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Existence of the dielectric constant in fluids of classical 
deformable moleculesa

) 

John D. Ramshaw 

Theoretical Division, University of California, Los Alamos National Laboratory, Los Alamos, New 
Mexico 87545 
(Received 29 September 1981; accepted 13 November 1981) 

The existence of the dielectric constant € is investigated for fluids composed of classical deformable 
(polarizable) molecules. The development is based upon generalized functional-derivative relations which 
involve joint distributions in molecular positions rk and dipole moments f.lk' Sufficient conditions for the 
existence of € are expressed in terms of the generalized direct correlation function c(12) = e(r" f.l,; r" f.l,)' It 
is found that € exists if -kTc( 12) depends only on relative positions and dipole moment directions (in addition 
to 1f.l,1 and 1f.l21), and becomes asymptotic to the dipole--dipole potential at long range. An expression for € in 
terms of a short-ranged total correlation function h o(l2) emerges automatically from the development. An 
expression for € in terms of c (12) is also derived. The latter expression involves an inverse kernel in (if.l,I, 1f.l21) 
space. The case of rigid polar molecules is reconsidered as a special case of the present formulation. 

I. INTRODUCTION AND SUMMARY 

The molecular theory of dielectric fluids has exper
ienced something of a renaissance in recent years. 1-4 

Much of this recent work has been restricted to rigid 
(unpolarizable) polar molecules, which are much sim
pler to deal with than are polarizable molecules. This 
restriction has greatly facilitated the clarification of 
certain subtle issues related to the long-range nature of 
dipolar interactions. Now that a satisfactory under
standing of these issues has been achieved, a greater 
emphasis is being placed on polarizable molecules. 3-10 

This emphasis is welcome and necessary; all real mole
cules are polarizable, and the effects of polarizability 
are quantitatively significant even for molecules with 
large permanent dipole moments. Inclusion of polar
izability is therefore essential for the quantitative inter
pretation of experimental data. 

Polarizability is associated with internal (vibrational 
and electronic) molecular degrees of freedom, whose 
proper treatment requires the use of quantum mechanics. 
Unfortunately, such a treatment entails a vast increase 
in the complexity of the problem. Even when the polar
izability is regarded as a fixed parameter (which is a 
rather severe idealization), an esoteric graphical for
malism of formidable complexity is needed. 3 However, 
there is a growing realization that classical models of 
the internal degrees of freedom are both sensible and 
useful, 6-10 even though they are not faithful to the under
lying physiCS. The model parameters (e. g., restoring 
force constants) can be chosen so that the claSSical be
havior mimics the true quantum behavior in most essen
tial respects. The advantage of a purely classical de
scription is its simplicity; the internal coordinates can 
be lumped together with molecular positions and orienta
tions, and the resulting description is hardly more com
plicated than that for rigid molecules. The main dis
advantage of a purely classical treatment is that it yields 
incorrect dispersion forces between the molecules, 7,8,11 

but this difficulty may be overcome simply by including 

a) Work performed under the auspices of the United States De
partment of Energy. 

an artificial compensating term in the intermolecular 
potential. 7 

The main purpose of the present article is to estab
lish sufficient conditions for the existence of the dielec
tric constant E in fluid systems of purely classical de
formable (polarizable) molecules. Aside from the re
quirement that internal degrees of freedom be treated 
classically, there is no restriction on the molecular 
model or internal molecular structure. Our develop
ment constitutes the extension to classical deformable 
molecules of previous work on rigid polar molecules. 12 

It is based upon generalized functional-derivative rela
tions which involve joint distributions in molecular 
positions r k and dipole moments jJ.k' These relations 
give rise to a generalized direct correlation function 
c(12) = c(r 1, jJ.l; r 2 , jJ.2), in terms of which sufficient con
ditions for the existence of E can be simply expressed. 
It is found that E exists if c(12) depends only on relative 
positions and dipole moment directions (in addition to 
I jJ.l I and I jJ.21), and becomes asymptotic to - e(12)/kT 
at long range, where e(12) is the dipole-dipole potential. 
These conditions are straightforward generalizations of 
the sufficient conditions for the existence of E in fluids 
of rigid polar molecules. 12 

