric coordinates λ̃ℓ(s) of the region of integration T3(λ0, λ1, λ2) ⊆ F̂ ,

and the fact that the two-dimensional measure |F̂ | equals 1/2. The symbol λ̃ℓ will
generically denote the barycentric coordinates of whatever region of integration is
under consideration, e.g., in the above, since the region is T3(λ0, λ1, λ2), they are

λ̃1 = (x̃ − x)/z, λ̃2 = (ỹ − y)/z, and λ̃0 = 1 − λ̃1 − λ̃2. Note also that in the above,
we have continued to use the notations in [9], e.g., for any permutation {i, j, k, l} of
{0, 1, 2, 3}, define Tl(ri, rj , rk) = {x ∈ Fl : λFl

ℓ (x) ≥ rℓ for ℓ = i, j, and k}, where
λFl

m ≡ λm|Fl
(for m = i, j, or k) are the barycentric coordinates of Fl.

Now, to obtain the extension lifting into a general tetrahedron K from its face
Fl, we only need to identify parts of the above expression that remain invariant under
the previously mentioned mappings. Thus

(3.9) E
curl
l v (λi, λj , λk, λl) =

1

|Fl| λ2
l

∫∫

Tl(λi,λj ,λk)

∑

m∈{i,j,k}

Dmv(s) gradλm ds

where

(3.10) Dmv(s) = vm(s) −
∑

ℓ∈{i,j,k}

λ̃ℓ(s) vℓ(s)
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and λ̃ℓ(s), for ℓ in {i, j, k}, are the barycentric coordinate functions of the region
of integration Tl(λi, λj , λk), considered with its node enumeration inherited from K.
Since the component representation in (3.8) is not unique, we must check that defi-
nitions like (3.10) are not affected, inasmuch as two different representations of the
same function does not yield different results. That this is indeed the case, is readily
checked: If v = 0, then vm = v̄ for all m, which implies that Dmv = 0, so E

curl
l v = 0.

We can also readily verify that the expressions for E
curl
l in (3.9) and (3.7) coincide.

We prove the properties of this primary extension operator in the next theorem.
There are two new ingredients worth noting in the proof of continuity of E

curl
l . The

first is the technique of proving continuity from H1/2(Fl) into H1(K̂) using Peetre’s
K-functional. (Note that this continuity only involves Sobolev norms of positive
order.) The second is the technique of using continuity on positive order Sobolev
spaces to obtain continuity on the trace space contained in the negative order Sobolev
spaceH−1/2(Fl). (In [9, Appendix B], we provided an alternate technique for proving
the continuity using the Fourier transform.) We display the K-functional technique
while proving the following lemma in Appendix A.

Lemma 3.1. Let θ(x, y) be a smooth function on the unit triangle F̂ (including
the boundary ∂F̂ ). Then the map Kθ defined for smooth functions u(x, y) on F̂ by

Kθu (x, y, z) =

∫ 1

0

∫ 1−t

0

θ(s, t) u(x+ sz, y + tz) ds dt,

satisfies

‖Kθu‖H1(K̂) ≤ Cθ‖u‖H1/2(F̂ ), for all u ∈ H1/2(F̂ ),

with some Cθ > 0 that depends only on ‖θ‖W 1
1 (F̂ ) and ‖θ‖L1(∂F̂ ).

We shall use this lemma in the proof of the following theorem.

Theorem 3.2. The primary extension operator E
curl
l has the following properties:

1. grad(Egrad
l u) = E

curl
l (gradτ u) for all u in H1/2(Fl).

2. E
curl
l is a continuous map from H1/2(Fl) into H1(K).

3. E
curl
l is a continuous map from X−1/2(Fl) into H(curl,K).

4. The tangential trace of E
curl
l v on Fl equals v for all v in X−1/2(Fl).

5. If v is in Pp(Fl), the extension E
curl
l v is in Pp(K). If v is in the Nédélec

space Np(Fl), its extension E
curl
l v is in Np(K).

Proof. Proof of (1): First, consider a smooth function u(x, y) on the face F̂ of K̂.
Recall the expression for E

grad on K̂ (see [9] or apply (B.1) to K̂) and differentiating
it, we have

grad E
gradu = 2 grad

∫ 1

0

∫ 1−t

0

u(x+ sz, y + tz) ds dt

= 2

∫ 1

0

∫ 1−t

0




1 0
0 1
s t


gradτ u(x+ sz, y + tz) ds dt

= E
curl gradτ u.(3.11)

Here we have viewed gradients as column vectors, so the matrix above multiplies
gradτ u = (∂xu, ∂yu)

t.
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For the case of general K, observe that E
grad
l = Ψ−1

K ◦ E
grad ◦ ΨFl

. Then

gradE
grad
l u = grad(Ψ−1

K ◦ E
grad ◦ ΨFl

u)

= Φ−1
K grad(ΨK(Ψ−1

K ◦ E
grad ◦ ΨFl

u)) by (3.5)

= Φ−1
K grad(Egrad(ΨFl

u))

= Φ−1
K E

curl(gradτ (ΨFl
u)) by (3.11)

= Φ−1
K E

curl(ΦFl
(gradτ u)) by (3.6)

= E
curl
l (gradτ u) by (3.7),

for all smooth functions u. Now, by [9, Theorem 2.1], which asserts the continuity of

E
grad
l u on H1/2(Fl), we have

‖Ecurl
l gradτ u‖ = ‖ gradE

grad
l u‖ ≤ C‖u‖H1/2(Fl).

Hence the operator E
curl
l extends continuously to the space gradH1/2(Fl), so the

commutativity property holds for all u ∈ H1/2(Fl).

Proof of (2): The continuity of E
curl on H1/2(F̂ ) follows by applying Lemma 3.1

to each of the components of E
curl
v in (3.1). Since the Jacobian of the affine trans-

formation mapping functions on K̂ to K is bounded, the result follows for E
curl
l on

any K.
Proof of (3): Given any v in X−1/2(Fl), decompose it using Theorem 2.1 to get

v = gradτ φ+ψ, with φ ∈ H1/2(Fl), ψ ∈H1/2(Fl).

Then

‖Ecurl
l v‖H(curl ) = ‖ grad(Egrad

l φ) + E
curl
l ψ‖H(curl ), by item (1),

≤ ‖Egrad
l φ‖H1(K) + ‖Ecurl

l ψ‖H1(K),

≤ C
(
‖φ‖H1/2(Fl) + ‖ψ‖H1/2(Fl)

)
, by item (2) & [9, Theorem 2.1],

≤ C‖v‖X−1/2(Fl)
, by stability (Theorem 2.1).

Proof of (4): Set z = 0 in (3.1). Then the result is obvious for smooth functions

v. Because of the continuity of E
curl
l , the result follows for all functions in X−1/2(Fl).

Proof of (5): It suffices to prove the polynomial preservation properties on the
reference tetrahedron K̂ because ΦK preserves the polynomial spaces.

So, consider a v ∈ Pp(F̂ ). Then, each of the components of the integrand defining

the extension E
curlv in (3.1) is a polynomial in x, y and z with coefficients depending

on s and t. Hence, after integrating over s and t, we continue to have a polynomial
in x, y, and z of total degree at most p in x, y and z for each component.

Now suppose v ∈Np. Observe that




x
y
z



 · Ecurlv = 2

∫ 1

0

∫ 1−t

0

(
x y z

)



1 0
0 1
s t



v(x + sz, y + tz) ds dt

= 2

∫ 1

0

∫ 1−t

0

(
x+ sz
y + tz

)
· v(x+ sz, y + tz) ds dt,
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By (3.3), v · x is a polynomial of degree at most p + 1, hence the integrand in the
last integral is a polynomial in x+ sz and y + tz of degree at most p+ 1. Therefore,
by repeating the argument of the previous paragraph, we find that x · E

curlv is a
polynomial of degree at most p+ 1. Hence by (3.3), E

curl
v is in Np.

As in the H1 case described in [9], the next step is to solve the two-face problem,
for which we shall need a correction operator.

