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Existence of the Dielectric Constant in Rigid-Dipole Fluids: The Direct 
Correlation Function 

JOHN D. RAMSHAW* 

Department of Physics, The University of Utah, Salt Lake City, Utah 84112 

(Received 10 January 1972) 

The question of whether the dielectric constant E exists (is well defined) for a finite fluid system of rigid 
dipolar molecules is reconsidered and reformulated. It is found that this question can most simply be 
expressed in terms of the behavior of the position- and orientation-dependent direct correlation function 
C(fl' (,)1; f., (,).). It is shown that E exists if c satisfies the following two conditions: (a) c,,-,-</>/kT 
for I fl-f21 ><T, where cf> is the dipole-dipole potential and <T is a length which is large microscopically 
but small macroscopically. (b) C(fl, (,)1; f2, (,)2) is of the form c.(1 fl-f2i)+F(fl-f2) :e«(,)I)e«(,).) for 
I fl-f.1 <<T, where e«(,» is the unit vector with orientation (,). An explicit (and new) expression for E 
in terms of c is automatically obtained; its applicability is ensured if the above conditions are satisfied. 
These results lend new intuition and insight into the question of the existence of E, and suggest a promising 
approach for future investigations of this question. 

I. INTRODUCTION 

The dielectric constant E exists (is well defined) only 
if there exists a constant x, independent of position and 
sample geometry, such that per) =xE(r), where per) 
and E (r) are, respectively, the polarization (dipole 
moment per unit volume) and the macroscopic Maxwell 
electric field at the point r within the dielectric. If such 
a constant exists, the dielectric constant E is defined in 
terms of it by the equation E= 1 + 47rx. Since per) and 
E(r) are well defined regardless of whether E exists, the 
existence of E cannot be guaranteed by definition, but 
must be established by theory or experiment. This 
point has been discussed in greater detail elsewhere.1- 3 

in the polarizability.3 This result is obtained in spite of 
(and as a consequence of) the fact that the inter­
molecular correlations in such fluids are expected to be 
purely short ranged in nature. In polar fluids, however, 
the situation is quite different (and perhaps more 
interesting) due to the long-range nature of the perma­
nent dipole-dipole interaction. In fact, the existence of 
E in polar fluids is found to be intimately connected with 
the existence and nature of long-range orientational 
intermolecular correlations in the unperturbed fluid.I.2 
This connection was established and discussed in a 
previous publication,2 in which we restricted attention 
to rigid (unpolarizable) polar molecules in order to 
avoid inessential complications. We obtained the fol­
lowing rigorous expression for Per) : 

per) = f v d3r'K(r, r') oEoCr'), (1) 

where the integration is extended over the volume V 
(whose shape is left arbitrary) occupied by the sample, 
and Eo(r) is the externally applied electric field. The 
dyadic kernel K(r, r') is given by 

Most theoretical work on dielectrics has been con­
ducted within the framework of the assumption that 
E exists.4 This assumption enables one to derive a 
molecular expression for E, but the conditions under 
which this expression is applicable are not revealed by 
the derivation. The question of whether E in fact exists 
has only recently begun to receive much attention. The 
first systematic investigation of this question was 
apparently that of Kaufman and Watson .. They 
develop a very general quantum-mechanic~l approach K(r, r') = M\)2!3[lpU/l(r-r') 
which is applicable to both polar and nonpolar dielec­
trics. A microscopic expression for Per) is obtained by 

(2) 

means of a linked-diagram expansion of the partition where /1-0 is the magnitude of the permanent molecular 
function in the presence of the external field. The dipole moment, 13= (kT)-I, p is the number density, 
dielectric constant is then found to exist if certain U is the unit dyadic, Q)k denotes the set of Euler angles 
graphs in the expansion are neglected, in which case it which specify the orientation of molecule k relative to 
is obtained as a power series in the activity. Because the laboratory coordinate system, e(Q) is the unit 
of the activity expansion, these results apply only to vector with orientation Q), and p(2) is the position- and 
gases. orientation-dependent two-molecule distribution func-

