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Highlights 19 

� Two-year flux measurements were conducted in a subtropical urban area. 20 

� Heat emissions were estimated by residual method and inventory approach.  21 

� A new ‘footprint-weighted inventory’ approach was introduced.  22 

� Local missing anthropogenic heat sources were partially revealed.  23 

 24 

 25 

Abstract 26 

 27 

Long-term eddy covariance measurements have been conducted in a subtropical urban area, an older 28 

neighborhood north of downtown Houston. The measured net radiation (Q*), sensible heat flux (H) and 29 

latent heat flux (LE) showed typical seasonal diurnal variations in urban areas: highest in summer; lowest in 30 

winter. From an analysis of a subset of the first two years of measurements, we find that approximately 42 % 31 

of Q* is converted into H, and 22 % into LE during daytime. The local anthropogenic heat emissions were 32 

estimated conventionally using the long-term residual method and the heat emission inventory approach. We 33 

also developed a footprint-weighted inventory approach, which combines the inventory approach with flux 34 

footprint calculations. The results show a range of annual anthropogenic heat fluxes from 20 W m-2 to 30 W 35 

m-2 within the study domain.  Possibly as a result of local radiation versus heat flux footprint mismatches, 36 

the mean value of surface heat storage (∆Qs) was relatively large, approximately 43% and 34% of Q* in 37 

summer and winter, respectively, during daytime. 38 
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1. Introduction 39 

Approximately half of the world’s population lives in and develops urban areas, modifying land use 40 

and land cover (LULC), and consuming energy and producing byproducts like waste heat, water vapor and 41 

pollutants. This results in the urban heat island (UHI) effect, and affects planetary boundary layer depth, air 42 

pollution and precipitation over urban areas (Arnfield, 2003). The man-made, urban fabric alters the surface 43 

energy balance (SEB) alongside atmospheric winds, temperature, moisture and chemical composition 44 

(Grimmond and Oke, 1999; Roth, 2007).  45 

Urban energy balance studies have been conducted by direct measurements of Q* using radiometers, 46 

alongside sensible and latent heat fluxes using the eddy covariance (EC) technique (e.g., Rotach 2005; 47 

Offerle et al., 2005; Ferreira et al., 2013; and Nordbo et al., 2012). In urban areas, typically a large amount 48 

of surface heat energy is transferred to the atmosphere as sensible heat, while the amount of latent heat 49 

transfer is lower than over forests or agricultural areas. This is due to the facts that urban impervious area 50 

reduces (i) available surface water for evaporation, and (ii) vegetation amount and therefore leaf area index 51 

(LAI) over that in natural area. Consequently the Bowen ratio (β = H/LE) is larger above urban canopies, yet 52 

generally its value can be much different locally depending on urban surface heterogeneity.  53 

Most past SEB studies have been performed in cities located in the mid-latitudes (e.g. Moriwaki and 54 

Kanda, 2004; Vesala et al., 2008; and Kotthaus and Grimmond, 2013), and fewer in tropical or subtropical 55 

cities. Considering the size and fast growth of subtropical cities without well-organized city planning or land 56 

use, studies of SEB in subtropical cities are important for sustainable development (Roth, 2007). Few studies 57 

of (sub)tropical urban SEB have been conducted as summarized by Roth (2007), yet only one long-term (> 58 

1yr) study (Ferreira et al., 2011) has been conducted to estimate the annual features of SEB in a unique 59 

urban area.  60 

Anthropogenic heat emissions can strongly affect the urban SEB, which can be estimated using the 61 

urban SEB equation expressed for a particular urban area considered homogeneous for the purposes of the 62 

evaluation (Oke, 1988):  63 

 64 

   Q* + Qf  = H + LE + ∆Qs + ∆Qa        (Unit: W m-2)     (1) 65 

 66 

Q* is net all-wave radiation; Qf is anthropogenic heat flux from buildings, transportation and human 67 

metabolism (Sailor, 2011; Iamarino et al., 2012); H is turbulent sensible heat flux; LE is turbulent latent heat 68 

flux; and ∆Qs is net storage of heat in the urban fabric, including buildings, roads, trees, soils, etc. ∆Qa is net 69 

advective flux, and it is typically presumed negligible if the flux instrumentation is installed above an urban 70 

area homogeneous on larger scales, thus minimizing ∆Qa.  71 

Heat storage, ∆Qs, is significant in urban areas, and can represent a relatively large fraction of Q*. 72 

There is no one method to measure ∆Qs directly in urban areas because of the wide variety of light-73 

absorbing and heterogeneously distributed urban canopy structures and ground surfaces. However, several 74 

integral methods have been introduced: the SEB residual method (Grimmond and Oke, 1995; Kothaus and 75 

Grimmond, 2013; Ferreira et al., 2013; Nordbo et al., 2012), the Objective Hysteresis Modeling (OHM) 76 

method (Grimmond and Oke, 1999; Ferreira et al., 2013), and the parameterization method (Roberts et al., 77 

