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PHYSICS OF PLASMAS VOLUME 11, NUMBER 7 JULY 2004

Approximate thermodynamic state relations in partially ionized
gas mixtures

John D. Ramshaw
Lawrence Livermore National Laboratory, University of California, P. O. Box 808, L-095, Livermore,
California 94551

(Received 11 February 2004; accepted 5 April 2004; published online 10 Jung 2004

Thermodynamic state relations for mixtures of partially ionized nonideal gases are often
approximated by artificially partitioning the mixture into compartments or subvolumes occupied by
the pure partially ionized constituent gases, and requiring these subvolumes to be in temperature and
pressure equilibrium. This intuitively reasonable procedure is easily shown to reproduce the correct
thermal and caloric state equations for a mixture of nedtrahionized ideal gases. The purpose of

this paper is to point out thds) this procedure leads tiocorrect state equations for a mixture of
partially ionized ideal gases, wherd@s the alternative procedure of requiring that the subvolumes

all have the same temperature and free electron density reproduces the correct thermal and caloric
state equations for such a mixture. These results readily generalize to the case of partially degenerate
and/or relativistic electrons, to a common approximation used to represent pressure ionization
effects, and to two-temperature plasmas. This suggests that equating the subvolume electron number
densities or chemical potentials instead of pressures is likely to provide a more accurate
approximation in nonideal plasma mixtures. ZD04 American Institute of Physics.

[DOI: 10.1063/1.1758717

I. INTRODUCTION rial k per unit total volume is then simplgpl, so the in-

. ) ) . ternal energy density of materiél within its subvolume is
Multwomponent hydrqdynam|cs cqlcula_ﬂons require g 1/a, =%, wherel, is the specific internal energy of
thermodynamic state relations for material mixtures. Unfor-5iarialk. It follows that

tunately, it is rarely feasible to construct accurate state rela-
tions for multicomponent atomic mixtures of interacting ma- |, = g, ol )
terials, and even less feasible to employ them in practice. In

lieu of this, it is necessary to approximate the state relationgnd we note thak,pyl = pl. Together with the known val-
of the mixture in terms of those of the pure materials ofyes ofp, andl, knowledge ofe, and B, is therefore suffi-
which it is composed. The question then arises of how t@ijent to determing, andl,, which are the natural indepen-
construct the best or most accurate approximations of thigent thermodynamic variables for matetkah isolation. The
type. state relations for pure materiklare also presumed known,
The only obvious way to proceed is to regard the mix-so 3, and |, then determine the remaining thermodynamic
ture as being artificially partitioned or separated into its conproperties of materia, such as its pressufi , temperature
stituent components or materials, with matekiaégarded as T, , and so on.
being confined by itself within a compartment or subvolume  Two problems now remair(a) how to determiney, and
with volume fractioney and possessing a fractigy of the g, = thereby determining,, Ty, etc., and(b) having done
total internal energy of the mixture, where of coulSgry  so, how to compute the thermodynamic properties of the
=2 Bx=1. Thus, in a mixture oN materialsN—1 of the  mixture, such as its pressupeand temperatur&, in terms
variablesa, may be independently varied, and anotier of the thermodynamic properties of the individual materials
—1 of the variablegy, for a total of 2N—2 such variables. k of which it is composed. In order to determine thil 2
In most hydrodynamical situations, the natural independent-2 variablesa, and By, it is necessary to imposeN2-2
thermodynamic variables for the mixture are the partial masgonditions. The most common, natural, and intuitive choice
densitiesp and the specific internal energgnergy per unit  for these conditions is to require that the subvolumes are in
mas$ |, which is not purely thermal but also includes pressure and temperature equilibrium with each other. Re-
chemical/ionization energy. The valuesgfandl are there-  quiring all the subvolume pressurpg to be equal imposes
fore presumed known. The mass density of pure mat&rial N—1 conditions, and requiring all their temperatufgsto
within its subvolume is then given by be equal imposes anoth&t—1, so this provides the N2
— 2 conditions needed to determine the valuegnd g, ,
thereby solving problenta). Moreover, it is natural to iden-
The internal energy densitienergy per unit volumeof the tify the resulting common value of tig with the pressure
mixture ispl, wherep=Z2,py is the total mass density. Ac- of the mixture, and that of th&, with the temperaturd@ of
cording to the definition oy, the internal energy of mate- the mixture, thereby solving problef) as well. This pro-

