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MULTIGRID CONVERGENCE FOR SECOND ORDER ELLIPTIC
PROBLEMS WITH SMOOTH COMPLEX COEFFICIENTS

JAYADEEP GOPALAKRISHNAN AND JOSEPH E. PASCIAK

Abstract. The finite element method when applied to a second order partial differen-
tial equation in divergence form can generate operators that are neither Hermitian nor
definite when the coefficient function is complex valued. For such problems, under a
uniqueness assumption, we prove the continuous dependence of the exact solution and
its finite element approximations on data provided that the coefficients are smooth and
uniformly bounded away from zero. Then we show that a multigrid algorithm converges
once the coarse mesh size is smaller than some fixed number, providing an efficient
solver for computing discrete approximations. Numerical experiments, while confirming
the theory, also reveal pronounced sensitivity of Gauss-Seidel iterations on the ordering
of the unknowns for certain problems.

1. Introduction

We consider the application of multigrid algorithms to second order partial differential
equations whose dominant coefficient is complex valued. In particular, we have in mind
complex valued coefficients generating operators that may not be Hermitian or definite.
A study of problems with such coefficients is the first step towards understanding the
behavior of multigrid applied to important problems with complex coefficients such as
those arising from time harmonic scattering and radiation. In particular, applications
of the perfectly matched layer technique (PML) to scattering problems and resonance
problems lead to complex coefficient problems, however, in this case, the problem is no
longer in divergence form and exhibits anisotropic behavior [4, 5, 13]. The study of
multigrid applied to the PML problem is a topic for future research.

Let Ω be a polygonal domain in R2. We allow Ω to be non-convex but require that its
boundary be Lipschitz continuous. As a model problem, we consider

(1.1)
−∇ · α(x)∇u = f in Ω,

u = 0 on ∂Ω,

where α is a complex valued non-vanishing function defined on Ω. In the above equation
and the rest of this paper, the dot denotes the dot product without complex conjugation,
i.e., for vectors v = (v1, v2) and w = (w1, w2), we set v · w = v1w1 + v2w2. A variational
formulation of (1.2) is posed on the Sobolev space H1

0 (Ω) consisting of those complex
valued functions vanishing on ∂Ω which, along with their first derivatives, are in L2(Ω)
(the space of complex valued functions whose absolute values are square integrable).

2000 Mathematics Subject Classification. 65F10, 65M55, 65N55, 65N30, 74G15.
Key words and phrases. multigrid, nonsymmetry, complex, finite element, V-cycle, backslash cycle,

Gauss-Seidel, ordering, smoothing, perturbation, preconditioning.
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We seek u ∈ H1
0 (Ω) satisfying

(1.2) a(u, φ) = (f, φ) for all φ ∈ H1
0 (Ω).

Here

a(u, v) ≡
∫

Ω

α∇u · ∇v̄ dx

and

(f, g) ≡
∫

Ω

fḡ dx

(v̄ denotes the complex conjugate of v). Of course, (·, ·) is just the Hermitian inner product
on L2(Ω) and we shall denote the corresponding norm by ‖ · ‖.

We shall assume uniqueness for (1.2), i.e., if v ∈ H1
0 (Ω) satisfies

(1.3) a(v, φ) = 0 for all φ ∈ H1
0 (Ω)

then v = 0. It is not obvious when (1.3) holds in the case of general α. However a class
of coefficients for which it is immediately verified is given next.

Example 1.1. Assumption (1.3) holds if there is a complex number β0 and positive constant
c0 satisfying

c0 ≤ Re(β0α(x)) for all x ∈ Ω.

This condition implies a coercivity inequality of the form

|w|2H1(Ω) ≤ |a(w, β̄0w)| for all w ∈ H1
0 (Ω)

from which uniqueness immediately follows. Here | · |H1(Ω) denotes the H1(Ω)-seminorm.
Thus there are many complex coefficient problems satisfying our assumption. �

Under Assumption (1.3), we shall show that the solution of problem (1.2) exists. By
using a scaled test function, the problem (1.2) can be related to a coercive problem
with a low order perturbation and classical arguments along the lines of Peetre [15] and
Tartar [17] can be applied. This perturbation approach will be carried out at the discrete
level as well to show that the discrete problem has solutions for sufficiently fine meshes.

The stability of the discrete problem for fine enough h is the starting point of the
construction and analysis of the multigrid algorithm. The multigrid algorithm that we
shall consider is variational, i.e., built with nested spaces and inherited forms (see, e.g.,
[7]). Our analysis is based on perturbation arguments. Perturbation arguments have
been widely applied for the analysis of multigrid algorithms corresponding to coercive
differential operators perturbed by lower order terms [3, 7, 11, 18]. While we continue
to rely on the basic perturbation idea, our point of departure in this paper is that we
perturb the dominant (highest order) term in the differential equation. It is interesting
that multigrid perturbation techniques can be made to work for this application where
the perturbation is not of low order.