2006; Ferreira et al., 2013).  78 
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Anthropogenic heat fluxes, Qf, are also difficult to measure, so have generally been estimated via either 79 

an inventory-based or energy balance closure approach. Depending on a study’s objective, inventory 80 

approaches either use large scale aggregated data that are downscaled to smaller spatiotemporal units (e.g. 81 

local and hourly), or use energy consumption data estimated at smaller, building and road section scales for 82 

upscaling. The former is conducted based on utility energy consumption and empirical traffic count data 83 

(e.g., Sailor and Lu, 2004; Iamarino et al., 2012; Chow et al., 2014). The latter uses building energy 84 

modeling and can resolve the anthropogenic heating from complicated building sectors (Kikegawa et al., 85 

2006; Hsieh et al., 2007). Both typically assume that the total energy consumption converts to waste heat 86 

emissions, i.e. materialize dominantly in the sensible heat flux; but contributions to heat storage and even 87 

latent heat fluxes are also possible. 88 

Alternative to the inventory approach, using long-term micrometeorological measurements can enable 89 

estimates of anthropogenic heating as the residual term in the SEB equation (1) under the assumption that 90 

∑∆Qs equals zero over year-long periods (Christen and Vogt, 2004; Ferreira et al., 2013; Nordbo et al., 91 

2012). Offerle et al. (2005) calculated ∆Qs with an element surface temperature method to determine Qf 92 

(hereafter called Res-driven Qf).  93 

The residual energy flux (Res) is considered as follows given ∆Qa is negligible (e.g. Nordbo et al., 94 

2012): 95 

Res ≈ ∆Qs – Qf = Q* – (H+ LE)      (2).   96 

 97 

In equation (2), negative Res means that there are additional energy sources contributing to H and LE aside 98 

from net radiation, particularly anthropogenic heat flux. For longer periods (complete seasonal cycle or 99 

multiples thereof), ∑ȟQs = 0, so the residual term can be representative of Qf. The negative sign indicates 100 

the emission from the surface to the atmosphere. The uncertainty of this approach comes not only from the 101 

accumulation of errors in the measurements of H, LE, and Q* into Res, resulting in Qf uncertainties up to 20-102 

40% of Q* (Mauder et al., 2007), but also from the differences between radiation and flux footprints, 103 

possibly resulting in an underestimation of Qf (Foken, 2008).  104 

Here, we present an analysis of data from a unique dataset obtained over a subtropical humid urban 105 

area, Houston Texas, including an overview of the site characteristics, the micrometeorological flux 106 

measurements system, and the temporal variability of SEB fluxes. In addition, we discuss the estimates of 107 

anthropogenic heat emissions using different approaches.  108 

 109 

 2. Methods 110 

2.1. Site description 111 

A detailed site description of the Houston flux tower setup was given by Park et al. (2010, 2011) and 112 

Schade (2012), and is slightly extended here. The climate of Houston is classified as subtropical humid 113 

(Köppen’s Climate Classification: Cfa), with rainfall in all seasons and moderate seasonal variability. The 114 

radio communications tower of the Greater Houston Transportation Co. (Yellow Cab, 29° 47’ 22’’ N, 95° 21’ 115 

13’’W) located 4 km north of downtown Houston was equipped with micrometeorological instrumentation 116 

for urban flux measurements in late spring 2007. The site is in flat terrain (slope of less than 1 m per km) 117 
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surrounded by residential areas in south, west, and north directions, a light industrial area in the east, a park 118 

and a cemetery in the more distant west, and various commuter roads crossing the area (Figure 1).Within a 119 

3×3 km2 area, dominant average land use is residential (23%) and roads (23%), while the remaining land is 120 

occupied by industrial areas (12%), commercial areas (6%), parks and open space (17%), public areas (1%), 121 

and undeveloped lands (18%) (http://mycity.houstontx.gov/public/). Following Stewart and Oke (2012), the 122 

site is best described as low to medium urban density with 1-2 story houses, and 50-70% impervious area 123 

with scattered trees (local climate zone, LCZ 6B, with minor UCZ 5). 124 

The average height of trees as determined from LIDAR data (at 1-ft spatial resolution, measured in 125 