In the usual way, an expression for E in terms of a 
short-ranged total correlation function ho(12) emerges 
automatically from the development. This expression 
has not previously been presented, although it is closely 
related to the known expression for E in fluid mixtures 
of rigid polar molecules. 13,14 (H¢"ye and Stell8,9 have 
systematically exploited the correspondence between 
fluids of deformable molecules and fluid mixtures of 
rigid molecules.) A new expression for E in terms of 
c(12) is also derived. This expression involves an in
verse kernel in (I jJ.ll, I jJ.21) space, which is analogous 
to the inverse matrices that occur in the corresponding 
expressions for rigid polar molecules. 12,14 

Finally, fluids of rigid polar molecules are briefly re
considered as a special case of the present formulation. 
When this speCialization is performed, it is found that E 

is related to c(12) by a simple expression15 previously 
thought to be valid only for axisymmetric molecules. 12,16 
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This apparent contradiction is resolved by observing 
that in the present development, c(12) is defined with 
reference to the contracted molecular configuration 
space (r, IL), rather than the complete space of all mo
lecular coordinates. The contracted configuration does 
not include the angle of rotation about the dipole axis, 
and thus differs from the full configuration even for 
rigid molecules. The expression in question, therefore, 
is indeed valid for rigid polar molecules of arbitrary 
symmetry, provided that the appropriate definition of 
c(12) is adopted. 

II. FUNCTIONAL-DERIVATIVE RELATIONS 

Consider a finite volume V, of arbitrary shape, con
taining N identical classical deformable molecules, of 
arbitrary symmetry and internal structure, at absolute 
temperature T. The number density N / V is denoted by 
p. The position and dipole moment vectors of molecule 
k are denoted by r k and ILk' respectively, and are collec
tively represented by the shorthand notation (k). 

The single -molecule distribution in rand IL is given by 

n(r, IL) = (~ o(r -rk)o(f..L - f..L,~, (1) 

where o(x) is the three-dimensional Dirac delta function, 
and the angular brackets ('0') signify a canonical en
semble average under the conditions of interest. In the 
absence of external fields, the fluid will be spatially 
uniform (except in a negligibly thin surface layer), so 
that n(r, f..L) w ill be independent of r. Spatial inte gration 
of Eq. (1) over the volume V then yields 

n(r, f..L)=ps(f..L) , (2) 

where 

(3) 

is the singlet dipole moment distribution, 6 and the sub
script zero indicates that the average is to be taken in 
the unperturbed fluid. We note that f df..Ls(f..L) =1. 

Since the unperturbed fluid is unpolarized, s(f..L) de
pends on IJ. only through 1 f..L I; it may therefore be written 
as s(f..L), where /1 = 1 IL I. It is also convenient to intro
duce the reduced distribution in 11 alone, call it p(/1). 
Clearly 

(4) 

Now suppose that the system is subjected to a single
molecule external potential ¢(r, f..L), the effect of which 
is to add a term L .¢(k) to the total potential energy of 
the system. The single-molecule distribution n(1) then 
becomes a functional of ¢(1), and is no longer indepen
dent of r 1 and the direction of f..Ll' Consider the change 
on(l) in n(l) which accompanies an infinitesimal change 
0¢(1) in ¢(1). These changes are related by straight
forward generalizations of the canonical functional-de
rivative relations previously developed for rigid mole
cules. 17 One readily verifies that the required general
izations are in fact identical in form to the original re
lations; 17 it is merely necessary to replace the molec
ular orientation wk by f..L. wherever it appears, and 

hence to interpret the notation (k) in the generalized 
sense (rk , f..Lk) of the present article. The desired func
tional-derivative relations are therefore 

on(1) = - (3 J d(2)[n(1) n(2) h(12) +n(l) 0(12)][ 0¢(2) - og] , 
(5) 

- (30¢(1) + (3og = f d(2)[ - c(12) + 0(12)/n(1) ]on(2) , (6) 

where h(12) =h(r lo ILl; r 2 , f..L2) is the total correlation func
tion (with the finite -volume correction term subtracted 
outI7), c(12) = c(r lo f..LI; r 2 , f..L2) is the direct correlation 
function, 0(12) = 0 (r I - r 2)0(ILI - f..L2), g is the chemical 
potential, and (3 = l/kT. The direct and total correlation 
functions are related by the Ornstein-Zernike equation 

h(12) = c(12) + J d(3) n(3) c(13) h(32) , (7) 

and the chemical potential variation is given byl7 

og= f d(1)o<!J(1) 8n(1)/aN • (8) 

It is well to emphasize that in the present develop
ment' the notation (k) refers to a reduced or contracted 
single-molecule configuration, rather than the complete 
single-molecule configuration consisting of all the coor
dinates of molecule k. That is to say, in general, there 
will be other molecular coordinates besides those con
tained in r k and ILk' Since the quantities needed to de
scribe dielectric behavior do not directly involve these 
additional coordinates, the present identification of (k) 
with (rk , f..Lk) is appropriate for the purposes of dielectric 
theory. One must realize, however, that once this 
identification is adopted, the direct correlation function 
c(12) = c(rlo f..LI; r 2 , f..L2) also relates specifically to the re
duced configuration (r, f..L), and differs from the c(12) 
that would arise if (k) represented all the coordinates 
of molecule k. 