We prove that once the coarse mesh size (in the multigrid algorithm) is smaller than
a fixed number depending on α, a standard multigrid algorithm converges at a mesh
independent rate. This implies that as the mesh size goes to zero, the number of iterations
needed to reduce the initial error by a fixed tolerance factor is asymptotically bounded by
a fixed number C1. If N is the number of unknowns, and if the number of flops required
for one coarse solve is at most C0, then the cost of one iteration is O(N) +C0. Hence the
total cost before meeting the stopping criterion is C1(O(N) + C0). Thus, our theoretical
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result implies that the algorithm yields a solver of asymptotically optimal complexity.
Of course both C0 and C1 can depend on the coefficient α. It is well known that the
performance of many multigrid algorithms deteriorates for difficult coefficients.

Our theory applies to multigrid algorithms utilizing classical point Jacobi or Gauss-
Seidel smoothers. In contrast to the symmetric and positive definite case, these smoothers
may, in fact, be mildly unstable (i.e., their error reducing operators may be expansive). It
is known that multigrid smoothers can be mildly unstable [1, 3], even for problems with
real coefficients when they have lower order indefinite terms. The instability appears to
be more pronounced in the case of Gauss-Seidel smoothing for certain nodal orderings.
In such cases, a smaller coarse mesh size plays a critical role. This is clearly illustrated in
our numerical experiments where finer coarse mesh sizes need to be used for Gauss-Seidel
smoothing and lexicographical ordering, while larger coarser meshes work with Gauss-
Seidel smoothers utilizing red/black node ordering or the Jacobi smoother. Clearly, it
is of practical importance to be aware of strong dependence of algorithms on the nodal
orderings. Another finding of practical importance from this work is the necessity of a
fine enough coarse mesh for a standard multigrid algorithm applied to certain complex
coefficient problems. While this behavior for the stationary wave equation is well known,
it seems to be less known that it can arise for complex coefficient problems as well.

The outline of the remainder of the paper is as follows. In Section 2, we show the
stability of (1.2) and its finite element approximation on sufficiently fine meshes. Section 3
introduces the multigrid algorithm, including the definition of the Jacobi and Gauss-Seidel
smoothers in a notation which is appropriate for our subsequent analysis. The convergence
analysis of the multigrid algorithm is given in Section 4. Finally, the results of numerical
experiments are given in Section 5.

2. Stability and finite element approximation

First, let us establish the continuous dependence of the solution u on the data f . Then
we will establish a similar result for a discrete approximation.

Along with our uniqueness assumption (1.3), we shall require that our coefficients are
smooth and bounded away from zero in absolute value, specifically, we assume that α :
Ω 7→ C is in C2(Ω̄) and that there is constant α0 > 0 such that

(2.1) α0 ≤ |α(x)| for all x ∈ Ω.

This assumption implies that the characteristic variety of the partial differential operator
is empty and consequently the operator is elliptic [10, p. 33]. Together with problem (1.2),
we shall consider the adjoint problem: Find v ∈ H1

0 (Ω) satisfying

(2.2) a(φ, v) = (φ, g) for all φ ∈ H1
0 (Ω).

From now on, we will tacitly assume that (1.3) and (2.1) hold. The next result gives a
few consequences of these assumptions.

Proposition 2.1. Suppose that (1.3) and (2.1) hold. Then the following existence and
regularity results are valid:

(1) There is a unique u in H1
0 (Ω) solving problem (1.2).

(2) There is a unique v in H1
0 (Ω) solving the adjoint problem (2.2).
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(3) There is an s > 1/2 and a constant Creg > 0 such that the solution v of the adjoint
problem (2.2) is in H1+s(Ω) and satisfies

‖v‖H1+s(Ω) ≤ Creg‖g‖.

Proof. We first note that we have uniqueness for the adjoint problem as well. Indeed if
v ∈ H1

0 (Ω) satisfies

a(φ, v) = 0 for all φ ∈ H1
0 (Ω)

then taking φ = w̄ gives

a(v̄, w) = 0 for all w ∈ H1
0 (Ω).

The uniqueness property (1.3) then implies that v̄ = 0 and hence v = 0.
To prove items (1) and (2), we start from the following identity:

(2.3)

∫
Ω

|α|2|∇v|2 dx = a(v, αv)−
∫

Ω

α(∇v · ∇α)v̄ dx,

which holds for any v ∈ H1
0 (Ω). Setting z = αv, we then have∫

Ω

|α|2|∇v|2 dx = a(v, z)− (α∇(z/α) · ∇α, v)

≤ |αv|H1(Ω)

(
|a(v, z)|+ |(α∇(z/α) · ∇α, v)|

|z|H1(Ω)

)
≤ C‖v‖H1(Ω)

(
sup

w∈H1
0 (Ω)

|a(v, w)|
‖w‖H1(Ω)

+ ‖v‖
)
.

Here we have used the smoothness assumption on α and (2.1) for the last inequality. Note
that here and elsewhere in this paper we will use the letter C with or without subscripts to
denote a generic constant whose value may differ at different occurrences. These constants
may depend on α and Ω but will always remain independent of the meshes and functions
involved.

Now, using the nondegeneracy assumption,

|v|2H1(Ω) ≤ α−2
0

∫
Ω

|α|2|∇v|2 dx,

which when combined with the previous inequality and the Poincaré inequality shows that

(2.4) ‖v‖H1(Ω) ≤ C

(
sup

w∈H1
0 (Ω)

|a(v, w)|
‖w‖H1(Ω)

+ ‖v‖
)
,

for all v in H1
0 (Ω).