2008) was 8-12 m, much taller than that of one-story buildings dominating the area (4-5 m), and tree crowns 126 

covered 25-30% of the study domain. We calculated displacement height (d) and roughness length (z0) using 127 

various methods (Schade, 2009; unpublished data) and assigned area-wide d = 6 to 12 m and z0 = 1.0±0.1 m 128 

for all wind directions. The directionality of d is shown in the Supplemental Table S1. The relative 129 

homogeneity of this site is likely owed to similarly tall one-story buildings under a sparse, but dominating 130 

tree canopy. It will be discussed in a separate short communication. 131 

 132 

2.2. Measurement system  133 

The EC system was installed as the top inlet height (60 m above ground level (agl)), 30 m below the 134 

top of the tower but several times higher than the height of the tallest surface roughness elements including 135 

buildings and trees. A summary of installations is given in Table 1. The top level installation consisted of a 136 

cross-beam holding a 3-D sonic anemometer pointing south, three radiation sensors including a thermopile, 137 

a pyranometer and a quantum sensor, supplementary sensors for temperature and humidity and a combined 138 

wind speed and direction sensor (Schade, 2012). Ambient air was sampled from near the center of the 139 

anemometer through 1/4’’ ID, ~80 m long Teflon PFA tubing down the tower at approximately 15 L min-1 140 

and through a bypass into a closed path infrared gas analyzer (LI7000, Licor Biosciences, Lincoln, NE) in an 141 

air-conditioned building at the foot of the tower. A tipping bucket rainfall sensor was installed at 12 m agl. A 142 

PFA filter holder was installed into the main 3/8” OD sampling line at 3 m agl in front of a tubing bend. Its 143 

2-5 µm pore size Teflon particulate filter was changed on average once a week during instrument 144 

calibrations. Since this meant that the inlet was not protected from rain entering the tubing, the main sample 145 

pump (rotary vane model VTE3, Thomas Pumps, Sheboygan, WI) was turned off whenever rain was 146 

detected by the rain bucket, including a 20-min delay in turning the pump back on after the last bucket tip. 147 

Occasionally, small amounts of water still entered the tubing as evident from residues on the filter and/or a 148 

few milliliters of liquid water accumulating in the filter holder. Thus, the water vapor flux data analyzed 149 

here exclude the first 24 hours after rain events.  150 

A LI7000 was operated in an air conditioned room at the base of the tower. The instrument was 151 

calibrated for CO2 onsite approximately weekly using a three-point calibration. Its factory H2O calibration 152 

values were left unchanged during the study period, but its output was compared and adjusted against the 153 

relative humidity sensor installed at the same height using its temperature data and pressure data adjusted for 154 

height in the modified Buck formula used by Licor Inc. 155 

 156 

2.3. Data processing 157 
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EC flux data were averaged over the standard 30 minute interval. Longer periods of missing or bad 158 

data occurred from mid-August to early September 2008 and from mid-October to end of November 2008, 159 

for instrument repairs. Processing of the high frequency data was conducted using EdiRe software (School 160 

of Geosciences, University of Edinburg, UK), following the general guidelines of the flux community. 161 

Random electronic noise spikes were removed from the raw turbulence data when exceeding 5 standard 162 

deviations (sd). The geometric rotation was applied to align the x-axis with the mean wind direction and to 163 

set the 30-min average vertical wind to zero. Rotational angles were nearly always less than 5 degrees (-164 

0.5±2.2 degrees, 2 sd). Stationarity was tested by separating the 30 minute data period into six 5-min 165 

intervals, where the flux covariance should not be biased more than 60% from the mean of the covariances 166 

of each 5-min interval (Foken and Wichura, 1996). A friction velocity threshold of u* ≥ 0.2 m s-1 was applied 167 

to the data to account for low turbulence conditions. The stationarity criterion (< 60%) removed 1% of the 168 

data. From periods of rain and 24 hours after rain, an additional 24% of data were removed. To assess the 169 

lag time due to the length of the sampling tube from the inlet next to the sonic anemometer to the closed-170 

path gas analyzer, we applied the cross-correlation criterion between vertical wind speeds and mixing ratio 171 

time series data. The typical CO2 lag times ranged from 7 to 11 seconds, and the H2O lag times were 172 

typically 1 second longer. A low-pass filtering method was developed similar to that described by Ibrom et 173 

al. (2007), based on relative humidity and wind speeds (no temperature dependence was found). It was 174 

applied to our closed-path EC system for H2O flux corrections, with average LE fluxes corrected upwards by 175 

34 % (Werner, 2013).  176 

 177 

2.4. Footprint analysis  178 

In order to estimate the spatial distribution of the flux footprint, we used the analytical footprint model 179 

of Kormann and Meixner (2001) implemented in EdiRe. Although this model is not designed for 180 

heterogeneous urban surface areas and may be biased under neutral and stable atmospheric conditions, we 181 

concluded that the footprint model output should present a qualitatively correct picture of 2D surface 182 

contributions, considering the relatively homogeneous turbulence characteristics of this study site. Modeling 183 

results from Kljun’s parameterization (Kljuin et al, 2004) revealed that daytime 90% footprint distances did 184 

not extend past the 3 km × 3km study domain (Figure 1). For the radiative footprint area, we used the field 185 

of view method (Schmid et al., 1991), resulting in the 90% footprint area extending to a radius of 180 m 186 