4. Face corrections. In general, the tangential traces of E
curl
l v are not zero on

faces other than Fl even when v is a smooth function that vanishes on ∂Fl. Therefore,
we must add a face correction. The face correction can be thought of as the solution to
the H(curl ) two-face problem: This problem concerns a polynomial v defined on Fl

such that v·t|Ejk
= 0, where t is the unit tangent vector along the edge Ejk connecting

aj and ak. The problem is to find a polynomial extension with zero tangential trace
on the face Fi.

We begin, as before, with the case of the reference tetrahedron K̂. Suppose v
is a polynomial defined on the x-y face F̂ such that v · t|Ê02

= 0 where t is the
unit tangent vector along the edge. Then, we will first give an operator that maps
v to a polynomial in K̂ whose tangential trace on the x-y face vanishes, and whose
tangential trace on the y-z face coincides with that of the primary extension of v.
Then subtracting this operator from the primary extension, we can solve the two-face
problem. Define the face correction by

(4.1)

E
curl
F̂1
v =

2z

x+ z

∫ 1

0

∫ 1−t

0




s t
0 1
s t



v(s(x + z), y + t(x+ z)) ds dt

+
1

x+ z



−z
0
x




∫ 1

0

∫ 1−t

0

(
1 − s
−t

)
· v(s(x+ z), y + t(x+ z)) ds dt.

Before we give the properties of this correction operator, we briefly indicate how
we derived the above expression. As in the case of the primary extension, we obtained
the expression above by computing the gradient of the corresponding H1 operator,
namely the operator E

grad

F̂1
given in (B.2) and observing what is needed for satisfying

a commutativity property. Indeed, recalling the expression for E
grad

F̂1
u and differenti-

ating,

grad E
grad

F̂1
u =

z

x+ z
gradE

gradu(0, y, x+ z) + E
gradu(0, y, x+ z)grad

(
z

x+ z

)

=
2z

x+ z

∫ 1

0

∫ 1−t

0



s t
0 1
s t


 gradτ u(s(x+ z), y + t(x+ z)) ds dt

+
2

(x+ z)2



−z
0
x




∫ 1

0

∫ 1−t

0

u(s(x+ z), y + t(x + z)) ds dt.(4.2)

Therefore, in order to verify the commutativity E
curl
F̂1

(gradτ u) = grad(Egrad

F̂1
u), we

need to express the last term above in terms of gradτ u alone.
Since such a situation will recur often in this paper, we now describe our approach

to handle this in some detail. To convert (4.2) into an expression depending on
gradτ u alone, recall that in the context of the two-face problem, we only need the
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x

y

z

0

(s(x + z), y + t(x + z))

u = 0

Fig. 2. Integration paths symmetrizing the face correction E
curl

F̂1
v

commutativity for functions u that vanish along the edge on the y-axis. So we can
apply the fundamental theorem of calculus and write

(4.3) u(s(x+ z), y + t(x+ z)) =

∫ s(x+z)

0

(
1
0

)
· gradτ u(r, y + t(x+ z)) dr.

Here we have chosen one of the many possible paths of integration. However, this
choice is not invariant under affine automorphisms of K̂ (that fix â1 and â3), because
it can be mapped into the path in

(4.4) u(s(x+ z), y+ t(x+ z)) =

∫ s(x+z)

0

(
1
−1

)
·gradτ u(r, y+(s+ t)(x+ z)− r) dr.

Hence, we must replace u(s(x + z), y + t(x + z)) in (4.2) by the average of the right
hand sides of (4.3) and (4.4). (The paths in both the integrals are illustrated in Fig. 2,
from which the symmetry with respect to the interchange of the two vertices on the
y-axis is obvious.) After this replacement of u in (4.2), we have

gradE
grad

F̂1
u =

2z

x+ z

∫ 1

0

∫ 1−t

0



s t
0 1
s t


gradτ u(s(x+ z), y + t(x+ z)) ds dt

+
2

(x+ z)2



−z
0
x




∫ 1

0

∫ 1−t

0

1

2

∫ s(x+z)

0

(
1
0

)
· gradτ u(r, y + t(x + z)) dr ds dt

+
2

(x+ z)2




−z
0
x




∫ 1

0

∫ 1−t

0

1

2

∫ s(x+z)

0

(
1
−1

)
· gradτ u(r, y + (s+ t)(x+ z) − r) dr ds dt.

The last two terms above can be simplified so that the entire sum matches the expres-
sion for E

curl
F̂1

(gradτ u) given by (4.1). The details are in the proof of the following

lemma (in Appendix A), which gives several symmetry preserving ways to rewrite
integrals of a scalar function in terms of its derivatives. This completes the discussion
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s s s

t t t

0 0 0

(a) (b) (c)

Fig. 3. Integration paths for Lemma 4.1.

motivating the definition of the face correction operator in (4.1). A rigorous proof of
the required commutativity property using the following lemma is in the proof of the
succeeding proposition.

Lemma 4.1. Let u(s, t) be a smooth function on the unit triangle F̂ .
1. If u(0, t) = 0 then (integration along the two paths in Fig. 3(a) yields)

∫∫

F̂

u(s, t) ds dt =
1

2

∫∫

F̂

(
(1 − s)

∂u

∂s
+ (−t)∂u

∂t

)
ds dt.

2. If u(s, 0) = 0 then (integration along the two paths in Fig. 3(b) yields)
∫∫

F̂

u(s, t) ds dt =
1

2

∫∫

F̂

(
(−s)∂u

∂s
+ (1 − t)

∂u

∂t

)
ds dt.

3. If u(s, 1 − s) = 0 then (integration along the two paths in Fig. 3(c) yields)
∫∫

F̂

u(s, t) ds dt =
1

2

∫∫

F̂

(
(−s)∂u

∂s
+ (−t)∂u

∂t

)
ds dt.

Before we give the proposition detailing the properties involving our face correc-
tion, it will be useful to generalize the lifting (4.1) to a general tetrahedronK. We can
do this via the earlier mappings (cf. (3.7)), but it is more elegant to use affine coordi-
nates. We first split the given smooth tangential vector function v into components
vm as in (3.8). Then substituting

v =

(
−1
−1

)
v0 +

(
1
0

)
v1 +

(
0
1

)
v2

into the integrands in (4.1) and simplifying, we have

2z

x+ z




s t
0 1
s t



 v =
2λ3

(λ1 + λ3)

(
D0v gradλ0 +D2v grad λ2

)
,

1

x+ z




−z
0
x




(

1 − s
−t

)
· v =

λ1 gradλ3 − λ3 gradλ1

(λ1 + λ3)3
D1v,
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where Dℓv is as in (3.10) but now with λ̃j(s) in (3.10) denoting the barycentric coor-
dinates of the current region of integration, namely that of T3(0, λ0, λ2). Thus (4.1)
becomes

(4.5)

E
curl
F̂1
v =

λ1 grad λ3 − λ3 grad λ1

2|F̂ | (λ1 + λ3)3

∫∫

T3(0,λ2,λ0)

D1v dx̃ dỹ

+
λ3

|F̂ | (λ1 + λ3)3

∫∫

T3(0,λ2,λ0)

(D0v gradλ0 +D2v gradλ2) dx̃ dỹ.

In generalizing this operator as an extension into a general tetrahedron K from face
Fl, the region of integration becomes Tl(0, λj , λk) (so we scale by the Jacobian) and λ̃ℓ

becomes the affine coordinates of this region. Thus we have the following expression

(4.6)

E
curl
Fi,lv =

λi grad λl − λl gradλi

2|Fl| (λi + λl)3

∫∫

Tl(0,λj ,λk)

Div ds

+
λl

|Fl| (λi + λl)3

∑

m∈{j,k}

grad λm

∫∫

Tl(0,λj ,λk)

Dmv ds,

which coincides with the expression in (4.5) when (i, j, k) = (1, 2, 0). Clearly, if all
the components of v coincide with a single function (so that v vanishes), the result
of this extension is zero, so it is well defined. Note that this expression is symmetric
with respect to indices j and k.