The approach of Kaufman and Watson is so general tion. For simplicity the molecules are taken to be 
that the role of intermolecular correlations is difficult axially symmetric, so that Q)k= CfJk, <Pk) and dQ)k= 
to extract from the theory. Other investigations have sinfJkdfJkd<pk, where fJk and <Pk are the usual azimuthal 
focused attention directly upon the relation between and polar angles. 
such correlations and the existence of E. For gases or Equations (1) and (2) form the basis for the connec­
liquids composed of nonpolar molecules with density- tion between the existence of E and the nature of the 
independent harmonic polarizabilities, it has recently intermolecular correlations. If E exists then Per) is 
been demonstrated that E exists at least to third order locally related to E(r), which requires that the relation 
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between per) and the external field Eo(r) be nonlocal. 
If this is the case, then according to Eqs. (1) and (2) 
the pair distribution function p(2) must contain orienta­
tional correlations of a long-range nature. In order to 
investigate the existence of E, it then becomes necessary 
to evaluate the long-range part of p(2) to see whether 
its behavior is such as to imply [via Eqs. (1) and (2)J 
a local relation between per) and E(r). We did not 
attempt to evaluate p(2) in general, but by means of a 
density expansion we were able to show that E exists 
at least to second order in p for rigid dipolar molecules, 
provided that the external field Eo(r) varies slowly 
with r in a molecular sense. 

The present article is a continuation and extension 
of the basic foundation laid in Ref. 2. Here we go on to 
investigate in general the behavior which p(2) must 
exhibit in order for E to exist. We find that this inves­
tigation is considerably simplified by defining a kernel 
L(r, r') which is the inverse of the kernel K(r, r'). If E 

exists the quantity l(r, r') has a simple and intuitive 
form, whereas the form of K(r, r') is more complicated. 
The relation between the parts of l(r, r') and K(r, r') 
which depend upon molecular correlations is found to 
be of essentially the same form as the well-known 
relation between the direct and total correlation func­
tions. This suggests that l(r, r') may be simply related 
to the direct correlation function in much the same way 
that K(r, r') is related to p(2). We are therefore led to 
expect that it may be advantageous to focus attention 
on the direct correlation function rather than on p(2). 

In order to pursue this idea, it is necessary first to 
generalize the concept of the direct correlation function 
to a finite fluid system composed of rigid polar mole­
cules. This generalization is trivial; it is merely neces­
sary to allow for the presence of the orien ta tional degrees 
of freedom, and for the fact that p(2) (r, (1)1; r', (1)2) 

depends separately upon the position vectors rand r' 
rather than simply upon (r-r'). 

This approach proves to be a fruitful one. We find 
that the following two conditions on the direct cor­
relation function are sufficient to guarantee the existence 
of E [provided, as usual, that Eo(r) varies slowly in a 
molecular sense]: (a) The direct correlation function 
becomes asymptotically equal to -f3cp for 1 r-r' 1>0", 
where q, is the intermolecular pair potential and 0" is a 
length which is small macroscopically but much larger 
than molecular dimensions. For rigid polar molecules q, 
differs negligibly from the dipole-dipole potential q,d 
if 1 r-r' 1>0", so that q, may be replaced by q,d in the 
above statement. (b) For 1 r-r' 1<0", the direct cor­
relation function is of the form 

cs(1 r-r' J)+F(r-r') :e«(I)l)e(~), 

where, of course, cs(1 r J) and F(r) remain finite as 
1 r I~. The existence of E is rigorously implied by 
these conditions, and an explicit expression for it in 
terms of the direct correlation function is automatically 

obtained. To our knowledge, this expression has not 
been derived previously. 

Whether conditions (a) and (b) are actually satisfied 
will not be investigated in the present article. However, 
a few comments pertinent to this question are in order. 
Condition (a) is frequently said to be satisfied, far from 
the critical point, for fluids composed of molecules with 
short-range intermolecular potentials.6 Its validity for 
polar fluids as well has also been claimed7 and does not 
seem unlikely, although to our knowledge no rigorous 
proof is available. Condition (b) is almost certainly not 
rigorously satisfied, for in essence it requires the 
orientation-dependent term in the short-range part of 
the direct correlation function to have the same angular 
symmetry as the dipole-dipole potential. It is therefore 
likely that condition (b) is valid only to some unknown 
degree of approximation. The quality of this approx­
imation will depend upon the context; It may con­
ceivably be high for dielectric polarization but low in 
other contexts. 