Pr=px/ ay. 1)
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cedure seems intuitively reasonable, but of course it repreare generalized to the case of partially degenerate and/or
sents an uncontrolled approximation in genefdhe true relativistic electrons, and to a common approximation for
state relations for a dense gas mixture depend on the form giressure ionization. The case of two-temperature plasmas, in
the interaction potential between atoms and ions of differentvhich the electron temperaturg, differs from the heavy
materials, and this information does not enter into the statparticle temperature, is discussed in Sec. IV. Section V con-
relations of the pure materialddowever, it is easy to show, tains a few concluding remarks.

and appears to be well known, that this procedure is actually

exact for a mixture of neutrdahonionized ideal gases, and

produces precisely the correct thermal and caloric state eqUR- c| ASSICAL IDEAL GASES

tions for such a mixturésee the Appendijx This encourages

the hope that the same procedure will also provide a reasort- The true mixture

able approximation to the state relations of nonideal mix-  \ye consider a classical ideal gas mixtureNblifferent

tures. types of atoms denoted by the symbls (k=1,2,...,N),
Unfortunately, the above procedure dews produce the  the various ionization states of which are denotedxBy(n
correct state relations for a mixture of partially ionized ideal—_g 1 o N,), SO thatxﬁ refers to neutral atoms o,

gases, as will be shown in the next section. The physicajile X2 for n=1 refers ton-tuply ionized Xy, i.e., Xﬁ
reason for this is simply that the electrons produced by the. X! XE:X;+ etc. The free electrons will simply be de-

ionization of one material tend to suppress the ionization of,pteq by the symbag, which will also be used as a sub- or
the others, angice versaand this effect is not accounted for superscript as convenient. The mass of a single partio of
in the procedure described above. The purpose of this papg! yenoted bym?, and clearlym=m®—nm,, wherem is

is to show that this problem may be removed simply byyne mass of a single neutral atomxft andm, is the mass of

equating the free electron densities of the subvolumes ing single electron. The partial mass densitygfin the mix-

stead of their pressures. When this is done, the procedui e is denoted by, which is presumed to be a known

thus modified reproduces the correct state relations for given quantity and is of course unchanged by ionization.
mixture of partially ionized ideal gases. Moverover, this rem—-rhuspk includes the mass of all electrons originally present

edy is remarkably general; it applies to a mixture of an arbiy, X,, regardless of whether they remain bound or have

trary number of materials, even in the presence of multiplgyecome free due to ionization. The partial number density of
ionization and partially degenerate and/or relativistic elecxk in the absence of ionization is them=pk/mg which is

trons. It also remans valid when use.d n cqnjunctlon with 8therefore also a known quantity. The partial mass density of
common approximation for pressure ionization, as well asin iy the partially ionized mixture is denoted byl
two-temperature plasmas. Of course, this procedure, like m{n, wheren!! is the corresponding partial number den-

pressure equilibration, becomes an uncontrolled approximasjy, “gimijarly, the partial mass density of free electrons in

]E'on for dens_elml_xtures, in which the atoms and ions of dif-ye mivtre, produced by ionization of all materials present,
erent materials interact with each other. However, the facfg po=m.n,, wheren, is the partial number density of free

that it is at least exact for ideal mixtures, in contrast to PréSujectrons in the mixture. Since the particle masses are

sure equilib_ratign, suggests that it is.Iiker to_provide a lf’etterknown, the partial mass and number densities carry equiva-
approximation in nonideatlensg partially ionized gas mix- ot information, but it will usually be more convenient to

tures. _ o work in terms of the latter.
In ideal systems, equilibrating subvolume temperatures Now ionization produces free electrons but does not

and free electron number densities is equivalent to equilibrat(-:hange the number of heavy particles present, so the total