Next, we apply a well known perturbation argument due to Peetre [15] and Tartar [17].
This uses the compact imbedding of H1(Ω) into L2(Ω) and an argument by contradiction
to show that the uniqueness assumption (1.3) and (2.4) imply that (2.4) holds without
the lower order term, i.e.,

(2.5) ‖v‖H1(Ω) ≤ C sup
w∈H1

0 (Ω)

|a(v, w)|
‖w‖H1(Ω)

.
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The adjoint inf-sup condition

(2.6) ‖w‖H1(Ω) ≤ C sup
v∈H1

0 (Ω)

|a(v, w)|
‖v‖H1(Ω)

follows from similar arguments and uniqueness for the adjoint problem (proved above).
The above two inf-sup conditions guarantee [9, Ch. II, p. 39] the existence of a (unique)
solution to (1.2) as well as the adjoint problem (2.2). This proves items (1) and (2) of the
proposition.

For Part (3) of the proposition, note that the solution of the adjoint problem satisfies

−α∆ψ = g +∇α · ∇ψ,

hence the required regularity follows from the well known regularity of Laplace solutions
on polygonal domains [12, 14]. �

Next, we describe the finite element approximation of the exact solution u of prob-
lem (1.2). Let Th denote a quasiuniform triangulation of Ω (with the usual geometrical
conformity assumptions for finite elements). The representative diameters of the mesh
elements is denoted by h, e.g., h = max{diam(K) : K ∈ Th}. The approximation space is

(2.7) Vh = {v ∈ L2(Ω) : v is continuous, v|K is linear for all K ∈ Th, and v|∂Ω = 0}.

To guarantee that the finite element method applied to our problem is well defined, we
must check that there is a unique uh in Vh satisfying

(2.8) a(uh, vh) = (f, vh), for all vh ∈ Vh.

This will follow as a consequence of the next lemma. The estimate of the lemma is the
discrete analogue of (2.4).

Lemma 2.1. There is a positive number h0 such that if h ≤ h0,

(2.9) ‖v‖H1(Ω) ≤ C

(
sup
w∈Vh

|a(v, w)|
‖w‖H1(Ω)

+ ‖v‖
)

for all v ∈ Vh.

Proof. Since α ∈ C2(Ω̄), αv is in H2(τ) for any triangle τ ∈ Th and any v in Vh. Moreover,
since v|τ is linear,

‖αv‖H2(τ) ≤ C‖v‖H1(τ)‖α‖W 2
∞(τ) ≤ C‖v‖H1(τ).

It follows that

(2.10) ‖αv − Ih(αv)‖H1(τ) ≤ Ch‖v‖H1(τ)

where Ih denotes the nodal interpolation operator associated with Vh. In addition, by
our assumptions on α, multiplication by α is a bounded map of H1(Ω) onto H1(Ω) and
so (2.10) implies that

(2.11) ‖Ih(αv)‖H1(τ) ≤ C‖v‖H1(τ).

We will use these properties of the nodal interpolant to prove the lemma.
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By (2.3), for v ∈ Vh,

‖v‖2
H1(Ω) ≤ α−2

0

∫
Ω

|α|2|∇v|2 dx

= α−2
0

(
a(v, Ih(αv)) +

∫
Ω

α∇v · (∇(αv)−∇Ih(αv)) dx

−
∫

Ω

α(∇v · ∇α)v̄ dx.

)
.

Applying (2.10) and the Cauchy-Schwarz inequality, we obtain

(2.12) ‖v‖H1(Ω) ≤ C

(
|a(v, Ih(αv))|
‖v‖H1(Ω)

+ h‖v‖H1(Ω) + ‖v‖
)
.

Thus whenever h is so small that 1− Ch > 0, we have

(1− Ch) ‖v‖H1(Ω) ≤ C

(
|a(v, Ih(αv))|
‖v‖H1(Ω)

+ ‖v‖
)

≤ C

(
|a(v, Ih(αv))|
‖Ih(αv)‖H1(Ω)

+ ‖v‖
)
,(2.13)

where we used (2.11). The lemma now follows from (2.13) by taking the supremum. �

We can now address the solvability of finite element approximations and, in particular,
the coarse grid problem for multigrid. Specifically, we consider the problem: Given v ∈
V ≡ H1

0 (Ω), find vh ∈ Vh satisfying

(2.14) a(vh, θ) = a(v, θ) for all θ ∈ Vh.

The next theorem guarantees unique solvability for sufficiently small h.

Theorem 2.1. There is an h0 > 0 such that for h ≤ h0, there is a unique solution vh

to (2.14) for any v ∈ V and

(2.15) ‖vh‖H1(Ω) ≤ C‖v‖H1(Ω).

Proof. We follow the duality approach of Schatz [16]. If vh is any solution to (2.14) then
eh = v − vh satisfies the Galerkin orthogonality equation

(2.16) a(eh, wh) = 0 for all wh ∈ Vh.

By Proposition 2.1(2), there is a unique ε in H1
0 (Ω) satisfying a(w, ε) = (w, eh) for all w

in H1
0 (Ω). Hence

‖eh‖2 = a(eh, ε) = a(eh, ε− Ihε),

≤ Chs‖ε‖H1+s(Ω)‖eh‖H1(Ω).