(Figure 1). 187 

 188 

2.5. Development of a gridded anthropogenic heat emission dataset 189 

To obtain a local estimate of ∆Qf, we assembled an anthropogenic heat emission inventory (AHI) at 190 

hourly temporal and 500-m spatial resolution for Houston, Texas. The inventory presumes that all energy 191 

consumption is converted into waste heat emissions. It consists of major waste heat sources in the building 192 

sector, the transportation sector, and human metabolism in the urban environment. Each of these three 193 

contributions was determined by an inventory approach (Sailor and Lu, 2004).  194 

 195 

The GIS database classified buildings at parcel-scale, and quantified the buildings’ floor area. To 196 

acquire the hourly energy consumption within each parcel, the floor area was multiplied by each building 197 
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prototype’s hourly energy consumption profile retrieved from monthly energy use data for the building 198 

sector available for the year 2000. Details of the method are described by Sailor and Lu (2004) and Heiple 199 

and Sailor (2008). The parcels were then aggregated up to the grid cell scale (500-m spatial resolution) 200 

generated by a mesoscale meteorological model (Ching et al., 2008). The total quantity of heat emissions 201 

from vehicles in the city is composed of emissions on freeways and emissions on other roadways. For each 202 

road type we assume these heat emissions to be distributed equally across the entire length of that type of 203 

roadway in the city. To determine the amount of vehicle waste heat emissions within any individual grid cell 204 

we simply scale the city's total vehicle emissions on each road type by the corresponding fraction of that 205 

road type contained within the grid cell of interest (Heiple and Sailor, 2008). In other words, if the city 206 

contains 50 km of freeway lanes and the grid cell of interest contains 1 km of freeway, the grid cell is 207 

assigned 2% of all freeway vehicle heat emissions from the city. Human metabolism was assumed to be 175 208 

W during daytime and 75 W during nighttime (Sailor and Lu, 2004). Although all datasets were used to 209 

retrieve hourly waste heat profiles the results nominally represent monthly waste heat emissions. 210 

 211 

2.6. Footprint-weighted inventory approach  212 

In addition to the “traditional” approaches including the energy balance closure approach (e.g. Christen 213 

and Vogt, 2004) and the inventory approach (e.g. Quah and Roth, 2012), we developed a new ‘footprint-214 

weighted inventory’ approach to estimate Qf. First, a total of 36 grid cells of AHI data were retrieved within 215 

the study domain (Figure 1), and the hourly averaged flux footprint was considered for a more accurate 216 

comparison with the direct flux measurement. To achieve that, we linearly downscaled the spatial resolution 217 

of the AHI (500 m) to the 30 m footprint resolution, then multiplied the two matrix data sets (200×200 cells) 218 

with each other, followed by a spatial normalization by dividing by the total number of available data per 219 

grid point. By summing data for each hour, we finally obtained the hourly footprint-weighted anthropogenic 220 

heat flux data, representing the Qf in eq. (1).  221 

 222 

3. Results and Discussion 223 

3.1. Meteorological observations  224 

Seasonal diurnal meteorological measurements and wind roses are displayed in Figure 2. Air 225 

temperature shows a clear seasonal variation with a mean value ranging from 17.8 °C in winter to 28.9 °C in 226 

summer; the highest temperature reaching 37.5 °C in summer 2007, much higher than that of the warmest 227 

month (29.2°C for August) in Houston, and the lowest temperature of approximately −1 °C in winter 228 

2007/08, much lower than the that of the coldest month (11.7 °C for January) 229 

(http://www.srh.noaa.gov/hgx/?n=climate_iah_normals_summary). Wind directions varied around the 230 

prevailing southerly flows (135° - 225°), dominant in summer (72%) followed by spring (64%), winter (49%) 231 

and autumn (48%). Particularly in autumn, NE wind directions accounted for approximately 30% during the 232 

study period. Climatologically in Houston, summers (June) are the dominant rainfall season, with the least 233 

rain falling in winters (February). However, during the study period, the highest rainfall amount, three times 234 

the climatological value, occurred in September 2008 due to hurricane Ike (Schade, 2012).  235 

 236 
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3.2. Surface energy balance  237 

Figure 3 displays the seasonal diurnal variation of median half-hourly SEB fluxes for all wind 238 

directions excluding ±30 degrees around north due to possible influences from the tower structure. The data 239 

are summarized in Table 2 for the four seasons. As expected, the median diurnal and seasonal variation of 240 

Q* followed the solar zenith angle variation with a peak value of 560 W m-2 in summer (JJA) and 330 W m-2 241 

in winter (DJF). Q* typically changed sign an hour later and earlier in the morning and the evening, 242 

respectively, than measured incoming radiation. The peak of median H was typically delayed by one half to 243 

one hour, and it dominated heat fluxes at 44% of Q* during daytime (Q* > 0). H was generally proportional 244 

to Q* variation, a characteristic in subtropical climates (Roth, 2007). The peak value of median H was 201 245 