ing _temperatures and ele(_:tron chemical potentials. Thig ;mper density of heavy particles of each material is un-
equivalence no longer obtains in dense systems, where o ‘ﬁanged by ionization and remaimg even in a partially

would intuitively expect that it is the chemical potentials thationized mixture. The number densitia are therefore con-
should be equilibrated, since differences between them alg ained by theN equations

the general thermodynamic driving forces associated with
mass exchange between subsystems, and in the present con- 2 A= n 3)
text the artificial partitions separating the subvolumes may k™ ke
be thought of as semipermeable membranes through which i i ]
free electrons may pass but heavy particles may not. ThiOte thatn, accordingly doesiotinclude the number density
equilibration of electron number density, or chemical poten©f frée electrons produced by ionization X, whereas in
tial, instead of pressure has previously been proposed ofPntrast,py doesinclude the mass of those electrons as al-
intuitive grounds, but we are unaware of a previous pub_re.ady dlscusssq. In addition, conservation of electrons im-
lished justification for this procedure. plies the condition

The present discussion is organized as follows. In Sec.
we consider mixtures of classical partially ionized ideal X NNE=ne. (4)
gases, and show that equilibrating subvolume pressures and
temperatures leads to incorrect mixture state relations, whil&@he specific internal energienergy per unit masd of the
equating subvolume temperatures and free electron densiti@sixture is also presumed known, and is related to the spe-
reproduces the correct state relations. In Sec. Il these resultsfic internal energies of the individual species by
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kZ mInt(T) + menel o( T)=pl, (5)

where T is the temperature, ant(T) and 1,(T) are the

caloric equations of state for the heavy particles and ele
trons, respectively, including their heats of formation, or in
the present context ionization energies. We assume that t

mixture is in ionization equilibrium, which implies that the
number densities are further constrained Ny Saha equa-
tions of the form

n+1
nk Ne

= Ki(T)
N

(1<sk=N;0sn=sN,—-1), (6)

whereNg=3,N, and the quantitie;(T) are equilibrium
constantSwhich are known functions of .
Equations(3)—(6) constituteN+1+1+Ng=Ng+N+2
equations in the unknown variableg, n., andT. There are
N;, variablesny, whereN,=2 (N +1)=Ns+N, so there
are N, +2=N;+N+2 unknowns. The system of Eq®)—

(6) is therefore closed and the solution is determinate. Once

these equations have been solved @and known, the pres-

sure of the mixture is then given by the thermal equation of

state for an ideal gas mixture, namely
p=>, nlkgT+nkegT=>, nkgT+ngkgT, @)
kn k

wherekg is Boltzmann’s constant. Equatiofi3)—(7) there-
fore implicitly determine both the pressupeand tempera-
ture T of the mixture as a function of the variableg,(!).

B. The partitioned mixture

We now suppose that the mixture is artificially parti-
tioned into subvolumes as described in the Introduction. Ac-

cording to Eqs(1) and(2), the density of materiaX, within
its subvolume is the,=p,/ay, while its specific internal
energy isl=pBypl/p. In the absence of ionization, the
number density of materidt within its subvolume would
then beR, =P, /m= py/(amy) =n,/ay. The number den-
sity of Xy within materialk is denoted by, , and the num-
ber density of free electrons within materlals denoted by
Tig . The total number density of heavy particles of matekial
is again unchanged by ionization, so the number dengifies
for each materiak are constrained by

8

2 'ﬁE='ﬁk=nk/ak,
n

while conservation of electrons for materialimplies the
additional condition

©)

2 =T,

The specific internal energy of materialwithin its subvol-

John D. Ramshaw

En: mihgl {(Ty) +MeAgl o Ti) =Bl k= PrBrp! / pi

= PBrpl/ ay. (10

“The assumption of ionization equilibrium further implies that

the number densities within materlalre constrained by the
« Saha equations

~n+l=e
N "Ny
i

:KE(TK) (0=n=N,—1). (11

The number densiti€B, and Ty within materialk are
particle numbers per unit volume of material In order to
facilitate comparison with the true mixture relations, it is
convenient to eliminate these number densities in favor of
the corresponding partial number densitiparticle numbers
per unit total volumg np= g,y and ny=a,f;. Equations
(8)—(11) then become