Now we can solve the H(curl ) two-face problem mentioned in the beginning
of this section by subtracting the above operator from the primary extension. The
operator that solves the two-face problem is

(4.7) E
curl
i,l v = E

curl
l v − E

curl
Fi,lv.

The following continuity from a positive order Sobolev space is established in Ap-
pendix A:

Lemma 4.2. E
curl
i,l is a continuous map from H

1/2
0,i (Fl) into H(curl ).

Nonetheless, we need its continuity of E
curl
i,l from an H(curl ) trace space. This is

proved in the next proposition, where we also prove its other properties.
Proposition 4.1. The two face extension E

curl
i,l satisfies the following:

1. Commutativity: E
curl
i,l gradτ u = grad(Egrad

i,l u) for all u ∈ H
1/2
0,i (Fl).

2. Continuity: E
curl
i,l extends to a continuous operator from X

−1/2
0,i (Fl) into

H(curl ).

3. Extension property: For all v ∈X−1/2
0,i (Fl),

trcτ (Ecurl
i,l v)

∣∣
Fi

= 0, trcτ (Ecurl
i,l v)

∣∣
Fl

= v.

4. Polynomial preservation: Suppose v ∈ Pp(Fl) is such that v · t = 0 on the

edge Ejk. Then the extension E
curl
i,l v is in Pp(K). If in addition v is in the

Nédélec space Np(Fl), then its extension E
curl
i,l v is in Np(K).

Proof. Proof of (1): It suffices to prove this identity for smooth functions u on
Fl vanishing on the edge where λi is zero. Indeed, once the identity is established for
such functions, the continuity of E

grad
i,l established in [9] implies that the operator E

curl
i,l
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extends continuously to gradH
1/2
0,i (Fl) wherein the commutativity property holds (by

a minor modification of the argument in the proof of Theorem 3.2(1)). Furthermore,
because of Theorem 3.2(1), we only need to prove that E

curl
Fi,l gradτ u = grad(Egrad

Fi,l u),
or as usual, only its analogue on the reference tetrahedron K̂, namely

(4.8) E
curl
F̂1

(gradτ u) = grad(Egrad

F̂1
u).

Here E
grad

F̂1
is the corresponding operator given in [9] and u(x, y) is a smooth function

vanishing on the y-axis.
To prove (4.8), we start by computing the gradient on the right hand side of (4.8),

which we have already done in (4.2). To convert (4.2) into an expression depending on
gradτ u alone, we use Lemma 4.1. Applying Lemma 4.1(2) to the last term in (4.2)
we get

2

(x+ z)2




−z
0
x




∫ 1

0

∫ 1−t

0

u(s(x+ z), y + t(x+ z)) ds dt

=
2

(x+ z)2




−z
0
x




∫ 1

0

∫ 1−t

0

1

2

(
(1 − s)

∂

∂s
− t

∂

∂t

)
u(s(x+ z), y + t(x+ z)) ds dt,

hence

gradE
grad

F̂1
u =

2z

x+ z

∫ 1

0

∫ 1−t

0




s t
0 1
s t



gradτ u(s(x+ z), y + t(x+ z)) ds dt

+
1

x+ z



−z
0
x




∫ 1

0

∫ 1−t

0

(
1 − s
−t

)
· gradτ u(s(x+ z), y + t(x+ z)) ds dt,

which is the same as E
curl
F̂1

(gradτ u).

Proof of (2): To prove the continuity estimate, apply Theorem 2.1 and decom-
pose v as

v = gradτ φ+ψ, with φ ∈ H
1/2
0,i (Fl), and ψ ∈H1/2

0,i (Fl).

Then,

‖Ecurl
i,l v‖H(curl ) = ‖ grad(Egrad

i,l φ) + E
curl
i,l ψ‖H(curl ), by commutativity,

≤ C

(
‖φ‖

H
1/2
0,i (Fl)

+ ‖ψ‖
H

1/2
0,i (Fl)

)
, by [9, Prop. 3.1] & Lem. 4.2,

≤ C‖v‖
X

−1/2
0,i (Fl)

, by Theorem 2.1.

Proof of (3): Since λi = 0 on Fi,

trcτ (Ecurl
l v)|Fi =

1

|Fl|λ2
l

∫∫

Tl(0,λj ,λk)

∑

m∈{i,j,k}

Dmv(s) gradτ λm ds, by (3.9),

trcτ (Ecurl
Fi,lv)|Fi =

λl

|Fl| (λi + λl)3

∫∫

Tl(0,λj ,λk)

∑

m∈{j,k}

Dmv gradτ λm ds, by (4.6),
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as trcτ (λi grad λl − λl gradλi)|Fi = 0. Therefore,

trcτ (Ecurl
i,l v)|Fi = trcτ (Ecurl

l v − E
curl
Fi,lv)|Fi = 0.

Proof of (4): As in the proof of Theorem 3.2(5), it suffices to prove the polynomial
preservation properties for the expression (4.1) on K̂.

Any polynomial v(x, y) in Pp(F̂ ) whose tangential component along the y-axis
vanishes, can be written as

(4.9) v(x, y) =

(
v1(x, y)
xv2(x, y)

)

for some v1 ∈ Pp(F̂ ) and v2 ∈ Pp−1(F̂ ). This implies

v(x, y) = v − gradτ (xv1) + gradτ (xv1)

=

(
v1 − v1 − x∂xv1
xv2 − x∂yv1

)
+ gradτ (xv1)

= x ṽ + gradτ (xv1),

where ṽ =

(
−∂xv1

v2 − ∂yv1

)
∈ P p−1(F̂ ). With this decomposition,

E
curl
F̂1
v = E

curl
F̂1

(x ṽ + gradτ (xv1)),

= E
curl
F̂1

(x ṽ) + gradE
grad

F̂1
(xv1), by commutativity.

By the polynomial preservation properties of E
grad

F̂1
established in [9], the last term is

clearly in Pp(K̂). For the remaining term, referring to (4.1), we find that

E
curl
F̂1
v =

2z

x+ z

∫ 1

0

∫ 1−t

0



s t
0 1
s t


 s(x+ z)ṽ(s(x+ z), y + t(x+ z)) ds dt +

1

x+ z



−z
0
x




∫ 1

0

∫ 1−t

0

(
1 − s
−t

)
· s(x+ z)ṽ(s(x+ z), y + t(x+ z)) ds dt,

so the x+ z term in the denominator cancels out. Since ṽ ∈ P p−1(F̂ ), by arguments

similar to the proof of Theorem 3.2(5), we find that E
curl
F̂1
v is in Pp(K̂).

To prove that the Nédélec space is preserved, observe that (4.1) implies




x
y
z



 · Ecurl
F̂1
v =

2z

x+ z

∫ 1

0

∫ 1−t

0

(
s(x+ z)

y + t(x+ z)

)
· v(s(x+ z), y + t(x+ z)) ds dt.

If v is in Np(F̂ ), then by (3.3), the integrand is a polynomial of degree at most p+ 1.
Furthermore, since v has the form in (4.9), the integrand has s(x + z) as a scalar
factor. Hence the x + z term in the denominator cancels out. Usual arguments then
yield that x · Ecurl

F̂1
v is in Pp+1(K̂), so we can finish the proof by appealing to (3.3)

again.
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5. Edge corrections. As in the H1 case, edge corrections are necessary now,
because successive applications of different face corrections alter the previously zeroed
tangential traces. Consider the three-face problem of finding a polynomial extension of
v given on face Fl that has zero tangential trace on Fi and Fj whenever v is a smooth
function whose tangential component vanishes on edges Ejk and Eik. To solve this
intermediate problem, we define the next operator.

Beginning with the case of the reference tetrahedron K̂, let v be a smooth function
on the x-y face F̂ whose tangential components along the edges on x and y axes vanish.
Define the edge correction for the edge along the z-axis by

E
curl
Ê03
v (x, y, z) =

1

x+ y + z



−z
0
x




∫ 1

0

∫ 1−t

0

(
1 − s
−t

)
· v(s(x + y + z), t(x+ y + z)) ds dt

+
1

x+ y + z




0
−z
y




∫ 1

0

∫ 1−t

0

(
−s

1 − t

)
· v(s(x + y + z), t(x+ y + z)) ds dt(5.1)

+
2z

x+ y + z

∫ 1

0

∫ 1−t

0



s t
s t
s t


 v(s(x+ y + z), t(x+ y + z)) ds dt.