The existence of E for rigid-dipole fluids has also been 
investigated by Nienhuis and Deutch.8 These authors 
attempt the direct evaluation of p(2) by resumming a 
density expansion. A graphical representation is utilized 
which is specifically suited to the presence of the long­
range dipole-dipole interaction. By making certain 
approximations, they are able to formally sum the 
expansion to infinite order. The resulting approximate 
expression for p(2) is then combined with Eqs. (1) and 
(2) above. Provided that Eo(r) varies slowly in a 
molecular sense, it is found that per) is indeed locally 
proportional to E(r), so that E exists under the condi­
tions of the derivation. 

Nienhuis and Deutch state that their results demon­
strate the existence of E for rigid-dipole fluids "apart 
from some minor and completely acceptable restric­
tions." This is perhaps too strong a statement, for their 
derivation contains several assumptions and approx­
imations whose cumulative effect is difficult to assess. 
In particular, in obtaining their Eq. (3.29) from their 
Eq. (3.28) they make an approximation whose quality 
is neither explored nor estimated, It is also noteworthy 
that their derivation is based upon a density expansion, 
a fact which implies that its results are strictly appli­
cable only to gases. It is likely, however, that the same 
results could be obtained (from the same approxima­
tions) by functional derivative techniques,9 which are 
not subject to this limitation. 

Thus, while the approach of Nienhuis and Deutch is 
not without interest, their results can in no sense be 
regarded as conclusive. We feel that the formulation 
developed in the present article is to be preferred 
because of its considerably greater simplicity and 
intuitive appeal. By transforming the problem so that 
the direct correlation function becomes the object of 
interest, we find that conditions sufficient to guarantee 
the existence of E can be expressed very simply indeed. 
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Condition (a) above, in particular, appeals strongly to 
intuition and to what we know about the behavior of 
nonpolar fluids. If this condition is satisfied than it is 
the convolution in the equation relating the direct 
correlation function to p(2) which provides the mecha­
nism by which the simple behavior of the direct correla­
tion function is transformed into a complex shape­
dependent behavior for p(2). Our results therefore pro­
vide new intuition and insight into the question of the 
existence of E for rigid-dipole fluids, and suggest that 
future investigations of this question may expect to 
profitably restrict attention to the direct correlation 
function, and in particular to investigating the validity 
of conditions (a) and (b) above. 

The new expression for E which emerges from our 
treatment bears no apparent resemblance to the Kirk­
wood equation, which emerges from the treatment of 
Nienhuis and Deutch. Within the framework of condi­
tions (a) and (b), however, these two expressions are 
in fact equivalent. This follows from the fact that the 
Kirkwood equation is a logical consequence of the 
assumption that E exists, while the existence of E is a 
logical consequence of conditions (a) and (b). It would 
therefore be of interest to know the extent to which the 
various approximations made by Nienhuis and Deutch 
are equivalent to conditions (a) and (b) above. One 
wonders in particular whether the Nienhuis-Deutch 
graphical-expansion treatment of p(2) is not in essence 
an indirect justification of our condition (a). In this 
connection, it is noteworthy that our condition (a) 
corresponds closely to the lowest-order result of the 
,,-ordering theory of Lebowitz, Stell, and BaerlO [their 
Eq. (S.18)J, and that if one combines these authors' 
equations (5.7) and (5.18) one obtains a result which, 
for a polar fluid, appears equivalent to Eq. (3.28) of 
Nienhuis and Deutch. This correspondence is certainly 
suggestive, and lends further support to our contention 
that the direct correlation function provides the simplest 
and most fundamental approach to the problem. 

II. THE INVERSE KERNEL 

We emphasize aga{n that the present article is a 
natural extension of Ref. 2, familiarity with which is 
assumed throughout the following development. Dis­
cussions and explanations given in Ref. 2 will not be 
repeated here; unless otherwise stated, everything in 
the present article (e.g., the physical situation, the 
molecular model, the notation, etc.) is the same as in 
Ref. 2. The basic results of Ref. 2 have already been 
quoted as Eqs. (1) and (2) above. 