> np=ng, (12)
n

> nni=ng, (13)
n

2 mRnIR(T)+menfl (T = Bl (14
n+1l.e

N, "Ny n

—I’]n =akKk(Tk) (OﬁnﬁNk_l). (15)

k

If oy and B, were known, Eqs(12)—(15) would consti-
tuteN,+ 3 equations in thél,+ 3 unknownsy, ny, andT,
for each materiak, and the pressurp, within materialk
would then be given b, ==, ArkgT+Tigkg Ty, Or
arPr= 2 NRKeTit NEkaTi= (Mt K T (16)

n
In order to determine the variables, and B, for all k, we
must impose an additional N>-2 conditions. Since the
quantitieskK(T) and I(T) are in general nonlinear func-
tions of T, if we are to have any hope of reproducing the true
solution for the mixture it is obvious that we must require
temperature equilibrium between the subvolumes, ilg.,
=T,=T for k=2,... N. This providesN—1 conditions
which we may regard as determining the variatBgs Equa-
tions (14)—(16) then become

2 MR+ menil o(T) = Bl (17)

n+1.e

N Ng n

— = aK{(T)  (0=n=N,—1), (18)
k

aBre= (N +nRkgT. (19

The system of equations to be solved now consists of Egs.
(12), (13), and(17)—(19) for all k. The total number of these

ume is related to the specific internal energies of its indi-equations iSN+N+N+Ng+N=Ng+4N, and if the g

vidual species by

were known the remaining unknown quantities woulchle
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ng, T, By, andPy, the total number of which idN,+N imposed as the additional conditions required to determine
+1+(N—1)+N=N,+3N=Ng+4N. The system is there- the «,, and when this is done Eq&) and(15) immediately
fore determinate for givem, . and automatically become consistent. Moreover, 4) is

Let us now see how close we are to achieving consisequivalent tdiy=n,, which simply states that the free elec-
tency with the corresponding relations for the true mixturetron densities of all the different materials within their re-
namely Eqgs.(3)—(7). Equation(12) is already of the same spective subvolumes are equal. Equating these free electron

form as Eq.(3), while summing Eq(13) overk yields densities instead of pressures thereby produces full consis-
tency of the equations for the partitioned mixture with those
2 nnE=ne, (20) of the true mixture. Of course, the resulting subvolume pres-
kn suresp, will then no longer be equal, and the correct mixture

wheren,=3,n is the total number density of free electrons, Pressure is then simply given by=2,«,p, as discussed
i.e., the free electrons produced by ionization of all material@Pove. Note that the quantitigg=a\py play the role of
per unit total volume. Equatiof20) is seen to be of the same Partial pressures, since their sum is the total pressurthe

form as Eq.(4). Summing Eq.(17) over k reproduces Eq. MIXture.

(5), and summing Eq(19) over k reproduces Eq(7) pro-

vided that we lep=ZaPy. Thus we already have consis- |Il. DEGENERATE OR RELATIVISTIC ELECTRONS

tency with Egs.(3)—(5) and (7) even though thex, still AND PRESSURE IONIZATION

remain arbitrary, and the only remaining question is whether The devel t of th di i tricted
we can determine them in such a way that the partitioned € development of the preceding section was restricte

Saha equation@ 8) are consistent with the true mixture Saha © tglassmhaI(MaxwetlL—Bolltzrtnanr)u stahsgcs. Int.ml;ang appli- ‘
equationg6). Of course this does not require that thg be cations, however, the electrons may be partially degenerate

specified explicitly in closed form: they can also be implic- guantum-mechanically, or relativistic, or both, and the devel-

itly determined by imposing an additionill— 1 independent ;)pmelnt requwe? tr;:oc?flcatl(l)ni. In partlgutlﬁr, _the_ sri_euﬂc n-
conditions on the unknown variableg, n¢, T, ay, By, ernal energy of the free electrons, and the ionization equi-

and/orp,. Comparison of Eqg6) and(18) shows that these [Il_bnlum c%n?tants n thedSahac(jequanons, no Itlalrfgsr detpend on
equations would indeed be consistent if these additibhal ajone but acquire a dependencergnas well.” Equation