Applying Proposition 2.1(3), we find that the estimate

(2.17) ‖v − vh‖ ≤ Chs‖v − vh‖H1(Ω)

holds whenever vh satisfies (2.14).
Now, suppose that vh satisfies (2.14) with v = 0. Lemma 2.1 applied to vh and (2.17)

gives

‖vh‖H1(Ω) ≤ C‖vh‖ ≤ Chs‖vh‖H1(Ω)
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for sufficiently small h. It follows that vh must vanish for sufficiently small h. This means
that the only solution of (the square system) (2.14) is vh ≡ 0. Existence and uniqueness
of the solutions to (2.14) for such h follow for nonzero v.

Finally, to prove the estimate (2.15), observe that Lemma 2.1 and (2.17) give

‖vh‖H1(Ω) ≤ C

(
sup
w∈Vh

|a(vh, w)|
‖w‖H1(Ω)

+ ‖vh‖
)

= C

(
sup
w∈Vh

|a(v, w)|
‖w‖H1(Ω)

+ ‖vh‖
)

≤ C
(
‖v‖H1(Ω) + ‖v − vh‖+ ‖v‖

)
≤ C

(
‖v‖H1(Ω) + hs‖vh‖H1(Ω)

)
.

The stability inequality (2.15) follows taking h sufficiently small. �

Remark 2.1. By virtue of Theorem 2.1, once the mesh size h is small enough for vh to
exist, we can define the projector Ph : V → Vh by Phv = vh where vh solves (2.14). This
projector is an important ingredient of our subsequent multigrid analysis.

Remark 2.2. Theorem 2.1 obviously also implies the unique solvability of the finite element
method (2.8) once h is small enough. Moreover, the finite element error is quasioptimal.
Indeed, if u solves (1.2) and uh solves (2.8), then for any wh in Vh, by Lemma 2.1,

‖uh − wh‖H1(Ω) ≤ C

(
sup

zh∈Vh

|a(uh − wh, zh)|
‖zh‖H1(Ω)

+ ‖uh − wh‖
)

≤ C

(
sup

zh∈Vh

|a(u− wh, zh)|
‖zh‖H1(Ω)

+ ‖u− uh‖+ ‖u− wh‖
)

≤ C
(
‖u− wh‖H1(Ω) + ‖u− uh‖

)
.

Hence, using the triangle inequality and (2.17), we find that for sufficiently small h,

‖u− uh‖H1(Ω) ≤ C inf
wh∈Vh

‖u− wh‖H1(Ω).

Therefore the discretization error of the finite element method applied to our problem
converges to zero in H1(Ω) at the optimal rate as h tends to zero.

3. A multigrid algorithm

The basis for geometrical multigrid algorithms is a coarse grid and a sequence of its
refinements. We start with a coarse triangulation of Ω, namely T1 = {τ i

1 : i = 1, . . . N0}.
This coarse mesh size is the basis of our refined grids, but may not be the coarse mesh
size used in the multigrid algorithm. As this coarse mesh is fixed, it is quasiuniform with
mesh size h1 = max{diam(K) : K ∈ T1}. A nested sequence of quasiuniform meshes Tk,
k = 2, 3, . . . , of mesh size hk = h1/2

k−1 is obtained by successively refining T1, namely
the mesh Tk is obtained by connecting the midpoints of the edges of Tk−1. Let Vk be the
space obtained by replacing Th with Tk in (2.7). These spaces form our sequence of nested
multilevel spaces.

We want to efficiently solve the Galerkin approximation to (1.2) associated with the
finest mesh TJ (or the largest space VJ). Specifically, we want a multigrid scheme to use
in an iteration for computing uJ in VJ solving

(3.1) a(uJ , v) = (f, v) for all v ∈ VJ .

Our goal is to study the behavior of the so called “multigrid V-cycle” for this complex
coefficient discrete problem.
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Before we state the multigrid algorithm, we need to define “smoothers”. Our smoothers
are linear maps Rk : Vk → Vk. We shall start with the map associated with the point
Gauss-Seidel iteration. First let Dk,i denote the domain formed by all the mesh triangles
connected to the ith vertex xk,i (i = 1, 2, . . . , Nk) of the kth level mesh Tk. Let Vk,i denote
the set of functions in Vk which are supported on Dk,i (this is just the one dimensional
space spanned by the nodal basis function for the subspace Vk at the node xk,i). Define
Ak,i : Vk,i 7→ Vk,i, by

(3.2) (Ak,iw, φ) = a(w, φ), for all φ,w ∈ Vk,i.

Algorithm 3.1 (Point Gauss Seidel smoother). For any b in Vk, we define Gkb as follows.
First, we set v0 to be the zero function in Vk and set Gkb = vNk

where for i = 1, 2, . . . , Nk,

vi = vi−1 + (Ak,i)
−1Qk,i(b− Akvi−1).

The above algorithm is just the approximate inverse corresponding to the classical
Gauss-Seidel iterative method in disguise. We present it in terms of subspaces since it
is more convenient for our subsequent analysis. We shall also consider the point Gauss-
Seidel smoother which results from visiting the above subspaces in reverse order, which
we denote by G′

k. Another standard smoother that can be used in our multigrid algorithm
is the classical Jacobi smoother, which is the additive version of the above algorithm. It
can be written as

Jkv = β

Nk∑
i=1

(Ak,i)
−1Qk,i(b− Akv).

