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ABSTRACT

Circulation patterns associated with extreme temperature days over North America, as simulated by a suite

of climate models, are compared with those obtained from observations. The authors analyze 17 coupled

atmosphere–ocean general circulation models contributing to the fifth phase of the Coupled Model In-

tercomparison Project. Circulation patterns are defined as composites of anomalies in sea level pressure and

500-hPa geopotential height concurrent with days in the tails of temperature distribution. Several metrics used

to systematically describe circulation patterns associated with extreme temperature days are applied to both the

observed and model-simulated data. Additionally, self-organizing maps are employed as a means of comparing

observed and model-simulated circulation patterns across the North American domain. In general, the multi-

model ensemble resembles the observed patterns well, especially in areas removed from complex geographic

features (e.g., mountains and coastlines). Individual model results vary; however, the majority of models capture

the major features observed. The multimodel ensemble captures several key features, including regional vari-

ations in the strength and orientation of atmospheric circulation patterns associated with extreme temperatures,

both near the surface and aloft, as well as variations with latitude and season. The results from this work suggest

that these models can be used to comprehensively examine the role that changes in atmospheric circulation will

play in projected changes in temperature extremes because of future anthropogenic climate warming.

1. Introduction

Climate model simulations of future climate project

increases in extreme heat events over much of the globe

by the end of the twenty-first century because of an-

thropogenic global warming (Meehl and Tebaldi 2004;

Tebaldi et al. 2006;Meehl et al. 2007, 2009).Many recent

heat events highlight the dangers of such changes. The

European heat wave of 2003 was an example of an event

that is likely to become more common in the future,

leaving large segments of the world population vulner-

able to unprecedented heat (e.g., Beniston 2004; Schär
et al. 2004; Stott et al. 2004). Another notable example is

the Russian heat wave that occurred in the summer of

2011. Dole et al. (2011) argue that this unusual heat event

was largely a result of natural variability while Rahmstorf

and Coumou (2011) argue that anthropogenic global

warming played a role in the event. Otto et al. (2012)

suggest that this particular event was a combination of an

unusual natural event and enhanced heat due to global

warming.

Recent analyses of extremes indices show awarming of

the cold tail of the temperature distribution along with an

increase in warm nights globally in recent decades (Frich

et al. 2002; Alexander et al. 2006; Griffiths and Bradley

2007; Brown et al. 2010). Much of this warming can be

attributed to anthropogenic radiative forcing (Christidis

et al. 2005, 2011; Morak et al. 2011; Zwiers et al. 2011).

Changes in atmospheric circulation resulting from the

changing climate could result in nonlinear changes in the

temperature probability distribution, as well as regional

variability in how temperature extremes are affected.

When applied to general circulation model (GCM)
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simulations, extreme value statistics show a warming

trend with the cold tail of the temperature distribution

warming more than the warm tail, especially in areas of

sea ice and snow cover retreat (Kharin and Zwiers 2000,

2005; Kharin et al. 2007). Donat and Alexander (2012)

show that daily temperature distributions have warmed,

further confirming the observed increase in warm ex-

tremes and decrease in cold extremes globally. Rowe

and Derry (2012) show that the frequency of record

warm temperatures has been increasing, while the oc-

currence of record cold temperature has been de-

creasing across the continental United States in recent

years. There is evidence that changes in circulation may

result in a dampening of the warming and potential re-

gional increases in extreme cold events (Vavrus et al.

2006; Kodra et al. 2011).

Loikith and Broccoli (2012, hereinafter LB12) system-

atically identified and described the primary atmospheric

circulation patterns associated with extreme tempera-

ture days over North America during the twentieth

century. The diagnostic metrics devised in LB12 allow

for systematic comparison between observations and

model-simulated circulation data. This work follows the

framework of LB12 and compares model simulations of

atmospheric circulation patterns associated with extreme

temperature days over North America from historical cli-

mate model simulations of the twentieth century. Section 2

describes the datasets, including observational and model-

simulated data, and the methodology used. Section 3

follows with a comparison between observations and

models for severalmetrics developed inLB12, and section 4

uses self-organizing maps as a basis for domain-wide com-

parison and for individual cases. Section 5 presents con-

cluding remarks and implications for futurework and use of

these climate models to understand projected changes in

temperature extremes.

2. Data and methodology

a. Data

All model output used in this work is from the fifth

phase of the Coupled Model Intercomparison Project

(CMIP5). This is the latest phase of a coordinated effort

by modeling groups worldwide to systematically per-

form numerous prescribed climate model experiments.