As in the previous sections, we next generalize this expression to the case of the
edge Eil of the general tetrahedron K. Split v into component form as in (3.8) and
substitute into (5.1). A few simplifications then transform the above expression to

E
curl
Ê03
v (x, y, z) =

λ2 gradλ3 − λ3 gradλ2

2|F̂ | (1 − λ0)3

∫∫

T3(0,0,λ0)

D2v dx̃ dỹ

+
λ0 gradλ3 − λ3 gradλ0

2|F̂ | (1 − λ0)3

∫∫

T3(0,0,λ0)

D0v dx̃ dỹ

+
λ3 gradλ0

|F̂ | (1 − λ0)3

∫∫

T3(0,0,λ0)

D0v dx̃ dỹ.

Thus we obtain the general formula on any tetrahedron K:

(5.2)

E
curl
Eil,lv =

∑

m∈{j,k}

λm grad λl − λl gradλm

2|Fl| (1 − λi)3

∫∫

Tl(0,0,λi)

Dmv ds

+
λl gradλi

|Fl| (1 − λi)3

∫∫

Tl(0,0,λi)

Div ds,

where Dmv is as defined in (3.10) but now with λ̃j(s) denoting the barycentric coor-
dinates of the current region of integration Tl(0, 0, λi). It is easy to check that if all
vi = v̄, then the expression above vanishes, so it is independent of the non-uniqueness
in the splitting of (3.8).

Let us now solve the three-face problem. The required extension operator is

(5.3) E
curl
ij,l = E

curl
l − E

curl
Fi,l − E

curl
Fj ,l + E

curl
Ekl,l

,
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whose properties appear in the next proposition. As in the case of the face correction,
to analyze this operator, we first establish a continuity property in a positive order
Sobolev space, as seen in the next lemma (proved in Appendix A).

Lemma 5.1. E
curl
ij,l is a continuous operator from H

1/2
0,ij(Fl) into H(curl ).

We use this together with the trace decomposition to prove the required continuity
from the trace space. All the properties of this extension we shall need are in the next
proposition.

Proposition 5.1. The three face extension E
curl
ij,l satisfies the following:

1. Commutativity: E
curl
ij,l gradτ u = grad(Egrad

ij,l u) for all u ∈ H
1/2
0,ij(Fl).

2. Continuity: E
curl
ij,l extends to a continuous operator from X

−1/2
0,ij (Fl) into

H(curl ).

3. Extension property: For all v ∈X−1/2
0,ij (Fl),

trcτ (Ecurl
ij,l v)

∣∣
Fi

= 0, trcτ (Ecurl
ij,l v)

∣∣
Fj

= 0, trcτ (Ecurl
ij,l v)

∣∣
Fl

= v.

4. Polynomial preservation: Suppose v ∈ Pp(Fl) is such that v · t = 0 on the

edges Ejk and Eik. Then the extension E
curl
ij,l v is in Pp(K). If in addition v

is in the Nédélec space Np(Fl), then E
curl
ij,l v is in Np(K).

Proof. Proof of (1): We will prove that

(5.4) E
curl
Ê03

(gradτ u) = grad(Egrad

Ê03
u)

for a smooth function u(x, y) that vanishes along the x and y edges. The required com-
mutativity property stated in item (1) then follows by arguments similar to those de-
tailed in the proof of Proposition 3(1), which we shall not repeat here. To prove (5.4),
we start by computing the gradient of the expression for E

grad

Ê03
u given in [9] (or ob-

tained by applying (B.3) to K̂):

grad(Egrad

Ê03
u) =

2z

x+ y + z

∫ 1

0

∫ 1−s

0




s t
s t
s t



gradτ u(s(x+ y + z), t(x+ y + z)) dt ds

+
2

(x+ y + z)2




−z
−z
x+ y




∫ 1

0

∫ 1−s

0

u(s(x+ y + z), t(x+ y + z) dt ds.(5.5)

We must now express the last integral in terms of surface gradients alone. Since u
vanishes along the x and y-axis, we can apply parts (1) and (2) of Lemma 4.1 to
the last term in (5.5). (While applying this lemma, as is clear from its proof, we
are integrating along the path shown in Fig. 4, obtained by combining the paths in
Fig. 3(a) and 3(b). Hence the symmetries with respect to the z-edge are not lost.)

grad(Egrad

Ê03
u) =

2z

x+ y + z

∫ 1

0

∫ 1−t

0




s t
s t
s t



gradτ u(s(x+ y + z), t(x+ y + z)) ds dt

+
1

x+ y + z




−z
0
x




∫ 1

0

∫ 1−t

0

(
1 − s
−t

)
· gradτ u(s(x+ y + z), t(x+ y + z)) ds dt

+
1

x+ y + z




0
−z
y




∫ 1

0

∫ 1−t

0

(
−s

1 − t

)
· gradτ u(s(x+ y + z), t(x+ y + z)) ds dt.
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u = 0

u = 0

(s(x + y + z), t(x + y + z)

Fig. 4. Integration paths symmetrizing the edge correction

This expression is the same as (5.1) with gradτ u in place of v, so (5.4) follows.
Proof of (2): We use the regular decomposition again: By Theorem 2.1,

v = gradτ φ+ψ, with φ ∈ H
1/2
0,ij(Fl), and ψ ∈H1/2

0,ij(Fl).

Applying the three face extension to this decomposition,

‖Ecurl
ij,l v‖H(curl ) = ‖ grad(Egrad

ij,l φ) + E
curl
ij,l ψ‖H(curl ), by commutativity (item (1)),

≤ C

(
‖φ‖

H
1/2
0,ij(Fl)

+ ‖ψ‖
H

1/2
0,ij(Fl)

)
, by [9, Prop. 4.1] and Lemma 5.1,

≤ C‖v‖
X

−1/2
0,ij (Fl)

, by Theorem 2.1.

Proof of (3): To show that trcτ (Ecurl
ij,l v)

∣∣
Fi

= 0,

trcτ (Ecurl
ij,l v)

∣∣
Fi

= trcτ (Ecurl
i,l v) − trcτ (Ecurl

Fj ,lv) + trcτ (Ecurl
Ekl,lv)

∣∣∣∣
Fi

, by (4.7)

= − trcτ (Ecurl
Fj ,lv)|Fi + trcτ (Ecurl

Ekl,lv)|Fi , by Prop. 4.1(3).

Now, by (4.6) and (5.2),

trcτ (Ecurl
Fj ,lv) =

λl

|Fl| (λj + λl)3

∫∫

Tl(0,λi,λk)

∑

m∈{i,k}

Dmv gradτ λm ds

+
λj gradτ λl − λl gradτ λj

2|Fl| (λj + λl)3

∫∫

Tl(0,λi,λk)

Djv ds, and

trcτ (Ecurl
Ekl,l

v) =
∑

m∈{i,j}

λm gradτ λl − λl gradτ λm

2|Fl| (1 − λk)3

∫∫

Tl(0,0,λk)

Dmv ds

+
λl gradτ λk

|Fl| (1 − λk)3

∫∫

Tl(0,0,λk)

Dkv ds.
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These two expressions coincide on Fi because on Fi we have λi = 0, gradτ λi = 0,
λj + λl = 1 − λk, and Tl(0, λi, λk) = Tl(0, 0, λk). Hence

(5.6) trcτ (Ecurl
Fj ,lv − E

curl
Ekl,lv)|Fi = 0,

and so trcτ (Ecurl
ij,l v)|Fi = 0. That trcτ (Ecurl

ij,l v)|Fj = 0 now immediately follows because

the expression for the three face extension E
curl
ij,l is symmetric with respect to i and j.