The constant β is a damping parameter.
We require some additional notation to define the multigrid algorithm. Specifically, we

define Ak : Vk 7→ Vk by
(Akw, φ) = a(w, φ)

for all φ and w in Vk and set Qk to be the L2(Ω) orthogonal projection onto Vk. Finally,
we introduce an integer k0 ∈ {1, 2, . . . , J − 1} which sets the coarse grid size for the
multigrid algorithm. Then the V-cycle multigrid algorithm is defined inductively and is
denoted by MGk(v, w) where k is the level number and v, w are in Vk. The smoother Rk

in the algorithm below can be set to either the Gauss-Seidel smoother Gk or the Jacobi
smoother Jk and R′

k can be set to either G′
k or Jk.

Algorithm 3.2 (V-cycle). Set MGk0(v, w) = A−1
k0
w. Let k > k0 and v, w ∈ Vk. Assuming

that MGk−1(·, ·) has been defined, we define MGk(v, w) as follows:

(1) Set x = v +Rk(w − Akv).
(2) Set y = x+ MGk−1(0, Qk−1(w − Akx)).
(3) Define MGk(v, w) = y +R′

k(w − Aky).

The multigrid iterative scheme for obtaining the solution uJ of (3.1) is as follows. With
some initial iterate u

(0)
J , we define a sequence of further iterates by

(3.3) u
(i+1)
J = MGJ(u

(i)
J , QJf), i = 1, 2, . . . .

Our analysis in the next section will show that once k0 is larger than some fixed number,
the above iterates u

(i)
J converge to uJ as i increases, at a rate independent of J .

It is important to note that for Algorithm 3.2 to be well defined, the coarse grid problem
and all of the smoothers must be well defined. This can be achieved by taking the coarse



MULTIGRID FOR COMPLEX COEFFICIENTS 9

grid in the multigrid algorithm to be sufficiently fine (i.e., taking k0 large enough), as
we now show. By making k0 large enough, the mesh size hk0 becomes small enough to
apply Theorem 2.1 with Vh = Vk0 . This shows that Ak0 is invertible whenever k0 is large
enough. To show that the smoothers are also well defined under the same condition, it
suffices to show that the invertibility of Ak,i, or equivalently

(3.4) ‖v‖H1(Dk,i) ≤ C sup
w∈Vk,i

|a(v, w)|
‖w‖H1(Dk,i)

for all v ∈ Vk,i.

To show this, first observe that an inequality analogous to that of Lemma 2.1 holds for Vk,i.
Indeed, reviewing the proof of Lemma 2.1, we obtain

(3.5) ‖v‖H1(Dk,i) ≤ C

(
sup

w∈Vk,i

|a(v, w)|
‖w‖H1(Dk,i)

+ ‖v‖
)

for all v ∈ Vk,i.

Since diam(Dk,i) ≤ Chk, the Poincaré inequality yields

‖v‖ ≤ Chk‖v‖H1(Dk,i), for all v ∈ Vk,i.

Using this in (3.5), we have

(1− Chk)‖v‖H1(Dk,i) ≤ C sup
w∈Vk,i

|a(v, w)|
‖w‖H1(Dk,i)

for all v ∈ Vk,i,

from which (3.4) follows once hk is small enough.
Finally, note that it is equally appropriate to consider other multigrid algorithms, e.g.,

those involving smoothing only in step (1) or only in step (3) above. In fact, for simplic-
ity, in the next section we shall analyze the algorithm obtained from Algorithm 3.2 by
eliminating step (3), or more precisely, we define another algorithm by replacing step (3)
of Algorithm 3.2 by

MG
\
k(v, w) = y.

The new algorithm, MG
\
k(·, ·), is often known as the “backslash multigrid cycle” or simply

the \-cycle.

4. Multigrid analysis

We will now give an analysis of the \-cycle algorithm (involving only pre-smoothing)
applied to the sesquilinear form (1.2). The analysis for the “more symmetric” V-cycle
algorithm is essentially identical, save more notation.

To begin, observe that MG
\
J(·, ·) is a linear map from VJ × VJ into VJ . Moreover, it is

a consistent iteration in the sense that v = MG
\
J(v, AJv) for all v ∈ VJ . It easily follows

that the linear operator E ≡ EJ = MG
\
J(·, 0) is the error reduction operator for (3.3), i.e.,

if ui+1 = MG
\
J(ui, QJf), then

u− ui+1 = E(u− ui).

There is a well known [6] product representation for multigrid error reduction operators.
Let Tk = RkAkPk for k > k0 and set Tk0 = Pk0 . We will assume throughout this section
that hk0 < h0 ( where h0 is the number of Theorem 2.1) so that Pk is well defined for
k = k0, . . . , J. Let Eku = u− MG

\
k(0, AkPku) and Ek0−1 ≡ I, the identity operator. Then

Ek = Ek−1(I − Tk) for k = k0, . . . , J
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and

(4.1) E = (I − Tk0)(I − Tk0+1) · · · (I − TJ).

This product representation of the error reducing operator will be the starting point of
our convergence analysis.