The output from the model simulations is archived and

available to the scientific community through the Pro-

gram for ClimateModel Diagnosis and Intercomparison

(PCMDI). A detailed description of the experimental

design is available in Taylor et al. (2012). This work

utilizes 17 individual models from 13 different modeling

groups (Table 1). All output used comes from the his-

torical simulation of each model, and only one ensemble

member from each model is used. The historical simu-

lations are prescribed experiments conducted by each

modeling group that simulate the past climate using

observed radiative forcing. This work utilized daily max-

imum and minimum temperature, sea level pressure

TABLE 1. List of the CMIP5 models used. The letter assignment used in the results presentation is provided in parentheses to the right of

the model name.

Model name

Horizontal resolution

(degrees lat 3 degrees lon) Modeling group

Z500

available

BNU-ESM (G) 2.81 3 2.81 College of Global Change and Earth

System Science (GCESS), China

Yes

CanESM2 (C) 2.81 3 2.81 CCCma, Canada Yes

CMCC-CM (B) 0.75 3 0.75 CMCC, Italy Yes

CNRM-CM5 (K) 1.41 3 1.41 CNRM-Centre Européen de Recherche
et de Formation Avancée en Calcul
Scientifique (CERFACS), France

Yes

FGOALS-g2 (J) 3.00 3 2.81 LASG-Center of Earth System

Science (CESS), China

Yes

FGOALS-s2 (P) 1.67 3 2.81 LASG-IAP, China Yes

GFDL-ESM2G (A) 2.00 3 2.50 GFDL, United States No

GFDL-ESM2M (H) 2.00 3 2.50 GFDL, United States Yes

HadGEM2-CC (O) 1.25 3 1.88 MOHC, United Kingdom Yes

INM-CM4 (E) 1.50 3 2.00 INM, Russia No

IPSL-CM5A-LR (D) 1.88 3 3.75 IPSL, France Yes

IPSL-CM5A-MR (L) 1.26 3 2.50 IPSL, France Yes

MIROC5 (N) 1.41 3 1.41 MIROC, Japan Yes

MIROC-ESM-CHEM (Q) 2.81 3 2.81 MIROC, Japan Yes

MPI-ESM-LR (I) 1.88 3 1.88 MPI-M, Germany Yes

MPI-ESM-MR (F) 1.88 3 1.88 MPI-M, Germany Yes

MRI-CGCM (M) 1.13 3 1.13 MRI, Japan Yes
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(SLP), and 500-hPa geopotential height (Z500) from

these simulations. Only models with all three of these

variables available for the historical and two global

warming experiments (RCP4.5 and RCP8.5) were used.

The requirement for future simulation output is imposed

in anticipation of future work that will analyze global

warming simulations in comparison with historical simu-

lations for each model. Geopotential height was provided

directly by each model, with the exception of the INM-

CM4.0 and GFDL-ESM2G models, for which the hyp-

sometric equation was vertically integrated to calculate

Z500. All models lacking geopotential height on pressure

coordinates or the variables needed to vertically integrate

the hypsometric equation were not used in this work.

Daily, observed temperature data were obtained from

theHadleyCentreGlobalHistorical ClimatologyNetwork-

Daily (HadGHCND) gridded daily temperature dataset.

The dataset is a joint project between the Met Office

Hadley Centre for Climate Change (MOHC) and the

U.S. National Climatic Data Center (NCDC). The dataset

is on a global domain, and themajority of the observations

that are applied to the gridding process are from NCDC’s

GlobalHistorical ClimatologyNetwork-Daily (GHCND).

The resolution of the grid is 2.58 latitude by 3.758 lon-
gitude. The dataset has two products: gridded observed

daily maximum and minimum temperatures and their

anomalies (both available from 1950 to 2011). We use

the anomalies in this work, which are computed by

subtracting the 5-day running mean of a 30-yr daily cli-

matology (1961–90) from the actual temperature. A

more detailed description of the dataset and the gridding

process can be found in Caesar et al. (2006).

The SLP and Z500 fields used to determine circulation

patterns associated with observed temperature extremes

were obtained from the National Centers for Environ-

mental Prediction’s Reanalysis 1 (Kalnay et al. 1996) (sub-

sequent references to the combination of surface air

temperature observations and SLP and Z500 from re-

analysiswill be labeled ‘‘observed’’ to distinguish them from

the CMIP5 simulations). To calculate anomalies for ob-

served SLP and Z500, the same method and reference pe-

riod as Caesar et al. (2006) for the gridded temperature

anomalies was used. The same method of calculating

anomalies was also applied to simulated SLP andZ500, and

the model circulation variables were kept on their re-

spective native grid. Only data for NorthAmerica are used,

definedhere as all landnorthof 17.58N,boundedon the east

and west by the Atlantic and Pacific Oceans respectively.

This equates to 315 grid cells in the analysis domain.

b. Methodology

The methods for calculating circulation anomaly

patterns using the CMIP5 data follow the technique

used by LB12, where a more detailed description can be

found. All CMIP5 temperature data were regridded to

the resolution of the HadGHCND dataset. Because the

resolution for each model is finer than that of the

HadGHCND dataset, an area-averaging technique was

used in all cases for the regridding process. Temperature

extreme days are defined as those days falling below the

5th (Tx5) and above the 95th (Tx95) percentile in the

temperature frequency distribution, and extremes were

identified for January, April, July, and October. This

results in 47 (46) extreme temperature days for 31- (30-)

day months, except in the case of a tie for the 47th/46th

most extreme temperature day when ties are included

and the sample size is larger.