The third identity trcτ (Ecurl
ij,l v)|Fl

= v holds because all the correction operators have
vanishing tangential traces on Fl.

Proof of (4): To show that the expression in (5.1) is in Pp(K̂) is easy. Indeed,
since v has vanishing tangential components along both the x and y-axes, it has the
form v(x, y) = (xv1(x, y), yv2(x, y))

t. Hence the denominator term x+ y + z in (5.1)
cancels out showing that E

curl
Ê03
v is in Pp(K̂).

If v is in Np(F̂ ), then since (5.1) implies




x
y
z



 ·Ecurl
Ê03
v =

2z

x+ y + z

∫ 1

0

∫ 1−t

0

(
s(x+ y + z)
t(x+ y + z)

)
·v(s(x+ y+ z), t(x+ y+ z)) ds dt,

and (3.3) implies x · v is in Pp+1(F̂ ), we have x · Ecurl
Ê03
v is in Pp+1(K̂). This proves

the last statement of the proposition.

6. Extension of a tangential face bubble. Now consider a tangential vector
function on the face Fl of a general tetrahedron K, whose tangential components
along all the three edges of Fl vanish. The four-face problem is the problem of finding
an extension of v into K whose tangential traces are zero on all the other three faces
of K.

We have all the main ingredients to solve the four-face problem right away. The
required extension operator is

(6.1) E
curl
ijk,lv = E

curl
l v − E

curl
Vl
v −

∑

m∈{i,j,k}

(
E

curl
Fm,lv − E

curl
Eml,l

v
)
,

where E
curl
l is the primary extension operator defined in (3.9), E

curl
Fi,l is the face correc-

tion operator defined in (4.6), E
curl
Eil,l is the edge correction operator defined in (5.2),

and E
curl
Vl

is a vertex correction operator defined by

(6.2) E
curl
Vl
v =

∑

m∈{i,j,k}

(λm gradλl − λl grad λm)

2|Fl|

∫∫

Fl

Dmv ds

where Dmv is as defined before in (3.10) but now with λ̃j(s) in (3.10) denoting the

barycentric coordinates of Fl, i.e., now λ̃j = λj |Fl
.

Proposition 6.1. The four-face extension E
curl
ijk,l satisfies the following:

1. Commutativity: E
curl
ijk,l gradτ u = grad(Egrad

ijk,lu) for all u ∈ H
1/2
0,ijk(Fl).

2. Continuity: E
curl
ijk,l is a continuous map from X

−1/2
0,ijk (Fl) into H(curl ).

3. Extension property: For all v ∈ X−1/2
0,ijk (Fl), the tangential traces of E

curl
ijk,lv

on all faces of the tetrahedron are zero except for the face Fl, where it equals v.
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4. Polynomial preservation: Suppose v ∈ Pp(Fl) is such that v · t = 0 on ∂Fl.

Then the extension E
curl
ijk,lv is in Pp(K). Furthermore, if v is in the Nédélec

space Np(Fl), then its extension E
curl
ijk,lv is in Np(K).

Proof. Proof of (1): We have already proven the commutativity properties of all
the operators in (6.1) except E

curl
Vl

. Therefore, it is enough to prove that

(6.3) E
curl
Vl

gradτ u = grad(Egrad
Vl

u), for all u ∈ H
1/2
0,ijk(Fl),

for the operator E
grad
Vl

defined in (B.4). Furthermore, by mapping, it is enough to
prove (6.3) for the specific case of the reference tetrahedron with l = 3. In this case,
the left hand side of (6.3) simplifies to

E
curl
V3

(v) (x, y, z) =




z
z

1 − x− y




∫ 1

0

∫ 1−s

0

(
−s
−t

)
· v(s, t) ds dt

+



−z
0
x




∫ 1

0

∫ 1−s

0

(
1 − s
−t

)
· v ds dt+




0
−z
y




∫ 1

0

∫ 1−s

0

(
−s

1 − t

)
· v ds dt

=

∫ 1

0

∫ 1−s

0




−z 0
0 −z

x− s y − t


 v ds dt.

When v = gradτ u, because u vanishes on the boundary, by integration by parts, we
can rewrite the above as

E
curl
V3

(gradτ u) =




0
0
1




∫ 1

0

∫ 1−s

0

(
−s
−t

)
· gradτ u(s, t) ds dt

=




0
0
1




∫∫

F̂

2 u(s, t) ds dt, by Lemma 4.1(3),

= grad(Egrad
V3

u).

Proof of (2): First observe that the continuity of the vertex correction E
curl
Vl

from

H
1/2
0,ijk(Fl) into H1(K) is obvious. To obtain the continuity stated in the proposition,

we use Theorem 2.1: Split

v = gradτ φ+ψ, with φ ∈ H
1/2
0,ijk(Fl), and ψ ∈H1/2

0,ijk(Fl).

Then by the commutativity property already proved, E
curl
ijk,lv = grad(Egrad

ijk,lφ) +

E
curl
ijk,lψ. Hence, using the obvious continuity of E

curl
Vl

: H
1/2
0,ijk(Fl) 7→ H1(K), we

have

‖Ecurl
ijk,lv‖H(curl ) ≤ C

(
‖φ‖

H
1/2
0,ijk(Fl)

+ ‖ψ‖
H

1/2
0,ijk(Fl)

)
, by [9, Prop. 5.1],

≤ C‖v‖
X

−1/2
0,ijk (Fl)

, by Theorem 2.1.

Proof of (3): To prove the extension property, we first rewrite the terms in (6.1)
as

(6.4) E
curl
ijk,lv = E

curl
i,l v− (Ecurl

Fj ,lv−E
curl
Ekl,l

v)− (Ecurl
Fk,lv−E

curl
Ejl,l

v) + (Ecurl
Eil,l

v−E
curl
Vl
v).
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Note that in the course of the proof of Proposition 5.1(3), we have shown that
trcτ (Ecurl

Fj ,lv−E
curl
Ekl,lv) vanishes on Fi – see (5.6). Hence the middle two terms in (6.4)

have vanishing tangential traces on Fi. The first term also has vanishing tangential
trace on Fi by Proposition 4.1(3). Hence,

trcτ (Ecurl
ijk,lv)|Fi = trcτ (Ecurl

Eil,l
v − E

curl
Vl
v)|Fi

=
∑

m∈{j,k}

(λm gradτ λl − λl gradτ λm)|Fi

2|Fl| (1 − 0)3

∫∫

Tl(0,0,0)

Dmv ds

−
∑

m∈{i,j,k}

(λm gradτ λl − λl gradτ λm)|Fi

2|Fl|

∫∫

Fl

Dmv ds = 0,

because, on the face Fi, we have λi = 0, gradτ λi = 0, and Tl(0, 0, 0) = Fl. Since
E

curl
ijk,l is symmetric with respect to i, j, and k, the above implies that the tangential

trace vanishes on Fi ∪ Fj ∪ Fk. That trcτ (Ecurl
ijk,lv) coincides with v on Fl follows

because all correction operators in (6.1) have vanishing tangential traces on Fl, while
the primary extension reproduces v as its tangential trace on Fl.

Proof of (4): From the expression (6.2), it is clear that the vertex correction is a
lowest order function in the Nédélec space (a Whitney form). Hence, the polynomial
preservation property follows from the already established results in Proposition 4.1(4)
and Proposition 5.1(4).

7. Extension from the whole boundary of the tetrahedron. Consider any
function v in the trace space of H(curl ) on ∂K, i.e., v ∈ X−1/2. Let us now solve
the problem of extending this function from ∂K into K in a polynomial preserving
way. The construction, at this stage, is completely analogous to the H1 case: Define

U i = E
curl
i v,

U j = E
curl
i,j wj , where wj = Rj(v − trcτ U i),

Uk = E
curl
ij,kwk, where wk = Rk(v − trcτ U i − trcτ U j),

U l = E
curl
ijk,lwl, where wl = Rl(v − trcτ U i − trcτ U j − trcτ Uk),

where Ri is the restriction to face Fi defined in (2.5), and the extensions E
curl
i , E

curl
i,j ,

E
curl
ij,k , and E

curl
ijk,l are as defined in (3.9), (4.7), (5.3), and (6.1), respectively. The total

extension operator is then defined by

(7.1) E
curl
K v = U i +U j +Uk +U l.