1 conditions can be shown to imply the relationg (5) for the true mixture is therefore replaced by
=ng/Nng, or
Ng= ayNe. (21

Let us see if equating the subvolume pressures producd¥éhile Ed.(17) for the partitioned mixture is replaced by
the desired effect, since we know that this works for mix-

> Mg T+ menel o Tine) =l (24

tures of neutral nonionized ideal gasage the Appendijx ; MmNl (T) +menil o(T,nif @) = Biepl (25
Thus we sep,=p,=p fork=2,... N, whereupon Eq.19)
becomesy,p=(n+ny)kgT, so that where the precise functional form bf(T,n.) is immaterial
for present purposes.
e (ng+nksT _ Nyt N (22 Similarly, Eq. (6) for the true mixture is replaced by
KT(Entnke T Znj+ne’ a0
e
Solving forng, we find o =Kg(T,ne), (26)
Ne= ayNe+ akE nj— Ny, (23) while Eqg. (18) for the partitioned mixture is replaced by
i n+l.e
g
which differs from Eq.(21). Equating the subvolume pres- ~ — i — axKi(T.ni/ax), (27)

sures therefore results in an inconsistency between the parti-
tioned Saha equatior{45) and the true mixture Saha equa- Where the precise functional form Ei(T,n,) is also imma-
tions (6), and this of course destroys the desired consistencigrial for present purposes. The final such modification is that
between the partitioned and true mixture equations as Ed- (7) for the true mixture is replaced by
whole.
We observe that Eqg21) and (23) would no longer p=>, NksT+pe(Ne,T) (28)
differ if it could somehow be shown that,=n,/Z;n; as k
well. We further observe, however, that this cannot in generalvhile Eq. (19) for the partitioned mixture is replaced by
be true, since tha, are known given quantities independent
of T, whereas it is clear thaty/n, will in general depend
strongly onT via the equilibrium constantsy . and the precise functional form of the electron pressure
Fortunately, the inconsistency is easily remedied. Onlyp¢(ne,T) is again immaterial.
N—1 of the relations(21) required to achieve the desired Let us now see if the relation81) still suffice to ensure
consistency are independent, since their sum &ueduces the desired consistency between the true and partitioned mix-
to an identity. The relation1) themselves can therefore be ture relations. Combining Eq$21) and (25 and summing

o Br=ni KT+ aype( N/ oy, T) (29
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overk, we obtain precisely Eq24), while combining Egs. competing variants in the literature have in common the fea-
(21) and (27) reproduces Eq(26). Finally, combining Egs. ture that the ionization equilibrium constanis, become

(21) and(29) and summing ovek, we obtain precisely Eq. functions ofT, as well asT andn,. The precise mathemati-
(28) provided that we lep= X« Py as before. The relations cal form of this additional functional dependence is immate-
(21) therefore still suffice to ensure the desired consistencysial for present purposes, so the present development applies
and hence can still be employed as the additional conditionsqually well to any particular two-temperature Saha equation

required to determine the, for this purpose. of this general form. The Saha equatioi§) for the true
A similar situation obtains with regard to a common ap-mixture then become
proximation used to represent pressure ionization effects, N
X . ) e
wherein those effects are modeled by introducing a further X KT, Te.ny), (34)

approximate dependence on the free electron density into the Ny
ionization equilibrium constantsy . The functional form of
this dependence is again immaterial for present purpose
whatever it is, it may simply be incorporated into the func-

tions KE(T,ne_), so that Eq.s_(26) and(2_7) conti.nue to apply n{}”nﬁ_ KT T8 e/ -
and the consistency conditiof®1) again remain unchanged. ny = aKi(T, T, nid ) (39

while the corresponding equatiori27) for the artificially
ﬁartitioned mixture become