Following the procedure in LB12, composite patterns

of anomalies in SLP and Z500 were computed for days

concurrent with extreme temperatures at each grid cell

for each model. The composite patterns are limited to

4500km from the grid cell where the extreme temper-

atures are occurring. This distance is chosen as a com-

promise between capturing as much large-scale climate

variability as possible while limiting the influence from

distant features that are not likely to be influential on the

occurrence of temperature extremes. All composite

patterns were then regridded to a gridcell-relative grid

such that the center of the domain is the grid cell where

the extreme temperatures are identified (see Fig. 1 in

LB12). While patterns for warm and cold daily maxi-

mum and minimum temperature extremes were com-

puted and analyzed using both Z500 and SLP anomalies

for January, April, July, and October, daily maximum

extremes for January and July are the main focuses of

this paper. April and October cases tended to resemble

a combination of July and January patterns. Similarly,

patterns associated with warm daily minimum extremes

tended to resemble those associated with warm daily

maximum extremes.

3. Comparison between model-simulated and
observed composite analysis

This section applies some of the diagnostic metrics

developed in LB12 to the CMIP5 models and com-

pares the results with observations. In most of the

analyses, the multimodel ensemble is presented as the

median metric value of the 17 individual models. In-

dividual models vary in horizontal resolution and

physical complexity (Earth system models being the

most complex), and the ability of the models to sim-

ulate the patterns identified with observations also

varies considerably. Model names are not indicated in

the text or figures; rather, each model is randomly

assigned a letter, which can be referenced against
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model names in Table 1. The technique used in this

section aims to summarize the overall ability of the

models to simulate the characteristics of observed

temperature extremes given the very large number of

dimensions inherent to this analysis.

a. Composite pattern correlations

A portrait diagram (Gleckler et al. 2008) is used in

Fig. 1 to summarize the ability of each individual model

to simulate the composite pattern for each type of ex-

treme. The random letter assignment for each model is

indicated on the x-axis. The portrait diagram in Fig. 1

shows the median of the 315 pattern correlation co-

efficients computed between the observed composite

pattern at each grid cell and the corresponding simulated

composite pattern for eachmodel. In general, correlation

is very high between the model-simulated and observed

composite patterns at Z500 in all seasons, with lower

values for SLP. Near-surface circulation is more variable

than circulation aloft, likely resulting in some of the

weaker agreement between the models and observations

in SLP patterns. The weakest correlations are for July

Tx5 and Tx95 and April Tx95, when SLP circulation is

relatively weak. Here, other mechanisms, such as those

affecting the surface energy budget (i.e., soil moisture), as

well as circulation patterns and processes on smaller

scales may be important for extreme temperatures over

much of the domain.

The maps in Fig. 1 show examples of individual model

results that were used to create the portrait diagram.

The map of January Tx95 Z500 for model G is an ex-

ample of a model that correlates relatively well with

observations, while the July Tx5 Z500 map for model J

has a relatively low median correlation coefficient. The

January Tx5 SLP example is a case that has neither high

nor low median correlation in relation to other models.

In both of the lower two panels in Fig. 1, large regional

variability in correlation values suggests that models are

able to simulate patterns in some regions more re-

alistically than other regions, but not always for the same

region.

To compare the basic common properties of the com-

posite patterns, all of the 315 different circulation pat-

terns corresponding to each grid cell in the domain were

composited together to create a single ‘‘grand compos-

ite.’’ Figure 2 shows the grand composites for Z500 and

SLP patterns for observations and the mean grand com-

posite calculated as the average of the 17 simulated grand

FIG. 1. (top left) Portrait diagram depicting the median value of the 315 correlation coefficients from pattern

correlations between the simulated and observed composite patterns at each grid cell. Maps of correlation co-

efficients for select models and extremes: (top right) January Tx95 Z500 for model G, (bottom left) July Tx5 Z500

for model J, and (bottom right) January Tx5 SLP for model H.
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composites. The multimodel average grand composite

patterns resemble the observed grand composites well in

both January and July for both Z500 and SLP. The

models realistically represent the local, strong anomaly at

Z500 near the grid cell where the extreme temperatures

are occurring as well as the weaker upstream and down-

stream anomalies. SLP patterns are also well represented

by the model mean in both seasons. July Z500 patterns

are slightly weaker in the multimodel ensemble grand

composite, possibly resulting from more intracomposite

variability inherent in the larger sample size used to

create the simulated grand composite.