Suppose we apply the \-cycle version of algorithm (Algorithm 3.2) to solve the standard
Laplace’s equation, i.e., using Ak, Rk and R′

k in the algorithm defined from the bilinear
form

â(u, v) = (∇u,∇v).
Then the identity analogous to identity (4.1) holds for the corresponding operators as this
is only a special case of the variable coefficient case. To distinguish it from the general
case, we use notations with “ˆ”, i.e., any previously defined notation superscripted with ˆ
indicates that it is defined as before but by replacing a(u, v) with â(u, v). Thus,

(4.2) Ê = (I − T̂k0)(I − T̂k0+1) · · · (I − T̂J),

where T̂k = R̂kÂkP̂k for k > k0, T̂k0 = P̂k0 , etc.
Our analysis proceeds by a perturbation argument bounding the difference between E

and Ê. To simplify notation, let

‖u‖Λ = â(u, u)1/2.

The operator norm induced by this norm is also denoted by ‖ · ‖Λ. Let Zk = Tk − T̂k and
suppose we have

‖Zk0‖Λ ≤ ε, and(4.3)

‖Zk‖Λ ≤ C1hk, for k = k0 + 1, . . . , J.(4.4)

Then, it can be shown that the difference between the operator norms of Ek and Êk is
small by an argument of [3] (see also [7, Lemma 11.1] and [11, Theorem 4.2]). We state
this result in the following lemma.

Lemma 4.1 (Multigrid perturbation). Let E satisfy (4.1) and Ê satisfy (4.2). Assume
that (4.3) and (4.4) holds. Then

‖E− Ê‖Λ ≤ C(hk0 + ε).

The proofs of our main result proceeds by verifying (4.3) and (4.4). We treat the case
of Gauss-Seidel smoothing. That of Jacobi smoothing is similar. Define Pk,i : Vk 7→ Vk,i

by

(4.5) a(Pk,iu, vi) = a(u, vi) for all u ∈ Vk, vi ∈ Vk,i,

and P̂k,i similarly using the â-form. Note that while the stability of P̂k,i in Λ-norm is
obvious, the solvability and stability of (4.5) follows from (3.4) for sufficiently small hk.
Indeed, by (3.4),

(4.6) ‖Pk,iu‖Λ ≤ C‖∇u‖L2(Dk,i).

In the remainder, we shall tacitly assume that the coarse mesh is fine enough for Pk,i to
exist and satisfy (4.6) for smoothing subspaces on all refinements.

A well known technique for verifying (4.4) for the Gauss-Seidel (or Jacobi) smoother is
by combining the above stability estimate with a perturbation argument. To apply this
technique, we need the next lemma [3, 7, 11]. The mesh T1 is fixed and determines the
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angles of all triangles in all of the refined meshes. Thus, all meshes are quasi-uniform with
constants of uniformity that are independent of mesh level. Consequently the smoothing
subspaces Vk,i satisfy the so-called limited interaction property, i.e., for every k and i, the
number of domains Dk,` such that meas(Dk,i ∩ Dk,`) > 0 is uniformly bounded by some
constant `0 independent of J .

Lemma 4.2 (Perturbation for smoothers). If there is a constant C0 > 0 such that the

operators Zk,i = Pk,i − P̂k,i satisfy

(4.7) ‖Zk,i‖Λ ≤ C0hk,

for all k and i, then there is a constant c depending only on the limited interaction con-
stant `0 such that the estimate (4.4) holds for Zk with C1 = cC0 whenever h1 ≤ h0 for h0

sufficiently small.

With these preparations, we are able to prove a theorem on the convergence of Algo-
rithm 3.2 applied to the complex coefficient problem (1.2).

Theorem 4.1. There exist constants C∗ > 0 and H > 0 such that whenever the coarsest
mesh size hk0 is less than H,

‖E− Ê‖Λ ≤ C∗h
s/2
k0

The constants C∗ and H are independent of J , the number of refinement levels in the
multigrid algorithm.

Remark 4.1. One might consider the multigrid algorithm applied to â(·, ·) as a “classical”
or “textbook” multigrid application [2, 7, 8]. The above theorem shows that convergence
rate for multigrid applied to the complex coefficient problem tends to the convergence
rate for the classical multigrid application. This behavior is also illustrated by the com-
putational examples of the next section.

Proof of Theorem 4.1. By Lemmas 4.1 and 4.2, it suffices to verify (4.7) and (4.3) with

ε = Ch
s/2
k0

.
To verify (4.7), we start by defining the form

dκ(u, v) =

∫
Ω

(
κ− α(x, y)

κ

)
∇u · ∇v dx dy,

where κ is any complex constant. Then

(4.8) κ â(u, v)− a(u, v) = κ dκ(u, v).

Moreover, for any vi in Vk,i,

κ â(Zk,iu, vi) = κ â(Pk,iu, vi)− κ â(P̂k,iu, vi)

= a(Pk,iu, vi) + κ dκ(Pk,iu, vi)− κ â(P̂k,iu, vi), by (4.8)

= a(u, vi) + κ dκ(Pk,iu, vi)− κ â(u, vi), by (4.5)

= −κdκ(u, vi) + κ dκ(Pk,iu, vi).