V. TWO-TEMPERATURE PLASMAS In a two-te_mperature plasma, E@8) for the true mix-
ture pressure is replaced by
In many situations of interest, the temperatiigeof the
free electrons differs from the temperatuFeof the heavy p=> nkeT+pe(Ne,Te), (36)
particles, and the development then requires still further K
mod|f|pat|ons. I.n this casel is .d.etgrmmed by a separate while Eq.(29) for the subvolume pressures in the partitioned
evolution equation for the specific internal enelgyof the :
. I mixture becomes
free electrons, which therefore becomes an additional known
quantity in the description. In the true mixture, we then have o, =nkgT + aype(Ni/ ay, TY). (37

le(Te.Ne)=1g, (30) Guided by the preceding development, we may antici-
pate that the3y should be determined by requiring the elec-
tron temperatures of all materials to be equal, g+ T}
=T, for k=2,... N. Equations(32) and(33) then become

wherelg is the known given value df, as determined by the
electron energy equation. Equati¢®4) for the total energy
density in the true mixture, including that of the free elec-

trons, then becomes NSl o(Te,N ) = BiNel S, (38)
n.npn
£ MRIKIKCT)+ menel (T ne) > mingIi(T) + mengfil =Bl (39
22 mE”E'E(THmene'g while the Saha equation(85) become
kn n+1,.e
=pl. (31 no = ay Ky (T, Te,ni/ ) (40

In the artificially partitioned mixture, each material now
has its own electron temperatuf§, and it becomes neces-
sary to partition the electron energy density as well as the o, P=nksT + ayPe(Ng/ ay, Te)- (41
total internal energy density. For this purpose we introduce
electron energy partitioning parameteg§ analogous to the

and Eq.(37) becomes

We now check to see if the conditiofl) still suffice to
ensure consistency between E(30) and (31) for the true

Pic; so that mixture and Eqs(38) and (39) for the partitioned mixture.
Nelo(TE, N ) = BENel 2, (32  Combining Eq.(21) with Egs.(38) and(39), we obtain
while Eq. (25) for the partitioned mixture now becomes a Nl e(Te-ne)Z,Bﬁne'Oa (42

while Eq. (39) remains unchanged. Summing E¢$2) and
(39) overk, we obtain precisely Eqg30) and (31), so the
desired consistency obtains for the energies.
_ 2 men?I0(T) + meneﬂﬁlg The next stgp is to see if the conditiof&l) also spffice
n to ensure consistency between E84) for the true mixture
and Eq.(40) for the partitioned mixture. Combining Egs.
=Bipl. (33 (21) and(40), we obtain precisely Eq34), thereby confirm-
The Saha equations in a two-temperature plasma havieg the desired consistency for the Saha equations. Finally,
been controversidal;'® and we shall not attempt to resolve combining Eq.(21) with Eq. (41) and summing ovek, we
those controversies here. We note, however, that most of thebtain

2 mInM(T) + menflo( TSNS ay)
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5 (dense systems, where the present procedure becomes ap-
; akpkzzk Nk T+ Pe(ne, Te), (43 proximate, it intuitively seems preferable to equilibrate the
electron chemical potentials rather than the number densities,
which agrees precisely with E(36) provided that we again and since the resulting state relations are no longer exact,
let p=2ya, Py The conditiong21) therefore again produce thermodynamic consistency is no longer so obvious. How-
full consistency between the relations for the true and partiever, it may be argued that thermodynamic consistency

tioned mixtures. should be preserved by virtue of the fact that the artificially
partitioned mixture, although admittedly different from the
V. CONCLUSION true mixture, may nevertheless be regarded as a real albeit

idealized physical system in which the partitions separating
“Re subvolumes are semipermeable membranes with pores so
e o : ) small that only the free electrons, but not the heavy particles,
subvolumes of an artificially partitioned mixture of partially . .