b. Pattern symmetry and linearity

Pattern symmetry is defined as the coefficient result-

ing from a pattern correlation between the circulation

pattern associated with extreme warm days and the

pattern associated with extreme cold days for a given

location. A location with strong symmetry would have

a pattern associated with cold days that is similar to but

opposite in sign of the pattern associated with warm

days. This would result in a correlation coefficient close

to21, which would indicate perfect symmetry. Here, all

correlation coefficients have been multiplied by 21 so

that a highly symmetrical pattern has a high, positive

correlation coefficient, and asymmetry is characterized

by a low or negative correlation coefficient. Pattern

linearity describes how well the patterns scale with

temperature. A linear pattern would have a composite

pattern associated with extreme temperature days that

was a linearly scaled version of the patterns associated

with the rest of the temperature distribution. The linearity

metric is defined as the RMS difference between the

composite pattern and the regression pattern. The re-

gression pattern is computed individually for each grid cell

by regressing the circulation anomalies for each grid cell

within 4500km on the entire time series of temperature

anomalies for the grid cell for which the pattern is being

computed. The regression coefficients are then multiplied

by the mean temperature anomaly for corresponding ex-

treme temperature days so that the units of the regression

patterns and the composite patterns are the same. Finally,

this pattern is normalized by the standard deviation of the

composite pattern. Both of these metrics were first de-

veloped and presented using observed temperatures and

associated circulation patterns in LB12.

Because symmetry is calculated using patterns for

both warm and cold extremes, results are only provided

for maximum and minimum temperatures for each

month and circulation variable. Figure 3 shows pattern

symmetry for daily maximum temperature extremes,

with the left column showing observed and the right

column showing model results. In this case, the multi-

model results are the median value of the 17 different

FIG. 2. (top) Observed and (bottom) multimodel ensemble mean grand composites for (from left to right) extreme cold January,

extreme warm January, extreme cold July, and extreme warm July maximum temperature days. Color-filled contours (every 2 hPa) are

SLP anomalies, and red and blue contours are for positive and negative Z500 anomalies, respectively. The radius of the area depicted is

4500 km with north oriented upward.
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symmetry values corresponding to each model. Here,

the median value was used as a summary of model re-

sults to more accurately represent the results of a typical

model. In all four cases, the median symmetry maps

depict the majority of the features found in observa-

tions, with the poorest performance being the July SLP

case. The relatively weak resemblance here is consistent

with the highly variable and relatively weak near-surface

circulation patterns found during the summer.

Some notable regional variations in the degree of

symmetry are well captured by the median model

values. For example, the area of weak symmetry over

FIG. 3. Maps of symmetry of daily maximum temperature extremes from (left) observations and (right) models. The

model results depict the median value across all 17 models at each location.
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the southwestern portion of the continent for the January

maximum SLP example is depicted in the multimodel

ensemble, but with slightly higher symmetry values. The

band of weak symmetry in northern Canada is also rep-

resented in the model ensemble for January maximum

SLP. The area of weak symmetry in the southern por-

tions of the continent for July maximum Z500 is pres-

ent in the model ensemble, while July SLP is overall

less symmetrical in the model ensemble compared with

observations.

Linearity values are presented in Fig. 4, with the ob-

served values in the left two columns and model median

values in the right two columns. For reference, a linearity

value of zero would indicate perfect linearity. Because

linearity is normalized by the standard deviation of the

composite pattern, a value of one would indicate that the

difference between the composite and regression-derived

circulation patterns is as large as the spatial variability of

the composite pattern itself and would indicate strong

nonlinearity. Linearity shares some commonalities with

symmetry, as they both describe how the patterns as-

sociated with days in the tails relate to each other, and

the model ensemble captures these similarities in many

cases. Unlike symmetry, linearity is calculated for each

tail separately, so results are presented for both cold and

warm extremes. In general, the model median linearity

maps capture the broad features shown in the observa-

tional analysis. The area of weak linearity for the

January Tx95 SLP case in the southwestern portion of

the continent (corresponding to weak January maxi-

mum SLP symmetry) is present in the model mean, as is

the area of weak linearity in northern Canada. Similar to

symmetry, the poorest representation by the models is

for July SLP, where several regional differences exist. In

the July Tx5 SLP case, the area of the Rocky Mountains

that has negative values for linearity is not present in the

FIG. 4. Maps of pattern linearity for cold and warm daily maximum temperature extremes from (left),(middle left) observations and

(middle right),(right) models: (top),(top middle) for January and (bottommiddle),(bottom) for July. Themodel results depict the median

value across all 17 models at each location.
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models. The area of weak linearity in the vicinity of the

Great Lakes in the July Tx95 SLP case is also not present

in the model ensemble. These are both areas where

complex terrain and proximity to large water bodies

have strong local influences on surface temperature, and

because both the observations and the models are gen-

erally of coarse horizontal resolution, capturing the ef-

fects of features like the Great Lakes on circulation

patterns may be challenging.