If the dielectric constant exists, then 

per) = (E-l)E(r)/47r (r in V), (3) 

where E is a constant of the material, dependent upon 
density and temperature but independent of position 
and sample geometry. The field E(r) is the macroscopic 
Maxwell electric field to be obtained by solving the 

Maxwell equations of electrostatics. It is convenient, 
however, to eliminate E(r) in favor of the "Lorentz 
electric field" EL (r), which is defined by 

EL(r) =E(r)+(47r/3)P(r). (4) 

Combining Eqs. (3) and (4), we see that if E exists then 

per) = (3/47r)[(E-1)/(E+2)JEL (r), (r in V). (5) 

We use the Lorentz field EL(r) rather than the 
Maxwell field E(r) because EL(r) is the field within a 
small spherical cavity at the point r, whereas E(r) is 
the field within a small needle-shaped cavity with axis 
along P(r). The spherical cavity is mathematically 
more convenient to deal with. We emphasize that Eq. 
(4) is simply the definition of EL(r); we do not assume 
that EL(r) may be identified with the average local 
field acting on a representative molecule at r, nor does 
such an average local field play any part in our develop­
ment. The explicit expression for EL(r) in terms of 
per) is 

EL(r) = Eo(r) + lim I d3rIT~(r-r') .P(r'). (6) 
O~O 

Here T~(r) =(I(I r 1-5)T(r), where T(r) is the dipole­
dipole interaction tensor vv I r 1-1 and (I(x) is the 
Heaviside unit step function, defined to be unity if 
x20 and zero otherwise. Equation (6) is equivalent 
to the Maxwell equations; it is obtained by combining 
the definition of EL(r), Eq. (4), with Eq. (1) of Ref. 2. 

We now define L(r, r') to be the inverse of the kernel 
K(r, r') which appears in Eq. (1), so thatlI 

Eo(r) = Iv d3r 'L(r, r') ·P(r' ) (r in V). (7) 

By substituting Eq. (7) into Eq. (1), we find that 
K(r, r') and L(r, r') are related by 

I v d3rlK(r, rl) . L(rl' r') = U5(r- r'). (8) 

We now proceed to examine the behavior which L(r, r') 
must exhibit in order for E to exist. We first restrict 
attention to external fields Eo(r) which vary slowly 
with r in a molecular sense. Bv this we mean that 
Eo(r+a) differs negligibly from Eo(r) if I a I <u, where 
u is a distance which is small macroscopically but much 
larger than a molecular diameter. For concreteness we 
may take u~1000 A= 10-5 cm. Since our concern is 
limited to fluids, P(r) may safely be assumed to vary 
slowly with r in the same sense as Eo(r). This in turn 
implies2•3 that the integral in Eq. (6) becomes inde­
pendent of 5 if 5 ~u. The limit as 5-'>0 in Eq. (6) 
may therefore be achieved simply by setting 5=u, so 
that 

EL (r) = Eo(r) + I d3r ITa(r-r' ) . P(r' ). (9) 

We next eliminate Eo(r) from Eq. (9) by means of 
Eq. (7), obtaining 

EL(r) = J v d3r'[L(r, r') + Tu(r-r') ]oP(r' ) (r in V). 

(10) 
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Now in order for E to exist, Eq. (10) must reduce to 
the local relation (5) between per) and EL(r). This 
requires, first of all, that [L(r, r')+T.(r-r')] be short 
ranged. That is, L(r, r') must be of the form 

L(r, r') = L.(r, r') - T.(r-r'), (11) 

where L8(r, r')~O if 1 r-r' I>cr. If this is the case then 
Eq. (10) reduces to 

EL(r) =A(r) .P(r) (r in V), (12) 

where 
A(r) = J", d3r'L8(r, r'). (13) 

The" 00 " beneath the integral sign in Eq. (13) indicates 
that the integration is extended over all space. Although 
it is local, Eq. (12) does not yet imply the existence of E. 
We must further require that 

A(r) =AU, (14) 

where A is independent of r. Since TrU=3, A =t TrA(r). 
Combining Eqs. (14) and (12), we obtain 

EL(r) =AP(r) (r in V). (15) 

Equation (15) is of the form of Eq. (5), with 

(3/4,71'-) [(E-1) / (E+2) ]=A-l 

=[tTrJ",d3r'L.(r,r')jl. (16) 

We see, therefore, that in order for E to exist the long­
range part ofL(r, r') must simply be equal to - T.(r-r'). 
In addition, the behavior of the short-range part 
L8(r, r') must be such that the quantity A(r), given 
by Eq. (13), is both independent of r and proportional 
to the unit dyadic U. The dielectric constant exists if 
and only if these conditions are satisfied, in which case 
it is given by Eq. (16). 

