Eliminating the Right Hook: Safer Intersections for Bikes

Sirisha Kothuri
Portland State University, skothuri@pdx.edu

Andrew Kading
Portland State University, andykading@hotmail.com

Andrew Schrope
Portland State University

Kelly White
Portland State University

Edward Smaglik
Northern Arizona University

See next page for additional authors

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_briefs

Part of the Transportation Commons, and the Urban Studies Commons

Let us know how access to this document benefits you.

Recommended Citation

EXECUTIVE SUMMARY - MAY 2018

ELIMINATING THE RIGHT HOOK: SAFER INTERSECTIONS FOR BIKES

Bicycling and walking, especially in urban areas, can be a means to alleviate congestion, lower emission levels and improve personal health. Intersections are locations where a variety of travel modes converge, thus increasing the potential for conflicts.

Many bicycle-vehicle crashes occur at intersections. A common crash type involving bicycles at intersections is the “right-hook,” where a right-turning vehicle collides with a through bicyclist. Intersections are also a source of increased stress for many bicyclists where the interactions with cars are more pronounced. Geometric treatments such as pavement markings, bike boxes, colored lanes, and shared right-turn lane designs have been implemented in attempts to alleviate the problem, but this is the first study to examine signal control strategies.

Recommended signal timing treatments to prevent right hook crashes include:

- Bicycle-specific signals
- Exclusive bicycle phases
- Leading bike intervals

While exclusive phasing eliminates the bicycle-vehicle conflict by separating the phases and restricting turns, the trade-off is a decrease in efficiency at the intersection with increased delays for all users. An emerging operational treatment at intersections is to provide a split leading bicycle interval, with concurrent green for bicycles, pedestrian walk, and through vehicles while restricting or delaying the right turn for vehicles. After a certain time, the restriction on turns is lifted. The same treatment could be used for pedestrians and offers advantages over the traditional leading bike and pedestrian intervals in that there is no lost time for through vehicles.