4. Synoptic analysis using self-organizing maps

In this section, self-organizing maps (SOMs) (Sheridan

and Lee 2011) are employed as a tool to provide addi-

tional information about the composite patterns at all

grid cells in observations and the CMIP5 models. SOMs

are commonly used for studying and understanding

synoptic climatology, often for a specific region of in-

terest (e.g., Cavazos 2000; Hewitson and Crane 2002;

Cassano et al. 2006). Similar to cluster analysis, SOM

analysis uses a neural network algorithm to group pat-

terns of 2-dimensional data into a user-defined number

of reference clusters or ‘‘nodes.’’ Conventionally, SOM

analysis uses a time series of a synoptic field (such as SLP

anomalies) as input, and each time step is assigned to the

reference node that is the most similar to the field for

that time step. Here, SOMs are employed in an approach

that differs slightly from this convention, in that the input

is a vector in space rather than time. In other words, the

315 composite patterns corresponding to the 315 grid

cells in the domain are the input, and the output is a node

assignment for each grid cell based on the reference

pattern that is most similar to its composite pattern. The

choice of how many nodes to use is subjective, and

a 33 3 matrix was chosen as the best representation of

the spatial variability of the composite patterns for this

application. SOMs were computed using the Matlab

SOM Toolbox (Vesanto et al. 2000), with an initial

radius of three, a final radius of 1, and using the ‘‘ep’’

neighborhood function, as these settings provided the

most easily interpretable results. A detailed de-

scription of these parameters can be found in Liu et al.

(2006).

To compare models with observations using SOMs,

first the analysiswas applied to only the observedpatterns

for a given extreme and circulation variable. These SOMs

assignments and patterns are referred to as ‘‘reference.’’

Then, for each grid cell, the root-mean-square difference

(RMSD) between the multimodel ensemble mean com-

posite pattern and each of the nine reference patternswas

FIG. 5. (left) Self-organizing maps for composite patterns of SLP anomalies in hPa for January Tx5 days. Nodes are identified by the

numbers above each panel. (right) Pointwise node assignments for (top) observed patterns and (bottom) multimodel ensemble mean

patterns. The number indicated with shading in the maps indicates the node to which the local composite pattern is assigned. The asterisk

in the maps indicates the grid cell used for the example in the following figure.

2070 JOURNAL OF CL IMATE VOLUME 28



computed. The model grid cell was assigned to the node

where the RMSD for the simulated pattern was smallest.

In the following sections, the results of the SOMs

analysis are presented for Tx5 January and Tx95 July

SLP and Z500 patterns. For each of the four analyses,

an example is provided for a grid cell for the observed,

multimodel ensemble mean, a model with strong re-

semblance to observations, and a model with weak

resemblance to observations. To the knowledge of the

authors, there is little guidance in the scientific litera-

ture regarding the assessment of statistical significant

for SOMs, providing a limitation to this type of analy-

sis. Therefore, the following results lean toward the

qualitative; however, it is recognized that additional

quantitative statistical rigor could benefit future ap-

plication of SOMs in model comparison.

a. January Tx5

Figure 5 shows the SOM matrix on the left and the

corresponding pointwise node assignments on the right

for January Tx5 SLP composite patterns. Each node is

referenced by the number above the panels. While some

adjacent patterns exhibit similar characteristics, such as

nodes 4 and 5, there is substantial variability across the

matrix. In general, no individual node has a pattern that

closely matches the grand composite in Fig. 2. Here,

SOMs provide additional information on what the pat-

terns look like at places that differ from the grand

composite. The reference node assignments are gener-

ally spatially cohesive, although in some cases, regions

that are climatologically unrelated are assigned to the

same node. For example, node 2 is the closest match for

both north-central Canada and the southwestern coast

of North America. While the climate of these regions is

quite different, the coldest air available for surface ad-

vection lies to the northeast in both cases. It follows that

a pattern like the one for node 2 would be associated

with cold extremes in both cases, as the SLP anomaly

gradient would promote surface wind anomalies with

a northeasterly trajectory. This feature is reasonably

well captured by the CMIP5 models.

The northwestern portion of the domain is assigned to

node 1, which is notably different than the other eight

patterns. Here, the coldest air is to the west, rather than

FIG. 6. Examples of SLP anomaly patterns in hPa for January Tx5 days at the mid-Atlantic grid cell, highlighted

with a red asterisk in Fig. 5. Patterns are from (a) observations, (b) the multimodel ensemble mean, (c) model O,

and (d) model P. The green asterisk is the point where the extreme temperatures are occurring.
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to the north or east, as in the rest of the domain, and the

negative SLP anomaly to the north of the grid cell in the

node 1 pattern promotes advection of this cold air.