Lemma 7.1. The functions wj, wk, and wl defined above satisfy

‖wj‖X
−1/2
0,i (Fj)

≤ C‖v‖X−1/2 ,

‖wk‖X
−1/2
0,ij (Fk)

≤ C‖v‖X−1/2 ,

‖wl‖X
−1/2
0,ijk (Fl)

≤ C‖v‖X−1/2 .

We then have our main result:
Theorem 7.2. The operator E

curl
K in (7.1) has the following properties:

1. Continuity: E
curl
K is a continuous operator from X−1/2 into H(curl ).
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2. Commutativity: grad(Egrad
K u) = E

curl
K (gradτ u) for all u in H1/2(∂K).

3. Extension property: The tangential trace trcτ (Ecurl
K v) coincides with v for

all v in X−1/2.
4. Full polynomial preservation: If v is the tangential trace of a polynomial

in Pp(K), then E
curl
K v is in Pp(K).

5. Nédélec polynomial preservation: If v is the tangential trace of a function
in Np(K), then E

curl
K v is in Np(K).

Proof. The proof follows by combining the previous results. E.g., the proof of
continuity follows by combining the continuity of v 7→ wm form = j, k, l (Lemma 7.1),
the continuity of the primary extension (Theorem 3.2), and the continuity of the
intermediate extension operators E

curl
i,j (Proposition 4.1), E

curl
ij,k (Proposition 5.1) and

E
curl
ijk,l (Proposition 6.1). The proof of the commutativity property similarly follows

because each of the intermediate operators satisfy commutativity properties. The
remaining properties are also proved similarly.

One consequence of the above theorem is that the so called “optimal polynomial
extension” can be bounded using the “optimal H(curl ) extension”. To be precise,
considering any polynomial trace wp = trcτ (Wp) for some Wp in Np(K̂), we have

(7.2) inf
Up∈Np(K̂),

trcτ (Up)=wp

‖Up‖H(curl ,K̂) ≤ C inf
U∈H(curl ,K̂),

trcτ (U)=wp

‖U‖
H(curl ,K̂).

The infimum on the left is achieved by the optimal polynomial extension, while that
on the right by the optimal H(curl ) extension. (Note that the reverse inequality
trivially holds with C = 1.) Inequality (7.2) is a corollary of Theorem 7.2 applied on
the reference element K̂: We bound the left infimum by ‖Ecurl

K̂
wp‖H(curl ,K̂), apply

Theorem 7.2(1), and use the quotient norm definition of the trace norm (2.2) to
prove (7.2).

To investigate the dependencies on the tetrahedral size hK = diam(K), we can
use (7.2) and the mappings TK and ΦK introduced in (3.4). Let us first define a
suitably scaled norm by

‖u‖K,curl =

(
h−2

K ‖u‖2
L2(K) + ‖curlu‖2

L2(K)

)1/2

.

Defining the “matrix curl” [Curl(u)]mn = ∂num − ∂mun, it is easy to see that

(7.3) Curl(ΦK(u)) = (T ′
K)t Curl(u)T ′

K .

Then standard scaling arguments show that there are constants C1, C2 depending
only on the shape regularity of K (but not on hK) such that

(7.4) C1‖u‖2
K,curl ≤ hK‖ΦK(u)‖2

K̂,curl
≤ C2‖u‖2

K,curl.

Therefore, mapping over both sides of (7.2) from K̂ to K, we find that there is a
C3 > 0 (depending on C1, C2) such that

(7.5) inf
Up∈Np(K),
trcτ (Up)=wp

‖Up‖2
K,curl ≤ C3 inf

U∈H(curl ,K),
trcτ (U)=wp

‖U‖2
K,curl

holds for any tetrahedron K.
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As a final remark, we discuss how to apply our results to curved finite elements.
Let K be a “curved tetrahedron” in the sense of [3], i.e., we assume that K is the
image of K̂ under the map

T ≡ T̃ + S : K̂ 7−→ R
3

where T̃ : R
3 7→ R

3 is an invertible affine map and S : K̂ 7→ R
3 is a “perturbative”

map which is twice continuously differentiable (C2) and generally nonlinear. Under
appropriate bounds on S′(x̂) (T̃ ′)−1 and the second derivatives of S, it is proved in [3]
that T−1 : K 7→ K̂ exists and is C2. The Nédélec space on the curved element K,
which we continue to denote by Np(K), is now defined by Np(K) = Φ−1(Np(K̂))
where Φ is now defined analogously to (3.4) but with T in place of TK , namely,
Φ(v) = (T ′)t(v ◦ T ). With this (possibly nonlinear) Φ, we now have

[Curl(Φ(u))]mn = [(T ′)t Curl(u)T ′]mn +

3∑

ℓ=1

(∂nT
′
ℓm − ∂mT

′
ℓn)[u ◦ T ]ℓ,

but the last term vanishes as ∂nT
′
ℓm − ∂mT

′
ℓn = ∂n∂mTℓ − ∂m∂nTℓ = 0. Hence, we

continue to have the identity (7.3). The affine homeomorphism T̃ maps K̂ onto a
(straight) tetrahedron K̃ which “approximates” the curved element K. Set hK to be
the diameter of K̃. With this reinterpretation of hK , mapping from our result (7.2)
on the reference element, and using the mapped estimates of [3], we find that (7.5)
holds even for the curved tetrahedron K.

Appendix A. Proofs of the lemmas.

We now prove all the lemmas in the order in which they appeared in the previous
sections. For these proofs, we will use the lemmas established in [9], as well as a few
new auxiliary results. We begin with the following auxiliary lemma:

Lemma A.1. Let Sz = {(x′, y′, z′) ∈ K̂ : z′ = z}, θ(x, y) be a smooth function
on F̂ , and

G0u (x, y, z) =

∫ 1

0

θ(s, 1 − s) u(x+ sz, y + (1 − s)z) ds,

G1u (x, y, z) =

∫ 1

0

θ(0, t) u(x, y + tz) dt,

G2u (x, y, z) =

∫ 1

0

θ(s, 0) u(x+ sz, y) ds.

Then, for any 0 < z < 1,

√
2 ‖G0u‖L2(Sz) ≤ ‖θ‖L1(Ê12)‖u‖L2(F̂ )

‖G1u‖L2(Sz) ≤ ‖θ‖L1(Ê20)‖u‖L2(F̂ ),

‖G2u‖L2(Sz) ≤ ‖θ‖L1(Ê01)‖u‖L2(F̂ ).

Proof. The three estimates have very similar proofs, so we will only prove the last
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one:

‖G2u‖2
L2(Sz) =

∫∫

Sz

∣∣∣∣
∫ 1

0

θ(s, 0) u(x+ sz, y) ds

∣∣∣∣
2

dx dy

=

∫∫

Sz

( ∫ 1

0

θ(s1, 0) u(x+ s1z, y) ds1

)( ∫ 1

0

θ(s2, 0) u(x+ s2z, y) ds2

)
dx dy

=

∫ 1

0

∫ 1

0

θ(s1, 0) θ(s2, 0)

( ∫∫

Sz

u(x+ s1z, y) u(x+ s2z, y) dx dy

)
ds1 ds2

by Fubini’s theorem. Now applying Cauchy-Schwarz inequality to the integral over
Sz in the parentheses above, and increasing the integration domain to all (x, y) in F̂ ,
we obtain

‖G2u‖2
L2(Sz) ≤

∫ 1

0

∫ 1

0

|θ(s1, 0) θ(s2, 0)| ‖u‖L2(F̂ )‖u‖L2(F̂ ) ds1 ds2

=

( ∫ 1

0

|θ(s, 0)| ds
)2

‖u‖2
L2(F̂ )

,

from which the last estimate of the lemma follows.
Next, we present a result for the integral operator

Kθu (x, y, z) =

∫ 1

0

∫ 1−t

0

θ(s, t) u(x+ sz, y + tz) ds dt,

with a smooth kernel θ. This is a smoothing integral, but the smoothness of the
resulting function degenerates as z → 0. The following lemma quantifies this by
examining norms of derivatives on slices Sz (see Fig. 5) parallel to and approaching
the x-y plane.