W m-2 in summer and 120 W m-2 in winter. In addition, H remained positive for two and a half hours to one 246 

hour after Q* had changed sign to negative, depending on the seasonal surface temperature, due to lagged 247 

surface heating by previously stored heat. However, the heat stored in the urban impervious fabric during 248 

daytime was not dominantly converted into sensible heat flux during nighttime, meaning median H remained 249 

slightly negative (-9 to -1 W m-2) at night throughout the years. 250 

The diurnal median values of LE varied along with H, but peak daytime values occurred within a 251 

wider range between 11:00 and 14:00 LST. Latent heat fluxes were virtually always positive except for 252 

small variations around zero during nighttime, with peak values of 123 W m-2 (summer) and 38 W m-2 253 

(winter).  While this seasonal change is expected from reductions in LAI and temperature, the drop was 254 

larger than that of Q* (67% vs. 38%). This may appear larger than expected since in urban areas latent heat 255 

fluxes are typically driven not only by the amount of transpiration of the onsite vegetation but also 256 

anthropogenic evapotranspiration supply in the form of irrigation. However, the latter is essentially absent 257 

around our site with the exception of a few, more affluent homeowners watering small lawns, and two larger 258 

lawn areas belonging to nearby schools. Both represent less than 10% of the area within the 90% footprint 259 

limits. Nevertheless, although the amount of photosynthetically active foliage is much lower in winter (>90% 260 

of leaves in this area are deciduous; Park et al., 2011), the mild winter climate alongside a small live oak 261 

population, lawns and evergreen bushes appears to provide for significant winter time latent heat flux.  262 

Results from a 1-yr study in subtropical Phoenix, AZ (Chow et al, 2014), and a shorter study in São 263 

Paulo, Brazil (Ferreira, 2013), can be compared with our study results. In São Paulo, daily mean values of H 264 

and LE were approximately half as high in summer, likely driven by a daily averaged Q* value also only 265 

half that of Houston, although the city is located at a lower latitude (23°S) and its impervious area fraction 266 

was similar to ours. In Phoenix (33°N), daily averaged Q* and H were closer to our mean values in summer, 267 

and approximately 35% lower in winter, while LE values were 50% lower in summer and winter, which is 268 

reasonable considering the much lower vegetation fraction in Phoenix (~15%). In response to the high 269 

vegetation fraction at our study site (~45% of coverage), the LE is significant and its magnitude varies as a 270 

function of moisture availability and on the amount of vegetation in the footprint. This affects the residual 271 

flux.  272 

The general diurnal variation of Res (Figure 4) shows that it steeply rises in the early morning along 273 

with the Q* variation, then reaches a maximum before noon (221 W m-2 in summer and 140 W m-2 in 274 

winter), and decreases continually afterwards to negative values before ~16:00 LST, reaching a minimum 275 

approximately one hour later. Res then remained virtually constant during the night until sunrise. The half 276 
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hourly median Res ranged from -100 to 241 W m-2. Compared with other long-term (>1yr) urban 277 

measurement sites, such as Phoenix, AZ (-4 to 83 W m-2), Helsinki, Finland (-53 to 69 W m-2; Nordbo et al., 278 

2012) and Lodz, Poland (-100 to 180 W m-2; Offerle et al., 2005), the Houston Res showed a higher 279 

maximum, likely due to higher Q*. For similar reasons, daytime Res showed a steeper increase and reached 280 

an earlier peak than H, with its overall magnitude higher than that of H in all seasons except spring. This 281 

characteristic has been observed at other suburban sites (Ferreira et al., 2013; Coutts et al., 2007; Grimmond 282 

and Oke, 1995). 283 

 284 

3.3. Energy partitioning 285 

In Figure 5 we show the diurnal variation of the ratios H/Q*, LE/Q*, Res/Q* and β=H/LE. The 286 

upward spikes around 16:00 − 17:00 LST in both H/Q* and LE/Q* were in part due to a rapid decline of net 287 

radiation as compared to both H and LE (Figure 4). H/Q* exceeded 100% around 16:00 LST in winter 288 

possibly as a result of relatively higher contributions from Qf  in the form of space heating and car traffic. 289 

The LE fraction of Q* was on average zero during nighttime and positive in daytime throughout the study 290 

period. After sunrise it increased until it contributed approximately 50% of net radiation in late afternoon, 291 

then changed the sign to negative after sunset, and gradually restored to zero thereafter.  292 