Nodes 6, 7, and 8 all show conditions where cold ex-

tremes are associated with easterly flow at the surface,

and these correspond to places in the western half of the

domain, including Alaska, where the coldest air avail-

able for surface advection lies to the east. This is cap-

tured well in the models with the exception of eastern

Alaska and western Canada, where some grid cells that

are assigned to node 7 in the reference are assigned to

node 5 in the models. Nodes 4 and 5 cover much of the

eastern half of the domain in the reference and models,

where cold extremes are associated with north and

northwesterly winds behind a cyclone and ahead of an

anticyclone.

Composite patterns for the mid-Atlantic grid cell

highlighted in Fig. 5 are presented in Fig. 6 for reference

and the CMIP5 ensemble mean (ENS) (Fig. 6a,b), as

well as for a model that closely resembles reference and

one that does not (Fig. 6b,c). This grid cell is assigned to

node 4 in the reference and node 5 in ENS. Nodes 4 and

5 are similar, in that they both show positive SLP

anomalies to the west and negative SLP anomalies to the

east, but node 4 has stronger negative anomalies than

node 5, and node 5 has positive SLP anomalies to the

north. The reference pattern resembles node 4 well, with

a pattern correlation of 0.84, suggesting that the SOM

assignments are realistic. The ENS pattern also re-

sembles the reference pattern [pattern correlation (PC)

of 0.88], with the main difference being that the positive

SLP anomaly is stronger and the negative anomaly

weaker in ENS compared with reference. This is similar

to node 5. Model O strongly resembles the reference

pattern (PC of 0.92), while model P differs considerably

(PC of 0.50). In model P, the strongest positive SLP

anomalies are nearly overhead, while the negative

anomalies are much further downstream than in refer-

ence. This scenario would promote maximum radia-

tional cooling at night but does not seem realistic for

extremely cold maximum temperatures.

Figure 7 shows the results for January Tx5 Z500 pat-

terns in the same format as Fig. 5. All nodes in Fig. 7 show

cold extremes associatedwith negativeZ500 anomalies in

the vicinity of the grid cell, with positive anomalies up-

stream and downstream, as in the grand composite. Dif-

ferences across nodes are primarily in the strength of the

anomaly with node 9 showing the weakest central nega-

tive anomaly and nodes 4 and 5 the strongest. Another

differentiating factor is the orientation of the Z500 wave

train. The western US is mostly assigned to node 3, which

shows a highly amplified wave train pattern, oriented

mostly east–west. Nodes 7 and 8 differ from this pattern

with negative anomalies collocated with the anomalously

cold air and weaker area of elongated positive anomalies

to the south. While the CMIP5 models capture many of

FIG. 7. As in Fig. 5, but for Z500 anomalies (m).
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these features, some notable differences exist. Node 3 is

present further north in the models, reducing the area

of node 4 assignments over northwest Canada. This

discrepancy could be a consequence of the smoother

topography in the models, which may require a stronger

offshore component to the implied wind anomalies, as in

node 3, to promote low temperatures when the barrier

effect is weaker. Other differences, like the northward

expansion of node 2 in the models, are less dynamically

notable, as node 2 and node 1 both have a negative Z500

anomaly near the grid cell, with positive anomalies to

the west, north, and east.

Some regions of spatially coherent node assignments

for SLP in Fig. 5 also show spatially coherent node as-

signments for Z500 in Fig. 7. For example, the region

assigned to node 1 for SLP is assigned to node 8 for

Z500, while Alaska is assigned to node 7 in both cases.

This indicates that these regions exhibit distinct char-

acteristic circulation patterns associated with cold

temperature extremes near the surface and in the mid-

troposphere. As a counterexample, the strip of node 2

assignments along the southwestern coast of the domain

for SLP is not reflected at Z500. In this region, extreme

cold January temperature days can occur with a Z500 pat-

tern that is also associated with cold extremes at locations

further inland, while extreme cold days are associated with

a different SLP pattern than extreme cold days further

inland.

The composite patterns for the grid cell highlighted

over western Canada in Fig. 7 are presented in Fig. 8 in

the same format as Fig. 6. Both the reference and the

ensemble mean patterns are assigned to node 2 with the

reference strongly resembling the pattern for this node

(PC of 0.96). In ENS, this grid cell is on the transition

from node 2 to node 3, and the composite pattern in

Fig. 8 also resembles the pattern for node 3 (PC of 0.95).