The above relations apply to functional variations 
about a reference state of arbitrary ¢(1). For present 
purposes, the appropriate reference state is that with 
¢(1)=0 (Le., the unperturbed fluid). Henceforth, this 
choice will be understood. The reference-state func
tions n(1), h(12), and c(12) then assume their unper
turbed or zero-field forms. Furthermore, we may then 
regard 0¢(1) itself as a weak external potential, and 
on(1) as the corresponding linear (first-order) deviation 
of n(1) from its unperturbed value PS(f..LI). All of these 
interpretations will be understood in what follows. 

Since we are concerned with a finite system, it is 
clear that the spatial integrals in Eqs. (5)-(8) extend 
only over the volume V, even though this is not explicitly 
indicated by the notation. 

To forestall any possible confusion, we remark that 
the present definition of h(12) + 1 [see Eq. (5) of Ref. 
17] differs from that of Refs. 6 and 10 [see Eq. (2.6) of 
Ref. 6, from which a factor of 2 is missing on the right 
side] by a factor of S(1l1) S(/12). The present definition 
adheres more closely to established conventions. 

III. EXISTENCE OF E 

The relations of the preceding section can now be used 
to determine the static linear response of the polariza-
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tion P(r), given by 

P(r)= f dlLlJ.n(r, IJ.)= f dlJ.lJ.on(r, Jl), (9) 

to a weak external electric field Eo(r). It is assumed 
that Eo(r) varies slowly, in a molecular sense, with the 
position r. The perturbation potential corresponding to 
Eo(r) is given by 

(10) 

Combining Eqs. (2), (8), and (10), we find that og=O 
for this potential, so the og terms in Eqs. (5) and (6) 
may henceforth be omitted. Equation (6) therefore be
comes 

Sufficient conditions for the existence of E are most 
easily expressed in terms of the behavior of c(12). We 
adopt the fundamental assumption that c(12) is of the 
form 

c(12) = co(12) - (:l8(12) , (12) 

where co(12) is a short-ranged function (i. e., it goes to 
zero faster than Ir l -r2 1-3 ) which depends only on rela
ti ve pOSitions and dipole moment directions in addition 
to IJ.I and 1J.2 (L eo, it is translationally and rotationally 
invariant). The function 8(12) is the dipole-dipole po
tential with a spherical cutoff: 

(13) 

(14) 

where H(x) is the Heaviside unit step function [H(x) is 
unity for x ~ 0 and zero otherwise], and it is understood 
that the limit a- 0 is ultimately to be taken. 

We now proceed to show that the above assumption 
implies the existence of the dielectric constant E; i. e., 
that the conditions embodied in Eq. (12) are sufficient 
for the existence of E. This is not surprising, as these 
conditions are closely analogous to the known sufficient 
conditions for rigid polar molecules. 12,14 It seems very 

likely that Eq. (12) will in fact ordinarily be satisfied 
(except of course in a negligibly thin surface layer), but 
this is a separate question that will not be pursued here. 

Combining Eqs. (11)-(13), we obtain 

where 

is the Lorentz electric field, which is related to the 
Maxwell electric field E(r) by EL(r) =E(r) + (41T/3)P(r). 
Equation (15) may be inverted by introducing a short
ranged total correlation function ho(12) defined by 

We then obtain 

on(l) =(:l J d(2)[n(1) n(2) ho(12) +n(1)0(12)]1J.2· E L(r2) • 

(18) 

Since co(12) is short-ranged, so is ho(12). The spatial 
integrals in Eqs. (15), (17), and (18) may therefore be 
extended over all space instead of just over the volume V. 