The Res/Q* ratio decreased from a maximum value exceeding 100% after sunset to approximately 293 

zero around mid-afternoon (15:30 LST), when local temperatures maximize. It remained very high for most 294 

of the night hours after its peak contribution around sunset, meaning radiative heat loss is dominantly 295 

supplied by the heat stored in the urban canopy.  296 

Seasonal differences are obvious in timing but relatively small regarding the fractional distribution 297 

of the SEB fluxes. Except during the winter, sensible heat fluxes constitute a minor nighttime flux 298 

contribution as compared to radiative heat losses. In winter, H may contribute up to 36% of the heat loss 299 

during the early morning hours, suggesting that the residual at that time is driven by heat storage in the 300 

urban canopy, delaying the rise of H as compared to in natural environments. Peak β was observed in the 301 

early afternoon time as plant transpiration begins to decline. During daytime, the highest mean value of β 302 

was ~3.6 in winter due to lower transpiration rates, and the lowest value was ~1.6 in summer due to higher 303 

evapotranspiration and amount of precipitation. 304 

The diurnal and seasonal analysis of normalized SEB in Figure 5 shows a mirror hysteresis pattern 305 

of H/Q* and Res/Q* that has also been observed in other cities (e.g. Roth, 2007; Ferreira et al., 2013; Chow 306 

et al., 2014). This pattern is reflected in urban atmospheric boundary layer dynamics, such that lower H is 307 

observed after sunrise but high daytime sensible heat fluxes induce convection that is maintained into the 308 

evening, at times several hours past sunset. As a result, urban anthropogenic pollutant mixing ratios strongly 309 

peak during the morning rush hours, but no such peak is observable during the afternoon rush hours (Park et 310 

al., 2010).  311 

 312 

3.4. Directionality of measured fluxes 313 

We investigated the seasonal aspects of fluxes of H and LE by wind direction (Figure 6a and b): the NW 314 

and W directions showed 66% - 79% and 9% - 75% higher median values than the other directions, 315 

respectively. In contrast, the gridded AHI data for the NW direction from the tower showed less than the 316 
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total ensemble mean average value and was even lower for the W directions, which include a park and a 317 

cemetery. There were no obvious differences in the footprint areas between seasons (Figure S1 in 318 

Supporting Information) and no obvious land use differences other than the green areas. Higher fluxes, 319 

including CO2 flux (Figure 6c), from NW directions are nevertheless likely caused by anthropogenic 320 

industrial activities. Several small and mid-size oil & gas supply manufacturers are located within a 500-m 321 

radius of the tower (Figure 1). A large metal surface coating company in the immediate NW operates large 322 

ovens fueled by gas burners on a regular basis, venting through the roof exhaust hoods only 100 m from the 323 

tower, thus explaining all or most of the observed higher fluxes from that direction. Its source appears either 324 

missing from the AHI or is blended into a larger area since the company has another location outside the 325 

study area. 326 

In the E direction from the tower, only LE showed relatively higher fluxes. Judging from the slightly 327 

lower CO2 flux, these higher fluxes are likely not related to an industrial source process, but rather to a 328 

slightly larger amount of tree foliage on mature urban trees near the tower’s maximum footprint impact 329 

areas. Unlike for the W and NW directions from the tower, few distinctive anthropogenic heat sources were 330 

identified, but no industrial heat sources were located within 1 km east from the tower.  331 

 332 

3.5. Estimate of annual emission of anthropogenic heat 333 

In our study domain, the total ensemble mean values of AHI were ~ 34 W m-2 in both summer and 334 

winter, which are approximately four times higher than those for the entire city of Houston (~9 W m-2), but 335 

only a third of the values for downtown Houston (101 W m-2 in summer and 104 W m-2 in winter). This 336 

indicates that the study site represents a relatively higher energy consumption area, possibly due to its rather 337 

old, energy inefficient residential and commercial housing structures cooled by old, inefficient air 338 

conditioners. Per capita, however, our domain emitted approximately 48 W m-2, which is approximately 50% 339 

and 30% lower than values for downtown (~102 W m-2 per capita) and of the whole city (~68 W m-2 per 340 

capita), respectively, during a typical summer month (August). This lower value of per-capita emission 341 

implies that the local waste heat sources are not likely dominated by local residents.  342 

Since the AHI data were only available for summer and winter, we estimated annual anthropogenic 343 

heat release under the assumption that the vehicles are the main heat emission sources in the study domain. 344 

Based on Harris county traffic count data (http://www.eng.hctx.net/traffic/hc_counts.PDF), the traffic counts 345 

in spring and autumn were approximately 85% of those in summer, while there was no difference between 346 

summer and winter during the study period. Thus, we assigned 29 W m-2 to the spring and autumn AHI heat 347 

flux. Averaging the four seasonal AHI heat fluxes then resulted in 32 W m-2 annual-basis Qf fluxes.  348 

This value can be compared to the energy closure approach, calculated when the net storage heat flux 349 

(∆Qs) in eq. (1) becomes zero in the long-term (> 1yr) over all footprint areas, and Res becomes 350 

representative of Qf . The calculated annually averaged Res-driven Qf was 27±1 W m-2 (25 ± 1 W m-2 when 351 

excluding NW directions) based on a total of 13 12-month periods throughout the study period, 352 

approximately 15% lower than the AHI-based annual Qf.  353 

In a further extension, applying the ‘footprint-weighted inventory’ approach (Section 2.6) resulted in 354 

averaged Qf values of 24 W m-2 (summer) and 22 W m-2 (winter). These values are virtually identical to the 355 
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Res-driven Qf, and were only slightly lowered when considering the seasonal variation of traffic volume (20-356 