This is illustrative of the expansion of node 3 northward

in ENS compared with reference, as even at this grid

cell, the Z500 pattern shows features associated with an

amplified wave train, as seen in node 3. Model N most

closely resembles the reference pattern, with a PC of

0.95; however, the strong positive Z500 anomalies up-

stream are also similar to ENS. Model C, while sharing

some common features, is more indicative of a progressive

FIG. 8. Examples of Z500 anomaly patterns (m) for January Tx5 days at the western Canada grid cell, highlighted

with a blue asterisk in Fig 7. Patterns are from (a) observations, (b) the multimodel ensemble mean, (c) model N,

and (d) model C. The green asterisk is the point where the extreme temperatures are occurring.
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ridge–trough pattern, as seen in node 3, although the

strong positive Z500 anomaly center upstream with

weaker center downstream is similar to ENS.

b. July Tx95

The SOMs analysis results for July Tx95 SLP patterns

are shown in Fig. 9. SLP features associated with ex-

treme warm summer temperatures are subtle over much

of the conterminous United States, as indicated by the

large area assigned to node 7 in both the reference and

models. In the western portion of the domain, extreme

warmth is generally associated with meteorological

patterns that inhibit marine influence from the Pacific

Ocean, as reflected in the patterns for nodes 8 and 9.

Here, the SLP gradient is oriented perpendicular to the

coast, which inhibits onshore flow at the surface. Such

conditions have been shown to be associated with ex-

treme heat along western North America (e.g., Bumbaco

et al. 2013; Grotjahn and Faure 2008), and this feature is

mostly reproduced by themodels. In the northern portion

of the domain, southerly advection is strongly associated

withwarmextremes, as demonstrated by the large area of

node 2 assignments. Horizontal temperature gradients

are weak over much of the domain during the summer,

providing little opportunity for extreme temperatures to

be a result of surface advection and inhibiting strong

perturbations in the SLP field. This is less true at higher

latitudes, where relatively strong positive SLP anomalies

to the southeast and negative anomalies to the northwest

promote advection of warmer air from lower latitudes.

Themodels do not capture this feature well, withmost of

the area represented by node 2 in observations being

assigned to node 4. Node 4 has some similarities with

node 2; however, the anomalies are much weaker. It is

possible that many ensemble members do capture the

pattern seen in node 2 here, but the anomalies are

weakened when computing the ensemble average with

other members that do not capture this pattern. The

overall weaker agreement between models and obser-

vations for July SLP compared with January is consis-

tent with results presented in Fig. 1.

Composites for the grid cell highlighted in Fig. 9 lo-

cated in western Canada are presented in Fig. 10. The

reference pattern is assigned to node 9, while the ENS

pattern is assigned to node 8. As discussed above, both

patterns inhibit onshore flow, which prevents marine air

from moderating surface temperature; however, node 9

has stronger anomalies oriented more east–west, while

node 8 has weaker anomalies oriented northwest–

southeast. The reference pattern resembles the pattern

for node 9 well (PC of 0.80); however, the lower PC

coefficient compared with the January examples in-

dicates some level of within-node variability. The ENS

pattern assigned to node 8 resembles a hybrid of nodes 8

and 9, with PC coefficients of 0.70 and 0.67, respectively.

The key mechanism (inhibition of onshore flow) is

FIG. 9. As in Fig. 5, but for July Tx95.
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captured by ENS, and the strong similarity between

nodes 8 and 9 further suggests that the northward ex-

pansion of node 8 for ENS comparedwith referencemay

not indicate a fundamental issue with simulating the

proper mechanisms. Model A closely resembles the

reference pattern (PC of 0.83), with strong similarity to

ENS as well, while model J only weakly suggests the

same pattern qualitatively but with a PC coefficient of

zero. The influence of ensemblemembers, such asmodel

J, could lead to weaker anomalies in the ensemblemean,

nudging the ENS pattern toward the less robust node 8

rather than node 9.

The Z500 patterns corresponding to the Tx95 SLP

patterns are shown in Fig. 11. All nodes feature a posi-

tive Z500 anomaly centered near the grid cell, with the

magnitude of this anomaly increasing from node 1 to

node 9. Aside from nodes 1, 2, and 4, there is one pri-

mary, closed Z500 positive anomaly region, surrounded

by weaker negative anomalies. There is little similarity

between the cohesive regions for Z500 and SLP, al-

though some similarities exist, such as the western por-

tions of the domain generally being assigned to nodes

7 and 8, where for the SLP patterns these grid cells were

assigned to nodes 8 and 9. This feature is not well re-

produced in the CMIP5 ensemble. In general, the weakest

anomaly patterns are in the south, as indicated by the

region assigned to nodes 1, 2, and 4, while the strongest

anomaly patterns are to the north in reference. The

models capture nodes 1, 2, and to some extent 4 as-

signments well, but large differences exist elsewhere.

One striking difference is the large area assigned to node

5 for the models, while very few grid cells within that

region are assigned to node 5 in the reference. Node 5

does share common features with many other nodes, so

the model error here may not represent a fundamental

bias in the model ensemble; however, this does indicate

that the models are unable to capture the spatial vari-

ability in the Z500 patterns across this large portion of

the domain.