Thus,

(4.9) â(Zk,iu, vi) = dκ(Pk,iu− u, vi) for all vi ∈ Vk,i.
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Now, if we choose κ = αi := α(xk,i), using the fact that the support of functions in Vk,i

extend only a distance O(hk), we find that for any vi in Vk,i,

|dαi
(u, vi)| =

∣∣∣∣∣
∫

L2(Dk,i)

(
αi − α(x, y)

αi

)
∇u · ∇vi dx dy

∣∣∣∣∣
≤ Chk

‖∇α‖L∞(Dk,i)

|αi|
‖∇u‖L2(Dk,i)‖vi‖Λ.(4.10)

Using this in (4.9), we can finish the proof of (4.7):

‖Zk,i‖Λ = sup
u∈Vk, vi∈Vk,i

â(Zk,iu, vi)

‖u‖Λ ‖vi‖Λ

≤ Chk‖I − Pk,i‖Λ ≤ Chk.

where we have used (4.6). This proves (4.7).

It now only remains to prove (4.3) for Z1 = P1 − P̂1. There is an identity analogous
to (4.9) for Z1:

(4.11) â(Z1u, v1) = dκ(P1u− u, v1) for all v1 ∈ V1.

Its proof follows from (4.8) along the lines of the derivation of (4.9). Now, let {φi : i =
1, . . . N1} be the nodal basis for V1. Clearly, φi is in V1,i. Then, for any u ∈ VJ , expanding

Z1u =

N1∑
i=1

ciφi,

we have, by (4.11),

‖Z1u‖2
Λ =

N1∑
i=1

ci â(Z1u, φi) =

N1∑
i=1

ci dαi
(P1u− u, φi)

where αi, as before, equals α(x1,i). Now, using (4.10), and an inverse inequality,

‖Z1u‖2
Λ ≤ C

N1∑
i=1

|ci|h1‖∇(P1u− u)‖L2(Dk,i)‖∇φi‖L2(Dk,i)

≤ C

N1∑
i=1

|ci| ‖φi‖L2(Dk,i) ‖∇(P1u− u)‖L2(Dk,i)

≤ C

( N1∑
i=1

|ci|2 ‖φi‖2
L2(Dk,i)

)1/2( N1∑
i=1

‖∇(P1u− u)‖2
L2(Dk,i)

)1/2

Since ci are the coefficients of Z1u, by quasiuniformity, the term inside the first parenthesis
is bounded by C‖Z1u‖Ω. The term in the second parenthesis can be controlled by the
limited interaction property, so we obtain

(4.12) ‖Z1u‖2
Λ ≤ C ‖Z1u‖ ‖P1u− u‖Λ ≤ C‖Z1u‖‖u‖Λ.

We used Theorem 2.1 for the last inequality above.
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Now, by the finite element duality argument applied to the forms â(·, ·) and a(·, ·)
(cf. proof of (2.17) in Theorem 2.1),

‖P̂1u− u‖ ≤ Chs‖P̂1u− u‖Λ,

‖P1u− u‖ ≤ Chs‖P1u− u‖Λ.

Hence, Theorem 2.1 and the obvious stability property of P̂1 give

‖Z1u‖ ≤ ‖(P1u− u)‖+ ‖(u− P̂1u)‖ ≤ Chs‖u‖Λ.

This together with (4.12) gives (4.3). �

Remark 4.2. The techniques of the above proof immediately generalize to the V-cycle
multigrid algorithm MGJ(·, ·). Note that the corresponding algorithm for â(·, ·) results in
a symmetric error reduction operator in the Λ-inner product even with smoothers based
on Gauss-Seidel. This is a consequence of the use of R′

k in the third step. This seems
to be a natural strategy as the problem corresponding to â(·, ·) on VJ is symmetric and
positive definite.

5. Numerical experiments

In this section, we report the results of numerical experiments illustrating the conver-
gence of the multigrid algorithm on the model problem (1.1). We consider two examples
for the complex coefficient α in (1.1) and report the results for each.

In both cases, the domain Ω is taken to be the unit square. The coarse mesh T1

consists of triangles obtained by dividing Ω into 4× 4 congruent squares and connecting
the positively sloped diagonals. We obtain multilevel meshes Tk as described previously
and define hk to be the distance between two adjacent mesh points of Tk on any horizontal
or vertical line. To iterate for the solution to (3.1), we apply V-cycle iterations, i.e.,
we apply (3.3) with Algorithm 3.2 using the point Gauss-Seidel smoother based on the
lexicographical like ordering and an arbitrary initial iterate to solve the system AJu =
0. As the error reduction operator for the process is linear, this is the same as taking
f = −AJu0 with a zero starting iterate. We computed the stiffness matrices at all levels
using the mid point quadrature rule applied at the finest grid.

To report the results, we start with our first example of α, namely

(5.1) α(x, y) = 1 + ı̂K sin(π(2y − 1)/2)

where K is a real constant and ı̂ denotes the imaginary unit. The specific form of the
coefficient in (5.1) falls into the category of coefficients in Example 1.1, hence (1.3) and
(2.1) hold. Therefore, from Theorem 4.1, we find that if we choose the coarse mesh in
the multigrid algorithm sufficiently fine then the V-cycle convergence rate is bounded
independently of the mesh size.