22 W m-2).  357 

These Qf values are similar to anthropogenic annual mean waste heat emissions calculated in previous 358 

studies in a (sub)tropical areas: 11 – 85 W m-2 in Singapore (Quah and Roth, 2012) and 5 – 25 W m-2 in São 359 

Paulo, Brazil (Ferreira et al., 2011), which were estimated by inventory approaches. Waste heat emissions in 360 

non-subtropical areas are also comparable:  5 - 10 W m-2 in Swindon, UK (Ward et al., 2013), 11 W m-2 in 361 

London (Iamarino et al., 2012), and 35 W m-2 in Reykjavik, Iceland (Steinecke, 1999) derived from energy 362 

consumption and population statistics; and 13 W m-2 and 20 W m-2 in Helsinki, Finland (Nordbo et al., 2012), 363 

and in Basel, Switzerland (Christen and Vogt, 2004), respectively, under the assumption that ∆Qs averages 364 

to zero over long time periods. Note, that the observed lack of seasonality of Qf was also reported for Sao 365 

Paulo, Brazil (Ferreira et al., 2011), and Los Angeles, CA (Sailor and Lu, 2004), both cities with similarly 366 

low annual temperature seasonality, and stands in contrast to cities at higher latitudes, e.g., Lodz, Poland 367 

(Offerle et al., 2005) and Swindon, UK (Ward et al., 2013), which emit much higher waste heat in winter.  368 

Lastly, we estimated ∆Qs by directly solving eq. (2) using the measured fluxes and the footprint-369 

weighted Qf. The seasonally averaged diurnal variations of ∆Qs, Qf and Res are shown in Figure 7. The 370 

relatively late occurring peak in ∆Qs has been reported in the other subtropical studies including Mexico 371 

City and Mexicali as reviewed by Roth (2007), and São Paulo, Brazil (Ferreira et al., 2013), possibly a 372 

feature of subtropical urban SEB. The average ∆Qs was 128 W m-2 (daytime) and -41 W m-2 (nighttime) in 373 

summer, and 105 W m-2 (daytime) and -16 W m-2 (nighttime) in winter. Considering the lack of difference of 374 

Qf between summer and winter (<8%), the higher ∆Qs in summer is due to higher Q* values. 375 

 376 

4.  Summary and Conclusion 377 

We investigated the surface energy balance in a humid subtropical urban area. The measurements of 378 

Q*, H and LE from a tall flux tower using an EC system for two years showed expected diurnal and seasonal 379 

variations, highest in summer, lowest in winter. The partitioning of Q* into H and LE was 42% (IQR: 27% 380 

to 65%) and 22% (IQR: 11% to 42%) during daytime, respectively. The mean β ranged from 1.2 in summer 381 

to 2.1 in winter, and showed the expected seasonal effect from LE as driven by a higher amount of 382 

evapotranspiration in summer, and a lower amount of foliage in winter. 383 

Temporal aspects of H, LE and CO2 flux by wind direction revealed potential anthropogenic heat 384 

sources contributing to H within a short radius from the tower, identified as small and medium metal 385 

processing industries in NW and W directions; higher LE fluxes from E and SE directions were attributed to 386 

the local tree canopy. Both of these sources were corroborated by the measured CO2 fluxes since NW wind 387 

directions carried higher heat and CO2 fluxes from an industrial heating process (burner) and SE wind 388 

directions carried higher water vapor and lower CO2 fluxes as a result of photosynthesis in the locally denser 389 

tree canopy. 390 

Heat storage in the urban fabric was calculated by the residual method. It contributed more than a 50% 391 

of median Q* both in summer and winter, a somewhat large amount considering the average land cover 392 

statistics in the study domain. This may be due to the mismatch of footprint areas between radiation and flux 393 

(Figure 1), inducing an energy balance closure problem (Offerle et al., 2005). Within the radiative footprint 394 

area, a significantly lower vegetation fraction and dominant impervious area likely result not only in a higher 395 

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Bowen ratio, but may have also lead to higher Q* due to a lower albedo, and a resulting overestimate of the 396 

storage flux within the larger H+LE flux domain.  397 

The local Qf was estimated in different ways including (1) the inventory approach, (2) the energy 398 

balance closure approach, and (3) the newly introduced ‘footprint-weighted inventory’ approach. The values 399 

calculated by the two inventory based approaches (1, 3) showed a range of annual Qf from 20 to 30 W m-2, 400 

closely corresponding to the Res-driven Qf. Considering possible discrepancies between Qf values calculated 401 

by methods 1 and 2, the ‘footprint-weighted inventory’ method may represent an improvement in areas of 402 

heterogeneous surface coverage, but, for validation purposes, should be applied on a higher spatial 403 

resolution gridded dataset generated by building-scale energy modeling imbedded in urban canopy models. 404 