Lemma A.2. Let θ(x, y) be a smooth function on F̂ . Then the map Kθ de-
fined above for smooth functions u(x, y) on F̂ , extends to a continuous operator from
L2(F̂ ) into L2(K̂). Moreover, letting Sz = {(x′, y′, z′) ∈ K̂ : z′ = z}, the following
inequalities hold for any 0 < z < 1:

‖Kθu‖L2(Sz) ≤ κ1‖u‖L2(F̂ ),(A.1)

‖ grad(Kθu)‖L2(Sz) ≤ κ2 z
−1‖u‖L2(F̂ ),(A.2)

‖ grad(Kθu)‖L2(Sz) ≤ κ3‖ gradτ u‖L2(F̂ ),(A.3)

where κ1 = ‖θ‖L1(F̂ ), κ2 = 2
√

3
(
‖θ‖2

W 1
1 (F̂ )

+ ‖θ‖2
L1(∂F̂ )

)1/2

, and κ3 =
√

3 ‖θ‖L1(F̂ ).

Proof. The proof of the first estimate (A.1) is similar to the proof of Lemma A.1,
so we omit it. To prove the second estimate (A.2), we rewrite the expression for Kθu
as

Kθu (x, y, z) =

∫ 1

0

∫ 1−t

0

θ(s, t) u(x+ sz, y + tz) ds dt(A.4)

=
1

z2

∫ x+z

x

∫ x+y+z−x′

y

θ(
x′ − x

z
,
y′ − y

z
) u(x′, y′) dy′dx′,
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x

y

z

z

Sz

(x, y, z)

u(x,y)

Kθu

0

Fig. 5. The value of Kθu at a point (x, y, z) in the slice Sz is determined by integrating
u over the triangle in the x-y plane shown above. Even if u(x, y) is not differentiable, Kθu can
be differentiable. But the derivatives of Kθu degenerate as z → 0, unless u is differentiable (see
Lemma A.2).

and differentiate it (so that no derivatives fall on u). Then we obtain the following
identity:

(A.5) grad(Kθu) =
1

z




−K∂sθu+G0u−G1u
−K∂tθu+G0u−G2u

−2Kθu− K(s∂sθ+t∂tθ)u+G0u



 ,

where Kα (appearing above with α = ∂sθ, ∂tθ, and s∂sθ + t∂tθ) denotes the same
expression as on the right hand side of (A.4), but with θ(s, t) replaced by α(s, t). By
applying Lemma A.1 and (A.1) to estimate the terms on the right hand side of (A.5),
we obtain (A.2).

To prove the last estimate of the lemma, we express grad(Kθu) differently from
(A.5), this time letting all the derivatives fall on u:

grad(Kθu) =

∫ 1

0

∫ 1−t

0

θ(s, t)




1 0
0 1
s t


 gradτ u(x+ sz, y + tz) ds dt

=




Kθ(∂xu)
Kθ(∂yu)

Ksθ(∂xu) + Ktθ(∂yu)



 .

Thus, (A.3) follows by applying (A.1) to each term on the right hand side above.

Proof of Lemma 3.1. (The K-functional technique.) We use the real method
of interpolation of spaces [2] and Peetre’s K-functional [17]. It is well known [12, 13]
that an equivalent norm on space H1/2(F̂ ) is

|||u|||H1/2(F̂ ) =

( ∫ ∞

0

t−2|K(t, u)|2 dt
)1/2

,

where the K-functional is defined by

K(t, u)2 = inf
u=u0+u1

‖u0‖2
L2(F̂ )

+ t2‖u1‖2
H1(F̂ )

.
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The infimum is taken over all decompositions u = u0 + u1 of u in H1/2(Fl) with u0

in L2(F̂ ) and u1 in H1(F̂ ). For such a decomposition, (A.2) and (A.3) of Lemma A.2
gives

∥∥gradKθu0

∥∥2

L2(Sz)
≤ Cz−2‖u0‖2

L2(F̂ )
,

∥∥gradKθu1

∥∥2

L2(Sz)
≤ C‖u1‖2

H1(F̂ )
,

where Sz is the slice defined previously (see Fig. 5). Using these to estimate the
H1(K̂)-norm, we have

‖Kθu‖2
H1(K̂) =

∫ 1

0

(
‖Kθu‖2

L2(Sz) +
∥∥grad

(
Kθ(u0 + u1)

)∥∥2

L2(Sz)

)
dz

≤ C

∫ 1

0

‖u‖2
L2(F̂ )

+ z−2

(
‖u0‖2

L2(F̂ )
+ z2‖u1‖2

H1(F̂ )

)
dz,

where we have also used (A.1) of Lemma A.2. Taking the infimum over all the
decompositions,

∥∥Kθu
∥∥2

H1(K̂)
≤ C

∫ 1

0

z−2K(z, u)2 dz ≤ C |||u|||2
H1/2(F̂ )

.

Proof of Lemma 4.1. The proofs of the first, second, and third identities rely
on an application of the fundamental theorem of calculus along the integration paths
shown in Fig. 3(a), 3(b), and 3(c), respectively. Since the three proofs are very similar,
we will only prove the first identity.

First, integrating ∂u/∂s along the vertical path in Fig. 3(a), we have

∫ 1

0

∫ 1−t

0

u(s, t) ds dt

=

∫ 1

0

∫ 1−t

0

∫ s

0

∂u

∂s
(s′, t) ds′ds dt (Fundamental theorem of calculus)

=

∫ 1

0

∫ 1−t

0

∫ 1−t

s′

ds
∂u

∂s
(s′, t) ds′dt (Fubini’s theorem)

=

∫ 1

0

∫ 1−t

0

(1 − t− s)
∂u

∂s
(s, t) ds dt (change of variable: s′ → s).

Next, we integrate along the slanted line in Fig. 3(a) to get

∫ 1

0

∫ 1−t

0

u(s, t) ds dt =

∫ 1

0

∫ β

0

u(α, β − α) dαdβ (setting α = s, β = s+ t)

=

∫ 1

0

∫ β

0

∫ α

0

d

dα
u(α′, β − α′) dα′dαdβ

=

∫ 1

0

∫ β

0

∫ α

0

(
∂u

∂s
− ∂u

∂t

)
(α′, β − α′) dα′dαdβ

=

∫ 1

0

∫ β

0

∫ β

α′

dα

(
∂u

∂s
− ∂u

∂t

)
(α′, β − α′) dα′dβ

=

∫ 1

0

∫ β

0

(β − α)

(
∂u

∂s
− ∂u

∂t

)
(α, β − α) dαdβ

=

∫ 1

0

∫ 1−t

0

t

(
∂u

∂s
− ∂u

∂t

)
(s, t) ds dt (by a change of variable).
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Taking the average of the two identities we get the first identity of the lemma.
Next, let us prove the continuity of the face and edge correction operators. Recall

the averaging operators Aθ
3, B

θ
2 and the interpolatory operators Jθ, Lθ analyzed in [9,

Appendix A]:

Aθ
3u (y, z) = 2

∫ 1

0

∫ 1−s

0

θ(s, t) u(sz, y + tz) dt ds,(A.6)

Bθ
2u (z) = 2

∫ 1

0

∫ 1−s

0

θ(s, t)u(sz, tz) dt ds.(A.7)

Jθφ (x, y, z) = θ(x, y, z)φ(y, x+ z),(A.8)

Lθψ (x, y, z) = θ(x, y, z)ψ(x+ y + z),(A.9)

which we used in the analysis of the H1 face and edge correction operators. We will
use them here in the H(curl ) case as well.