Figure 12 shows example Z500 composite patterns for

the southern U.S. grid cell highlighted in Fig. 11. The

Z500 anomalies are weak and small in spatial scale, with

a positive Z500 anomaly overhead in the reference. The

ENS pattern strongly resembles the reference (PC of

FIG. 10. Examples of Z500 anomaly patterns (in m) for January Tx5 days at the grid cell, highlighted with a red

asterisk in Fig 9. Patterns are from (a) observations, (b) themultimodel ensemblemean, (c)modelA, and (d)model

J. The green asterisk is the point where the extreme temperatures are occurring.
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0.86), with a similar positive Z500 anomaly overhead

and even with weak positive and negative anomalies

beyond this feature. During July, horizontal tempera-

ture gradients are negligible in this region, and the at-

mosphere is more equivalent barotropic than in the

winter, resulting in weak and relatively small-scale at-

mospheric circulation. It should also be noted that other

factors, such as anomalously low soil moisture, may also

be important for influencing extreme warm temperatures

in the summer that are not captured in these composites

(Berg et al. 2014; Loikith and Broccoli 2014).

Model K captures the local positive Z500 anomaly,

while model G has anomalies that are too positive. In

both cases, features that are removed from the central

positive anomaly center do not match well; however,

these features may be relatively unimportant for the oc-

currence of extreme warm temperatures.

c. Individual model skill

Table 2 summarizes the ability of the models to re-

alistically simulate the features identified by the SOMS

analysis. For each model and the ensemble, the percent-

age of the 315 grid cells that that are assigned to the same

node as the reference SOMs is computed. In other words,

if the pattern at every grid cell in a given model were

assigned to the node assignment for that grid cell in the

reference SOMs, the value would be 100% in Table 2.

Overall, while there is considerable model-to-model

variability, the node assignments match the reference

SOMs better in January than in July, consistent with the

result of Fig. 1. Interestingly, the percentages are higher

for SLP thanZ500 for all models in July and themajority

in January. While overall pattern-to-pattern disagree-

ment is larger for SLP than Z500, the spatial variability

as captured by the SOMs is better. This is also true for

the ensemble mean.

Models that perform well for one type of extreme or

variable do not necessarily perform well for others. For

example, model D shows relatively high percentages for

January but low percentages for July. Model E shows

low percentages for January Z500 and high percentages

for January SLP. In some cases, the model performance

is systematic, such as the systematically low percentages

for model J and high percentages formodel K. In all four

cases, the ensemble mean shows percentages that are as

high or are higher than the best models.

5. Summary and concluding remarks

The results from a systematic evaluation of a suite of

17 state-of-the-art climate models from the CMIP5 da-

tabase indicate that most models capture the key fea-

tures of the primary atmospheric circulation patterns

associated with extreme temperature days. Substantial

FIG. 11. As in Fig 7, but for July Tx95.
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variability amongst models within the 17-member suite

does suggest that some models may be better suited for

analysis of future changes in extremes than others.

Model agreement tends to be weakest in regions where

complex topography, influence from large bodies of

water, or other strong asymmetries are present. Overall,

the comparisons presented here suggest that this suite of

models may be well suited for analysis of the extent to

which, if any, changes in circulation patterns will have on

future temperature extremes.

Winter patterns are more realistically simulated than

summer patterns, in general. The less prominent role of

large-scale circulation and advection for the occurrence

of temperature extremes in the summer and the more

prominent role of smaller-scale processes and land–

atmosphere interactions may explain the lower model

fidelity in the summer. Patterns at Z500 are often more

realistically simulated compared with SLP patterns,

where variability is inherently greater. When the suite of

models is considered in the form of a multimodel en-

semble, results agree better with observations than re-

sults from most individual model members, suggesting

that patterns of model error may be random rather than

systematic across models.

The generally realistic representation of these pat-

terns in the models used in this work allows for some

confidence to be placed in future simulations of these

important mechanisms in global warming simulations.

To gain a comprehensive understanding of the mecha-

nisms associated with projected changes in extreme

temperature days at the end of the twenty-first century

using global warming simulations requires analysis of

known, important mechanisms for the occurrence of

extreme temperature events in future simulations. The

relationship between changes in extremes and circula-

tion likely falls on a spectrum of possibilities. One end of

this spectrum would be a scenario where extremes only

change as a result of a shift in the mean temperature

toward warmer conditions. In this scenario, circulation

patterns would likely remain the same in a future cli-

mate; only surface temperatures will be warmer. At the

other end of the spectrum would be a scenario where all

changes in temperature extremes result from changes

in atmospheric circulation patterns relative to those

FIG. 12. Examples of Z500 anomaly patterns (in m) for July Tx95 days at the Alaska grid cell, highlighted with

a blue asterisk in Fig 11. Patterns are from (a) observations, (b) the multimodel ensemble mean, (c) model K, and

(d), model G. The green asterisk is the point where the extreme temperatures are occurring.
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patterns identified in this work and in LB12. To fully

understand where reality lies and how variable the re-

sults are regionally, future work should focus on exam-

ining these models for systematic changes in circulation

under future global warming conditions.
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