Since Eo(r) is slowly varying and the system is a fluid, 
it is clear that P(r) and hence EL(r) will also be slowly 
varying. We may therefore evaluate E L (r 2 ) in Eq. (18) 
at the point r 2 = r l and take it outside the integral over 
r 2 • When this is done, the result combines with Eq. (9) 
to yield 

(19) 

where 

A(r l )={:lp J dr2dlJ.ldIJ.2S(IJ.I)[PS(1J.2)ho(12)+0(12)]1J.11J.2, 

(20) 

and use has been made of Eq. (2). But since co(12) is 
translationally and rotationally invariant, the same is 
clearly true for ho(12). Therefore A(r) is independent 
of r and proportional to the unit dyadic U. That is, 
A(r) =AU, where A = (1/3)A: U. Equation (19) now re
duces to P(r) =AEL(r), which ShOWS 15 that E exists and is 
given by (E -1)/(02)=41TA/3; Le., 

E -1 41T J [ 1 02 =""9 (:lp dr2d lJ.l d IJ.2 S(IJ.I) pS(1J.2)ho(12) +0(12) IJ.1·1J.2· 

(21) 

We have therefore shown that Eq. (12) implies the ex
istence of E, with E given by Eq. (21). This expression 
for E does not appear to have been previously presented, 
although it is closely related to the known expression for 
E in fluid mixtures of rigid polar molecules. 13,14 Such a 
relation is not unexpected in view of the correspondence 
between fluids of deformable molecules and fluid mix
tures of rigid molecules. 8,9 The relation becomes clear
er when Eq. (21) is rewritten in the equivalent form 

: ~~ = ~1T (:lp J dlJ.dlJ.'p(IJ.)[o(1J. -IJ.') + pP(IJ.')H(IJ., IJ.')]IJ.IJ.', 

(22) 

where 

H(IJ., IJ.') = (41T)"2(IJ.IJ.')"3 J dr2 d 1J.1 d 1J.2 0 (1J. - 1J.1) 

X o(IJ.' - 1J.2) ho(12) IJ.I • 1J.2 • (23) 

Since PP(IJ.)dlJ. is just the partial number density of mol
ecules with IIJ.I in the interval (IJ., lJ.+dlJ.), the struc
tural resemblance of Eq. (22) to the corresponding for
mula for rigid-dipole mixtures [see Eq. (17) of Ref. 141 
is obvious. 

Although we have not found it convenient to do so, the 
delta-function terms in Eqs. (21) and (22) can be trivially 
evaluated in terms of the quantity J dIJ.1J.2S(IJ.) 
= J dIJ.1J.2p(IJ.), which is just the mean square dipole mo
ment of an individual molecule. If deSired, this quantity 
can then be rewritten in terms of an effective perma
nent dipole moment and polarizability, 5 but such a rep
resentation has little apparent advantage. 

J. Chern. Phys., Vol. 76, No.5, 1 March 1982 

Downloaded 04 Jun 2012 to 131.252.4.4. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



2638 John D. Ramshaw: Dielectric constant in fluids 

IV. E IN TERMS OF c(12) 

In this section we derive the expression for E in terms 
of c(12). We first multiply Eq. (17) by (47Tt2(fJ.fJ.')-3 
x 1i(fJ. - fJ.1) o(fJ.' - fJ.2)J.L1 > J.L2 and integrate over r 2, J.Lt. 
and fJ.2' This yields 

H(fJ., fJ.') = C(fJ., fJ.') + (47Tt2(fJ.fJ.'t3 P J d j.L1 d(2) d(3) 

xS(fJ.3)1i(fJ. - fJ.1)1i(fJ.' - fJ.2)co(13)ho(32)j.L1· j.L2 , 
(24) 

where 

C(fJ., fJ.') = (47Tt2(fJ.fJ.'t3 f dr2dj.L1 d j.L2 

x 1i(fJ. - fJ.1)1i(fJ.' - fJ.2) C0(12)j.L1 • j.L2 

= (47Tt2(fJ.fJ.'t 3 J dr2 dj.L1 d j.L2 

x Ii (fJ. - fJ.1) Ii (fJ.' - fJ.2) c (12) j.L 1 . j.L2 • (25) 

The second equality in Eq. (25) follows easily from Eqs. 
(12) and (13), together with the fact12 that U : T o(r) = O. 
We note parenthetically that both H(fJ., fJ.') and C(fJ., fJ.') 
are symmetric in fJ. and fJ.' . 

Since ho(12) is translationally and rotationally invar
iant, it is clear that 

(26) 

wherej(fJ.3, fJ.') is independent of r 3. To determine the 
form off(j.L, fJ.'), we take the dot product of Eq. (26) with 
j.L3, multiply by 1i(fJ. - fJ.3), and integrate over j.L3' We 
thereby obtain 

j(fJ., fJ.') = 47TfJ.2(fJ.'/fJ.)3H(fJ., fJ.')' 