Further investigations into the residual of the energy balance are intended to better characterize the UHI 405 

estimate. Use of a mesoscale numerical model coupled with an urban climate module may be necessary to 406 

quantify the effect of anthropogenic heat in regional-scale atmospheric environments.  407 
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 559 
Table 1. Subset of installed (micro-) meteorological sensors on the Yellow Cab tower 560 
Parameter Sensor (model) Elevation  Unit 
Wind speed 
Wind direction 
Pressure 
Precipitation 
Incident solar radiation 
Net radiation 
3-D wind speed + dir. (2008) 

Cup anemometer (034B 1) 
Wind vane (034B 1) 
Silicon capacitance (Setra 278) 2 

TE525-L 6’’ (tipping bucket) 3 
Pyranometer (300-1100 nm) 4 
Thermopile (NR-LITE-L) 2 
Sonic anemometer (CSAT3) 2 

60 m 
60 m 
2 m 
12 m 
60 m 
60 m 
60 m 

m s-1 

degrees 
kPa/mbar 
mm 
W m-2 
W m-2 
m s-1/deg 

1 MetOne Instruments 
2 Campbell Scientific, Inc. 
3 Texas Instruments via Campbell Scientific, Inc. 
4 Apogee 

 561 
 562 
 563 
Table 2. Average seasonal energy balance fluxes for u* ≥ 0.2 m s-1 (Unit: W m-2;  564 
5% trimmed means calculated from the half-hourly data).  565 

 
Spring Summer Autumn Winter 

24 hours 

Q* 104 121 91 44 

H 59 64 52 36 

LE 30 54 40 15 

Res 23 23 29 2 

H/Q* 0.28 0.28 0.26 0.31 

LE/Q* 0.12 0.16 0.07 0.03 

Res/Q* 0.6 0.56 0.67 0.66 

β 2.2 1.32 1.47 2.84 

N  8168 8211 5984 6821 

Daytime (Q* > 0) 

Q* 263 283 258 178 

H 117 115 101 89 

LE 57 88 67 31 

Res 85 85 100 65 

H/Q* 0.49 0.43 0.4 0.57 

LE/Q* 0.27 0.38 0.31 0.24 

Res/Q* 0.24 0.19 0.27 0.16 

β 2.12 1.36 1.57 3.06 

N  4221 4461 2936 2882 

Nighttime (Q* ≤ 0) 

Q* -37 -43 -47 -35 

H -1 -2 -4 -2 

LE 3 8 10 4 

Res -40 -53 -52 -42 

H/Q* -0.05 0.04 0.04 0.03 

LE/Q* -0.11 -0.22 -0.34 -0.19 

Res/Q* 1.17 1.19 1.32 1.22 

β 0.36 -0.05 -0.29 0.22 

N  3947 3750 3048 3939 

 566 
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 567 
 568 

 569 
Figure 1. Distribution of land cover within the study domain (3 km×3 km), overlaid with the average 570 
autumn footprint function (thick black contour lines represent the probability of flux coming from within the 571 
area). The 90%-level of the radiative footprint area is indicated by a dashed line circle.The footprint 572 
functions for the other seasons are in Figure S1 in the Supporting Information.  573 
 574 
 575 
 576 
 577 
 578 
 579 
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 582 
 583 

 584 
Figure 2. Seasonal variation of meteorology. 30-minute averaged diurnal variation of temperature and RH, 585 
and total accumulated rainfall (top); wind roses (bottom) in each season. 586 
 587 
 588 
 589 
 590 
 591 
 592 
 593 
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 601 
 602 
Figure 3. Boxplots of seasonal diurnal variation of median energy fluxes of (a) Q*, (b) H, (c) LE and (d) Res 603 
during the study period.  604 
 605 
 606 
 607 
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 608 
 609 
Figure 4. Comparative median diurnal variation of energy fluxes as a function of season.  610 
 611 
 612 
 613 
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 615 
Figure 5. Median seasonal, diurnal variation of flux ratios:  (a) H/Q*, (b) LE/Q*, (c) Res/Q* and (d) β 616 
(=H/LE). Bowen ratio in (d) is drawn for daytime only (Q*>0) for each season. 617 
 618 
 619 
 620 
 621 
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 623 
Figure 6. Monthly flux by wind direction of median H (top), LE (middle) and CO2 fluxes (µmol m-2 s-1) 624 
(bottom). The radial axis indicates the time of year (month). 625 
 626 
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 627 
Figure 7. Calculated ∆Qs (black triangles) in summer and winter along with flux-weighted Qf (cross circle) 628 

and Res (black line).  629 

 630 
 631 
 632 
 633 
 634 
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Highlights 

� Seasonal energy flux measurements were conducted in a subtropical urban area 

� Anthropogenic heat emissions were estimated via a residual method and an inventory 

� Local anthropogenic heat sources were partially revealed 

� A new “footprint-weighted inventory approach” was introduced 
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