Proof of Lemma 4.2. Combining the two terms in the definition of the face
correction (4.1), write

E
curl
F̂
v =

∫ 1

0

∫ 1−t

0




(3s− 1)z 3zt

0 2z
2zs+ x(1 − s) 2zt− xt



 v(s(x+ z), y + t(x+ z))

x+ z
ds dt.

In terms of the operators in (A.6) and (A.8), this expression becomes

(A.10) E
curl
F̂

(
v1
v2

)
=




Jβ1 ◦Aθ1

3 v1 + Jβ1 ◦Aθ2
3 v2

Jβ1 ◦Aθ3
3 v2

Jβ1 ◦Aθ4
3 v1 + Jβ2 ◦Aθ5

3 v1 + Jβ1 ◦Aθ6
3 v2 − Jβ2 ◦A

θ6/2
3 v2





with

(A.11)
θ1 =

3s− 1

2
, θ2 =

3t

2
, θ3 = 1, β1 =

z

x+ z
,

θ4 = s, θ5 =
1 − s

2
, θ6 = t, β2 =

x

x+ z
.

Since |βi| are bounded, we can apply [9, Lemma A.3] to conclude that the map
Jβi : L2

z(F̂1) 7−→ L2(K̂) is continuous. In addition, for the specific β1 and β2

in (A.11) above, we have

grad(Jβ1φ) =



Jβ1(∂zφ) − Jβ1(φ/z)

Jβ1(∂yφ)
Jβ1(∂zφ) + Jβ2(φ/z)


 , grad(Jβ2φ) =



Jβ2(∂zφ) + Jβ1(φ/z)

Jβ2(∂yφ)
Jβ2(∂zφ) − Jβ2(φ/z)


 .

Applying [9, Lemma A.3] again to these gradients, we conclude that the map

(A.12) Jβi : L2
1/z(F̂1) ∩H1

z (F̂1) 7−→ H1(K̂)

is continuous. Furthermore, since the functions θi in (A.11) are smooth, applying [9,
Lemma A.1], we find that

(A.13) Aθi
3 : L2

1/x(F̂3) 7−→ L2
1/z(F̂1) ∩H1

z (F̂1)
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is continuous. Combining the continuity of the maps in (A.12) and (A.13), we get

that each of the operators in (A.10) of the form Jβi ◦A
θj

3 is continuous from L2
1/x(F̂3)

into H1(K̂).

Since H
1/2
0,i (Fl) = H1/2(Fl) ∩ L2

1/λi
(Fl), the continuity of the two-face extension

E
curl
i,l = E

curl
l − E

curl
Fi,l, now follows from the continuity of E

curl
l proved in Theorem 3.2

and the continuity of the face correction established above.

Proof of Lemma 5.1. Let us first consider the expression (5.1) for the edge
correction, summing its the three terms, namely
(A.14)

E
curl
Ê
v =

∫∫

F̂




(3s− 1)z 3zt
3zs z(3t− 1)

x(1 − s) − ys+ 2zs −xt+ y(1 − t) + 2zt


v(s(x+ y + z), t(x+ y + z))

x+ y + z
ds dt.

Using the Bθ
2 in (A.7) and the Lθ in (A.9), we can rewrite this expression as

(A.15)

E
curl
Ê

(
v1
v2

)
=




Lβ3 ◦Bθ1

2 v1 Lβ3 ◦Bθ2
2 v2

Lβ3 ◦B3θ3
2 v1 Lβ3 ◦Bθ4

2 v2
Lβ3 ◦ (Bθ5

2 +B2θ3
2 )v1 − Lβ2 ◦Bθ3

2 v1 Lβ2 ◦ (Bθ6
2 +B2θ2

2 )v2 − Lβ1 ◦B2θ2
2 v2



 ,

with

(A.16)

θ1 =
3s− 1

2
θ2 =

t

2
, θ3 =

s

2
, β1 =

x

x+ y + z
, β2 =

y

x+ y + z

θ4 =
3t− 1

2
, θ5 =

1 − s

2
θ6 =

1 − t

2
, β3 =

z

x+ y + z
.

Note that the above βi take values in the bounded interval [0, 1]. Hence [9, Lemma A.4]
implies that Lβi : L2

z2(Ê03) 7→ L2(K̂) is continuous. However, since

grad(Lβ1ψ(z)) =
1

(x+ y + z)2



y + z
−x
−x


ψ(x + y + z) +

x

x+ y + z



ψ′(x+ y + z)
ψ′(x+ y + z)
ψ′(x+ y + z)


 ,

=



Lβ2(ψ/z) + Lβ3(ψ/z)

−Lβ1(ψ/z)
−Lβ1(ψ/z)


 +



Lβ1(ψ

′)
Lβ1(ψ

′)
Lβ1(ψ

′)


 ,

and since similar identities hold for the gradients of Lβ2ψ and Lβ3ψ, applying [9,
Lemma A.4] to the components of these gradients, we find a stronger continuity
property, namely

(A.17) Lβi : L2(Ê03) ∩H1
z2(Ê03) 7−→ H1(K̂)

is continuous. Next, since θi in (A.11) are smooth, applying [9, Lemma A.2], we also
have

(A.18) B
θj

2 : L2
1/x(F̂3) ∩ L2

1/y(F̂3) 7−→ L2(Ê03) ∩H1
z2(Ê03).

Since all the operators in (A.15) are of the form Lβi ◦B
θj

2 , combining the continuity
properties of (A.17) and (A.18), we find that the edge correction

(A.19) E
curl
Ê

: [L2
1/x(F̂ ) ∩ L2

1/y(F̂ )]2 7→H1(K̂)
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is continuous.
The required continuity of the three-face extension E

curl
ij,l = E

curl
l −E

curl
Fi,l −E

curl
Fj ,l +

E
curl
Ekl,l

now follows from the continuity of (A.19), the continuity of the face corrections
(established in the proof of Lemma 4.2) and the continuity of the primary extension
(Theorem 3.2).

Proof of Lemma 7.1. By the definition of the space X
−1/2
0,I (Fl), its norm is

‖wj‖X
−1/2
0,I (Fj)

= inf
Rju=wj ,u∈X

−1/2
0,I

‖u‖X−1/2 .

Hence

‖wj‖X
−1/2
0,i (Fj)

≤ ‖v − trcτ U i‖X−1/2

≤ ‖v‖X−1/2 + ‖ trcτ E
curl
i v‖X−1/2

≤ ‖v‖X−1/2 + C‖Ecurl
i v‖H(curl ) by trace theorem

≤ ‖v‖X−1/2 + C‖v‖X−1/2(Fl)
by Theorem 3.2

≤ C‖v‖X−1/2 by (2.6).

The remaining estimates are proved similarly.

Appendix B. Corrigendum to Part I.

Factors of Jacobian determinants of integral transformations are missing in several
expressions of Part I [9]. While these errors do not alter the findings of [9], we collect
the corrected expressions here, because we rely on them heavily in this paper.

All the corrections are to replace a factor of 2 by 1/|Fl| in the following occurrences
(which are all expressions for extensions on tetrahedra that are not the reference
tetrahedron): Definitions in [9, Eq. (2.3), pp. 3012] (primary extension), [9, Eq. (3.2),
pp. 3014] (face correction), [9, Eq. (4.3), pp. 3016] (edge correction), and the definition
of the vertex correction appearing in the display after (5.2) in [9, pp. 3018], should
be corrected as follows, respectively:

E
grad
l u =

1

|Fl| λ2
l

∫∫

Tl(λi,λj ,λk)

u(s) ds,(B.1)

E
grad
Fi,l

u =
λl

|Fl| (λi + λl)3

∫∫

Tl(0,λj ,λk)

u(s) ds,(B.2)

E
grad
Eil,l

u =
λl

|Fl| (1 − λi)3

∫∫

Tl(0,0,λi)

u(s) ds,(B.3)

E
grad
Vl

u =
λl

|Fl|

∫∫

Fl

u(s) ds.(B.4)

Additionally, replace 2 by 1/|Fl| in [9, Line 18, pp. 3015], [9, Eq. (4.7), pp. 3017],
and in the fourth line from the bottom in [9, pp. 3017].
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