Equations (24)-(27) now combine to yield 

(27) 

H(j.L, fJ.')= C(fJ., fJ.')+P J dfJ.1P(fJ.1) C(fJ., fJ.1)H(fJ.1, fJ.')' 

(28) 
One readily verifies that Eq. (28) is equivalent to 

where 

K(fJ.,fJ.')=pp(fJ.)[Ii(fJ.-fJ.')+PP(fJ.')H(fJ.,fJ.')], (30) 

L(fJ.,fJ.')=-C(fJ.,fJ.')+Ii(fJ.-fJ.')/[PP(fJ.)l. (31) 

But K(fJ., fJ.') is just the kernel that appears in Eq. (22) 
for E. The expression for E in terms of c(12) is there
fore 

E - 1 47T J ' ( ') , E+2=9f3 dfJ.dfJ.KfJ.,fJ. fJ.fJ., (32) 

where K(fJ., fJ.') is now regarded as the inverse kernel 
defined by Eq. (29), which is related to C(fJ., fJ.') by Eq. 
(31) and thence to c(12) via Eq. (25). 

V. SPECIALIZATION TO RIGID MOLECULES 

It is instructive to specialize the present results to 
the case of rigid polar molecules, to which they lend 
some new insight. In this special case we have 

(33) 

where fJ.o is the fixed value of the molecular dipole mo
ment. Since fJ.k = fJ.o for all k at all times, the functions 
h(12), c(12), ho(12), and co(12) now depend only on 
(r1, WI; r 2, (2), where wk = (B k, cPk) represents the polar 
and azimuthal angles that specify the direction of j.Lk' 
Now dj.Lk= fJ.~ dfJ.k dw k, where dwk=sinBkdBkd¢k' 
The Ornstein-Zernike equation [Eq. (7)1 therefore re
duces to 

h(12) = c(12) + (p/47T) f dr3 dW3 c(13) h(32) , (34) 

where use has been made of Eqs. (2), (4), and (33). 
[The same reduction, namely J d(3) n(3) - (p/47T)J dr3 dW3, 
of course applies to Eq. (17) as well.l We see that Eq. 
(34) is formally the same as the Ornstein-Zernike equa
tion for rigid axisymmetric molecules,15 even though we 
have not restricted the molecular symmetry in any way. 
The reason for this correspondence is that the angle I/J k 

of rotation about the axis defined by W k is not included 
in the present reduced description. This angle is there
fore averaged over in the definitions of n(l) and h(12), 
so that the molecules may be regarded as axisymmetric 
"on the average." It may be helpful to think of h(12) and 
c(12) as the correlation functions for a hypothetical sys
tem of equivalent axisymmetric molecules, but such an 
interpretation is in no way essential. 

By virtue of Eq. (33), Eq. (22) for E now becomes 

(35) 

where y =(47T/9)f3pfJ.~ and Ho=H(fJ.o, fJ.o). From Eq. (23) 
we find that 

where ek is the unit vector with orientation w k ; i. e., 
ek=j.L/fJ.o' Similarly, we find from Eq. (25) that 

(36) 

Co=(47Tr2 f dr2dw1dw2c(12)e1 'e2 , (37) 

where Co = C(fJ.o, fJ.o). But according to Eqs. (28) and 
(33), Ho and Co are related by 

Ho = Co + pCo Ho , (38) 

from which it follows that (1 + pHo) = (1 - peOr1. Equation 
(35) may therefore be written in the alternative form 

(39) 

We now observe that Eq. (39) is formally identical to 
an earlier result15 previously thought to be valid only 
for axially symmetric molecules. 12,16 This expression 
for E is therefore actually valid more generally; it ap
plies to rigid polar molecules of arbitrary symmetry, 
provided that c(12) is properly interpreted. That is, 
c(12) must be regarded as the function of (r1, WI; r 2, (2) 

defined by Eq. (34), in which h(12) represents the total 
correlation function in the variables (rt. WI; r 2, (2) 

alone without regard to the angles <{'I and 1/J2' Confusion 
with the more conventional c(12) for rigid molecules, 12 
which results when (k) is used to represent the complete 
Single-molecule configuration (r k, wk, I/Jk)' can be avoid
ed by paying close attention to the function arguments. 
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