It is now advantageous to separate out the parts of 
K(r, r') and L(r, r') which depend upon the inter­
molecular correlations. To this end, we define a cor­
relation tensor G (r, r') by 

G(r, r') =p-2JdCl)ldCl)2P(2l(r, Cl)l; r', Cl>2)e(Cl)I)e(Cl>2), (17) 

so that Eq. (2) becomes 

K(r, r') =.uo2j3p[tUo(r-r') +pG(r, r')]. (18) 

Substitution of Eq. (18) into Eq. (8) yields 

G(r, r') =H(r, r')+3pJv d3rIG(r, rl) ·H(rt, r'), (19) 

where 

H (r, r') = (3p)-IUo(r-r') -t.uo2j3L(r, r'). (20) 

According to Eq. (20), we may regard -H(r, r') as 
the part of (.uo2j3/9)L(r, r') which depends upon the 
intermolecular correlations. 

One now notices that Eq. (19) is of the same form 
as the well-known Ornstein-Zernike relation9 between 
the direct and total correlation functions, the role of 
the former being played by H (r, r') and that of the 

latter by G(r, r'). [The factor of 3 in Eq. (19) is due 
to the tensor character of the equation; its origin is the 
fact that TrU=3.] Since G(r, r') is simply related by 
Eq. (17) to the complete pair distribution function p(2l, 
we are led to wonder whether H(r, r') is similarly simply 
related to the direct correlation function. This question 
is investigated in the next section. 

III. THE DIRECT CORRELATION FUNCTION 

We must first generalize the concept of the direct 
correlation function to the case of a finite fluid system 
of rigid polar molecules. For this purpose, it is conve­
nient to define the total correlation function her, Cl); r', Cl)') 
by the equation, 

her, Cl); r', Cl)') = (p/471")-2p(2l(r, Cl); r', Cl)') -1. (21) 

In terms of her, Cl); r', Cl)'), Eq. (17) for G(r, r') 
becomes 

G (r, r') = (471")-2 J dCl)dCl)' h( r, Cl); r', Cl)') e (Cl») e (Cl)'). (22) 

Because we are concerned with a finite (although 
macroscopic) system, her, Cl); r', Cl)') does not strictly 
approach zero for large 1 r- r' I. It approaches instead 
small terms of order l/N, but since these terms are 
independent of r, Cl), r', and Cl)' they make no contribu­
tion to Eq. (22) and may be ignored. For our purposes, 
therefore, Eq. (21) is an adequate definition of 
her, Cl); r', Cl)'), although (as is well known) the l/N 
terms may be important in other contexts. 

We now define the direct correlation function 
c(r, Cl); r', Cl)') by the equation, 

her, Cl); r', Cl)') =c(r, Cl); r', Cl)') + (p/471")J v d3rrf dCl)1 

Xh(r, Cl); rl, Cl)l)c(rl, Cl)l; r', Cl)'). (23) 

Equation (23) is the appropriate generalization of the 
familiar Ornstein-Zernike equation.9 Allowance has 
been made in Eq. (23) for the presence of the orienta­
tional degrees of freedom, for the fact that the system 
is finite, and for the fact that her, Cl); r', Cl)') depends 
separately upon rand r' rather than simply upon 
(r-r'). The physical content and intuitive significance 
of the direct correlation function are in no way dimin­
ished by these modifications; they remain the same as 
in the case of an infinite monatomic fluid with short­
range correlations. Note that Eq. (23) contains a con­
volution over Cl)l as well as rl; this angular convolution 
is essential to the desired physical interpretation of 
c(r, Cl); r', Cl)'). 