The results that we obtain for k0 = 1 (in other words, with the coarse mesh size
hc = 1/4) and K = 0, 1, 20, 100 are given in Table 5.1 where we report the number of
iterations required to reduce the Λ-norm of the error by a factor of 10−5. The appearance
of a star (?) indicates that the algorithm failed to converge. The divergence in the case of
K = 100 clearly indicates that the coarse grid is not fine enough for this coefficient. Note
that K = 0 corresponds to multigrid algorithm applied to Â and results in the reduction
operator Ê. The theory developed in the earlier sections shows that E converges to Ê

as the coarse grid becomes finer. This is seen for K = 1 as the corresponding iteration
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hc = 1/4 V-cycles V-cycles V-cycles V-cycles
hJ (K = 0) (K = 1) (K = 20) (K = 100)
1/8 7 7 20 ?
1/16 7 7 15 ?
1/32 7 7 13 ?
1/64 7 7 12 ?
1/128 7 7 12 ?

Table 5.1. Iteration counts as a function of K and hJ for k0 = 1 (or hc = 1/4).

hJ = 1/256 V-cycles V-cycles V-cycles V-cycles
hc (K = 0) (K = 1) (K = 20) (K = 100)
1/4 7 7 11 ?
1/8 7 7 9 ?
1/16 7 7 8 16
1/32 7 7 7 10
1/64 7 7 7 8
1/128 7 7 7 7

Table 5.2. Iteration counts as a function of K and hc for hJ = 1/256.

numbers already coincide with those for K = 0. The number of iterations for K = 20
decrease as the fine grid mesh size becomes smaller. Of course, the iteration counts for
K = 20 need not converge to that of K = 0 unless the coarse grid is fine enough.

To see the dependence on the coarse grid size, we fixed the fine grid mesh size at
hJ = 1/256 and varied k0 (or the coarse mesh size hc). The results are in Table 5.2.
Again, we see that the iteration numbers for K = 1 are the same as the K = 0 case, while
those for K = 20 are clearly converging to those of K = 0 as hc becomes small. The
case of K = 100 remains unstable for coarse grid mesh sizes up to 1/8 but converges for
1/16. Again, we see the iteration numbers tending to those of K = 0, as expected from
the theory.

By considering large values of K in (5.1), we found the condition that the coarse grid be
sufficiently fine is unavoidable in practice when using Algorithm 3.2. Hence, it seems that
a theoretical convergence proof without this condition is not possible for general complex
coefficients. Such behavior of multigrid algorithms is well known when applied to the
Helmholtz equation [11]. As the wave number in the lower order term of the Helmholtz
equation increases, the coarse grid must be made progressively finer to “resolve the wave”.
Our study shows that this behavior is not restricted to the stationary wave equation but
can also arise when a coefficient is complex, even in the absence of a negative lower order
term.

Finally, we present our second example to illustrate that the proposed multigrid algo-
rithms work even when the problem is not coercive in the sense of Example 1.1. Specifi-
cally, we consider the coefficient given by

(5.2) α(x, y) = (1− r)2 + r4 exp(4ı̂θ)
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V-cycles V-cycles V-cycles V-cycles
hJ (hc = 1/4) · · · (hc = 1/32) (hc = 1/64) (hc = 1/128)

1/64 ? ?
1/128 ? ? 43
1/256 ? ? 7 7
1/512 ? ? 7 7

Table 5.3. Iteration counts for (5.2) and Gauss-Seidel (lexicographical ordering).

V-cycles V-cycles V-cycles V-cycles
hJ (hc = 1/4) (hc = 1/8) · · · (hc = 1/64) (hc = 1/128)

1/64 26 24
1/128 27 24 19
1/256 27 24 20 19
1/512 25 23 20 20

Table 5.4. Iteration counts for (5.2) and damped Jacobi.

where r, θ are the polar coordinates of (x, y). Even though we cannot show that this
problem satisfies (1.3), we shall compute with it anyway (of course, (2.1) holds). The
iteration numbers for this problem are given in Table 5.3 as a function of the coarse and
fine grid sizes used in the multigrid algorithm. (The algorithm and parameters used to
obtain Table 5.3 are the same as in the first example of α.)

It turned out that convergence was particularly troublesome for this problem with these
settings. As seen from Table 5.3, we had to use a coarse grid of mesh size hc = 1/64 to get
a convergent multigrid algorithm. In accordance with the theory, the number of iterations
tends to that for Â once the coarse grid mesh size is small enough to obtain convergence.
We did not anticipate needing such small coarse grid mesh sizes.

Further experiments revealed that if we change the smoother from the Gauss-Seidel
smoother with lexicographical ordering to Gauss-Seidel with the red-black ordering, we
obtained convergence with a mesh size as coarse as hc = 1/4. Thus, the lexicographical
ordering seems to be not very stable for the Gauss-Seidel iteration applied to this problem.
Also, we obtained convergence for any coarse grid with damped Jacobi smoothing with
a damping factor of 1/2 (see Table 5.4). In this case, the iteration numbers for Ê with
this smoother and hc = 1/16 were 19, 20, 20, 20 for fine grids of size 1/32, 1/64, 1/128 and
1/256, respectively. Again, as suggested by the theory, we see the iteration numbers for

E converging to those of Ê for small hc. We made no attempt at optimizing the damping
factor so, quite possibly, better error counts could be achieved with other damping factors.
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