may pass through them. As is well known, the chemical po-

ionized ideal gases reproduces the correct thermal and ca- . .
. . . ential of any species that can pass through such a membrane
loric state equations of the true mixture, even when the elec: . :
as the same value on both sides, so equating the electron

trons are partially degenerate and/or relativistic and/or their : o . o
temperature differs from that of the heavy particles. It shoul hemical potentials is indeed the physically correct condition
be rf)oted however, that thentropyof the grl?e mixtur.e and 0 impose in this situation. This procedure should therefore
hence thé other thérmodynamic potentidise energie)s:de- produce the physically correct state relations for the parti-
tioned system, and if so those state relations shapso

fined in terms of it, differs from the sum of the subvolume . .
facto be thermodynamically consistent as well, even though

entropies by an entropy of mixing, but this difference Canthe are only an approximation to those of the true nonideal
readily be evaluated and accounted for in ideal systems. The y y PP

. . o mixture.
total entropy per unit volume of the true mixture is given by

electron densitietor equivalently chemical potentials the

o=, ni[s(T)—kgInnl]+ oe(Ne, Te), (44  ACKNOWLEDGMENTS
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The total entropy per unit total volume of the artificially )
partitioned mixture is therefore given by APPENDIX: NEUTRAL GAS MIXTURES

Here we wish to show that equating the subvolume pres-
o'=, a =, NSt (T)—kgIn(nay)] sures and temperatures reproduces the correct state relations
K kn for a mixture of neutralnonionized ideal gases. The ther-

mal and caloric equations of state for such a mixture are

+Ek aoe(Ry, Te). (46)  given by
As already shown, equating the electron number densities of p=> n.kgT, (A1)
the subvolumes implies thati=n., so that Eq.(46) be- k
comes
Pl =20 pdi(T), (A2)

o' =2 MIspy(T)—kgInng+KkgIn ay] + oe(ne, Te)
kn wherekg is Boltzmann’s constant),= p,/m, is the number
density of materiak, my is its atomic mass, ang(T) is its
=o+kgX ngln ey, (47)  specific internal energy, which is presumed known as a func-
. tion of T. Equation(A2) implicitly determines the mixture
in which the last term is the aforementioned entropy of mix-temperaturel as a function of the known independent vari-
ing, which is seen to be simple in form and easily evaluatedablesp, and|. Substitution into Eq(Al) then yields the
Equation(47) relates the entropy per unit volume of the true mixture pressur@ as a function of the same variables.
mixture to that of the artificially partitioned mixture, thereby Now suppose the mixture is artificially partitioned into
allowing the former to be calculated from the latter. subvolumes as described in the Introduction. According to
Since the thermal and caloric state equations resultingqgs. (1) and(2), the density of materiat within its subvol-
from the present procedure are exact for ideal systems, thayme is therp,= p\ /@, while its specific internal energy is
are ipso facto thermodynamically consistent. In nonideal |,= Bypl/px. Thus the number density of materlalwithin
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its subvolume i, =p,/m=n,/«ay, and the pressure and aPe=nNkgT. (A7)

t t f materid within its subvol theref . .
emperature of materi&l within its subvolume are therefore Summing Eq.(A6) over k then yields Eq(A2) as before,

given by while summing Eq(A7) overk yields Eq.(Al) with p re-
~  NikgTy placed byS,aPy. The quantityp=23,aPy in the parti-
Pic= ag (A3) tioned system is therefore the same as the correct pressure of
the mixture, regardless of the values of #ag. Thus, even
Pl k(Ti) = Brpl (A4) " \when theay are chosen arbitrarily and the subvolume pres-

If the o and B, were known, Eqs(A3) and (A4) would  suresp, are unequal, the correct pressure of the mixture may
constitute N equations in the ® unknownsp, andT,. In  be obtained simply by computing the volume-weighted av-
order to determiney, and B, as well, we require an addi- erage of the subvolume pressures.

tional 2N—2 equations, which we obtain by requiring the

subvolumes to be in pressure and temperature equilibrium%\l P. Cox and R. T. GiuliPrinciples of Stellar StructuréGordon and
i.e., Py=P,;=p and T,=T,=T for k=2,... N. Equations ,Breach, New York, 196 \ol. 1.
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