It is convenient to define a quantity C(r, r') which 
is related to the direct correlation function in the same 
way that G(r, r') is related to the total correlation 
function, 

In order to investigate the relation between G(r, r') 
and C(r, r'), we multiply Eq. (23) by the dyad 
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(471')-2e((I)e((I)') and integrate over (I) and (I)'. The 
result is 

G(r, r') = C(r, r') + (471')-3pJ v d3rlJ d(l)d(l)ld(l)' 

Xh(r, (I); rl, (l)1)c(rl, (1)1; r', (I)')e((I))e((I)'). (25) 

Equation (25) is similar in form to Eq. (19), but the 
difference is sufficiently great to prevent H(r, r') from 
being rigorously equal to C(r, r') in general. One 
suspects, however, that H(r, r') and C(r, r') may be 
approximately equal, at least under favorable circum­
stances. To make this idea precise, let us assume 
provisionally that c(r, (I); r', (I)') is of the form 

c(r, (I); r', (I)') =c,(r, r')+F(r, r') :e((I))e((I)'). (26) 

Substituting Eq. (26) into Eq. (24), we find that 

C(r, r') =~F(r, r'). (27) 

If we now substitute Eq. (26) into Eq. (25) and make 
use of Eq. (27), we obtain 

G(r, r') = C(r, r') +3pJ v d3r1G (r, rl) . C(rl, r'). (28) 

In obtaining Eqs. (27) and (28) we have made repeated 
use of the fact that J d(l)e ((I) e( (I)) = (471'/3) u. By com­
paring Eqs. (19) and (28), we see that if the direct 
correlation function is of the form given in Eq. (26) 
then 

H(r, r') =C(r, r'). (29) 

Thus if Eq. (26) is correct then H(r, r') is, in fact, 
related to the direct correlation function in precisely 
the same way that G(r, r') is related to the total 
correlation function. 

Now for nonpolar monatomic fluids there is con­
siderable evidence that the direct correlation function 
becomes asymptotically equal to -{3¢ for large I r-r' I, 
where ¢ is the intermolecular pair potential.6 •10 This 
relation has also been said to hold for polar fluids.7 

The validity of this relation will not be investigated 
here; we shall be concerned only with its consequences. 
Let us therefore assume that the quantity c(r, (I); r', (I)') 
defined by Eq. (23) differs negligibly from -{3¢(r, (I); 
r', (I)') if I r-r' 1>0', where ¢ is the pair potential for 
the rigid-dipole model,2 But if I r-r' 1>0' then ¢ differs 
negligibly from the dipole-dipole potential ¢d= 
- J.l02T (r- r') : e ((I) e ((I)'). Our first assumption is there­
fore that 

c(r, (I); r', (I)') =co(r, (I); r', (I)') 

where co(r, (I); r', (I)');=;::;:O if I r-r' 1>0'. 
According to Eq. (30), c(r, (I); r', (I)') is indeed of the 

form given in Eq. (26) if I r-r' 1>0'. But this is not 
sufficient to imply Eq. (29); if we want Eq. (29) to be 
valid then we must make the second assumption that 
co(r, (I); r', (I)') is of the form given in Eq. (26). As 
mentioned in the Introduction, this assumption is 

almost certainly not rigorously correct, and the error 
incurred by adopting it is not easily estimated. Even 
if c(r, (I); r', (I)') is in error only for small I r-r'l, the 
convolution in Eq. (25) will propagate the error and 
cause H(r, r') to differ from C(r, r') for both small and 
large I r-r' I. 

We now go on to examine the consequences of the 
above two assumptions. Substitution of Eq. (30) into 
Eq. (24) yields 

C(r, r') =Co(r, r')+~J.l02{3T.(r-r'), (31) 

where 

Co(r, r') = (471')-2Jd(l)d(l)'co(r, (I); r', (I)') e((I)) e ((I)') . 

(32) 

Clearly Co(r, r');=;::;:O if I r-r' I >0'. Combining Eqs. 
(31), (29), and (20), we obtain 

L(r, r') = (J.l02{3p/3)-IUo(r-r') 

- (J.l02{3/9)-ICo(r, r') - T.(r-r'). (33) 

We therefore see that the above two assumptions imply 
that L(r, r') is in fact of the form given in Eq. (11), 
with the short-ranged part L8(r, r') given by 

L8(r, r') = (J.l02{3p/3)-IUo(r-r') - (J.l02{3/9)-ICo(r, r'). 

