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Outline 
•  Introduction 

–  Network information processing 
–  Previous work 
–  Random Automata Network 

•  Setup 
–  GA implementation 
–  Task solving 

•  Results 
•  Conclusion 

–  Learning drives the network to a critical connectivity Kc=2 for large 
systems.  

–  Kc scales for smaller systems as a power-law. 
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Introduction 
•  Imagine a random parallel machine, e.g., a number of compute 

elements with a given complexity that are interconnected with a 
random network. 

•  Why random parallel machines?  
•  Self-assembled nanoelectronics have irregular structures. 

•  We can build them very cheaply. 

•  How do we program our random parallel machine? 
•  In this paper: How much connectivity do we need for effective 

learning? 

K=? 
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Previous work 
•  Alan Turing (1948) proposed 

unorganized machines with simple 
NAND gates and learning through 
artificial evolution. 

•  Many attempts to use random 
networks for computation: Martland 
(1987), Aleksander (1973), Amari 
(1972).  

•  Patarnello and Carnevali (1989) and 
den Broeck and Kawai (1990) 
conducted general study of learning 
capability of feedforward random 
Boolean nets. 

•  Beiu and Makaruk (1998) proved 
feedforward Boolean nets with K=2 are 
size optimal for VLSI implementation.  

•  Darabos et al. (2007) showed small-
world automata nets have higher 
computational performance than 
lattice, ring, and scale-free nets. 

All of these evolutionary studies are 
under fixed topology and fixed 
connectivity K. 
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Random Automata Networks 
•  State transition 

•  Node states 

Where Ki is the number of inputs to node i. 

Double connections are not allowed. 
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Computational Tasks (difficult) 

Full Adder 
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Computational Tasks (easy) 

Rule 85 

I=3 
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•  The input 1 alone can identify the output completely (canalizing). 
The phase volume is more than 200 times larger than that of 
even-odd. 
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Genetic Algorithm 
•  Genetic representation 

 Our networks are mostly sparsely connected. We use an adjacency 
list to encode the links in the network. 

12 10 2 6 2 3 0 1 0 1 1 1 … … 
link link link 

from to 

LUT 12 LUT 2 

… 

•  Genetic operator: adding or deleting P links with probability 0.5P  
randomly, or a bit flip on the look-up table. Note that K will be 
changing. This turns out to be very crucial. 

•  Fitness: 

        Where M is the set of training samples 
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Performance Measures Example 
Input 
space i1 i2 i3 O 
pattern 1 0 0 0 0 
pattern 2 0 0 1 1 
pattern 3 0 1 0 1 
pattern 4 0 1 1 0 
pattern 5 1 0 0 1 
pattern 6 1 0 1 0 
pattern 7 1 1 0 0 
pattern 8 1 1 1 1 

training 
sample i1 i2 i3 O 
pattern 1 0 0 1 1 
Pattern 2 0 1 0 1 
Pattern 3 1 0 1 0 
Pattern 4 1 1 0 0 

Training sample size (T) = 4 
Randomized for each generation 

settling measuring 
8 “1” 
12 “0” 
output = “0” 

Output node activity 
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Finding  the Critical K 

For  N>30 there is very 
smooth convergence 
towards  Kc=2.  
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Power-Law Scaling of the Kc with T and N 

Lowest info, constant, 
No real convergence. 

Low info scaling regime,  
No real convergence.  

High info scaling regime, 
Converges to Kc=2 for large N. 

Asymptotic fit: 

FA= full adder 
EVO = even-odd 
R85 = rule 85 
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Convergence, Criticality, Sensitivity for networks with 
generalization > 0.8  

Final  K distribution shows sharp 
peak at critical connectivity Kc=2  
and critical dynamics 1 (T8 high 
information). 

Derrida and Pomeau (1986) 
Introduced an annealed 
approximation method for 
calculating dynamical regime.  
DS < 1: frozen, DS > 1: chaotic, 
and DS = 1: complex. 

Both K and DS have a wide 
distribution (T1 low information). 

FA= full adder 
EVO = even-odd 
R85 = rule 85 

Derrida sensitivity 

Derrida sensitivity 
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Evolution of In-Degree Distribution 

Erdős, P. and Rényi, A. (1959). 
Initial random graph with degree 
distribution: 
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After evolution regardless of 
task and T, the distribution is: 

Due to maximum entropy 
principle. In the limit that 
would imply: 
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Growing network by adding links to random nodes in the net result in 
exponential degree distribution. 
S.N. Dorogovtsev and J.F.F. Mendes (2003), Alain Barrat et al. (2008)  

Local rewiring rules that drives networks to criticality also result in evolution of 
degree distribution from Poissonian to exponential. 
Stefan Bornholdt and Thimo Rohlf (2000). 

In biological networks such as gene regulatory networks or neural networks, 
where maintaining links impose cost the degree distribution is exponential not 
scale-free. 
Amaral et al. (2000) 

Evolution of In-Degree Distribution (cont'd)  

To summarize: 
Unbiased evolution of networks towards maximum entropy subject to 
constraints such as Kc and kmax results in exponential degree distribution. 
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What is the Origin of Kc 
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The NK ensemble at K=2 is in a complex 
dynamical regime in which the information is 
preserve and is robust to perturbations. 
Kauffman (1995), Shmulevich and Kauffman 
(2004) 

The NK ensemble at K=2 maintains a 
balance between information storage and 
information transfer.  
Lizier et al. (2008) 
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What is the Origin of Kc (cont’d) 
The variance of 
different topological 
measures is maximal 
near Kc=2. This 
Suggests more 
diversity and therefore 
improved search. 
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Conclusions 

•  Evolution of networks subject to generic fitness 
maximization results in a critical connectivity Kc in 
the network. 

•  Kc = 2 for large system size N and scales according 
to power-law for finite N. 

•  Kc corresponds to a region of space in the network 
ensemble with maximized topological diversity. This 
improves evolutionary search. 

•  During the evolution the degree distribution of the 
network evolves from the Poissonian to an 
exponential form due to entropy maximization 
subject to Kc and kmax. 
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