(34) 

We next combine Eqs. (34) and (13), obtaining 

A(r) = (J.l02{3p/3)-IU- (J.l02{3/9)-IJ 00 d3r'Co(r, r'). (35) 

Now in order for € to exist, the integral in Eq. (35) 
must be independent of r and proportional to U, as 
discussed in Sec. II. In general, this will be the case 
only if co(r, (I); r', (I)') depends only upon the relative 
positions and orientations of the two representative 
molecules involved. This constitutes a third assumption, 
which, however, is very reasonable in view of the 
physical interpretation of co(r, (I); r', (I)') as the direct 
short-range correlation between two representative 
molecules. According to this third assumption, the 
functional dependence of co(r, (I); r', (I)') may be ex­
pressed as co(s, 0, 0'), where s= I r-r' I and a and A' 
denote orientation angles measured with respect to the 
intermolecular axis (r-r'). (In Ref. 2, a and a' were 
denoted by (1)1' and (1)/, respectively.) Our second and 
third assumptions may be combined into the single 
statement 

co(r, (I); r', (I)') = C8 (I r- r' [) +F(r- r') : e( (I) e ((I)'), 

(36) 

where cs(1 r I);=;::;:O and F(r);=;::;:O if I r 1>0'. The tensor 
function F(r) is of course not completely arbitrary; it 
must have the property that the second term in Eq. 
(36) depends only upon s, 0, and a'. 

Our third assumption above ensures that the integral 
in Eq. (35) is both independent of r and proportional 
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to U. The constant of proportionality may be deter­
mined in exactly the same way that the constant d(r) 
was determined in Ref. 2. The result is 

f"" d3r'Co(r, r') = (12-II')-laU, (37) 
where 

a= j"" s2ds J dOdO'co(s, 0, 0') cos,),(O, 0') (38) 
o 

and ')' (0, 0') = cos-I[ e (0) • e (0)')]. Since the dipole­
dipole potential is orientationally orthogonal to 
cos,),(O,O') [see Eq. (49) of Ref. 2J, Eq. (30) implies 
that the value of a will be unchanged if co(s, 0, 0)' 
is replaced by c(s, 0, 0') in Eq. (38). We may there­
fore rewrite Eq. (38) as 

a= j"" s2ds J dOdO'c(s, 0, 0') cos,),(O, 0'). (39) 
o 

Combining Eqs. (37) and (35) and comparing the 
result to Eq. (14), we obtain 

A = (,uo2/3p/3)-I[I- (p/411' ) a]. (40) 

According to Eq. (16), therefore, 

(3/411') [( E-l) / (E+ 2) J = t,uo2/3p[l- (p/411' )a~I, (41) 

where a is given by either Eq. (39) or Eq. (38). 
This completes the development described in the 

Introduction. Our basic assumptions are summarized 
by Eqs. (30) and (36). We have seen that if these 
assumptions are satisfied then the dielectric constant 
exists, in which case it is given explicitly in terms of the 
direct correlation function by Eqs. (41) and (39). This 
expression for E appears to be new. 

Equation (41) may serve as the basis for an expan­
sion of the Clausius-Mossotti function 

in powers of p. It is a simple matter to verify that the 
first two terms in the expansion are identical to those 
obtained in Ref. 2. This provides a limited check on 
Eq. (41) and our development. 

We emphasize again that deviations from Eq. (36) 
may be expected to cause H(r, r') to differ from C(r, r') 
at both short and long range. If there were only a short­
range difference then the main effect would be a change 
in the value of E. Any long-range difference between 
H (r, r') and C(r, r'), however, would imply that E no 
longer rigorously exists, since even if this difference is 
proportional to Tu(r-r') the long-range part of L(r, r') 
will no longer completely cancel with the Tu(r-r') 
appearing in Eq. (10). 

A question of considerable interest is whether Eq. 
(41) for E is equivalent to the well-known Kirkwood 
equation.12 Since the Kirkwood equation emerges from 
the treatment of Nienhuis and Deutch, this question 
is closely related to that of the relationship between our 
work and theirs. A direct demonstration that Eq. (41) 
and the Kirkwood equation are equivalent appears to 

be a nontrivial task. However, it is easy to give an 
indirect proof that these two equations are indeed 
equivalent within the framework of conditions (a) and 
(b) [Eqs. (30) and (36)]. If conditions (a) and (b) 
are satisfied then we have seen that E exists and is given 
by Eq. (41). But the Kirkwood equation is a logical 
consequence of the assumption that E exists. Therefore 
conditions (a) and (b) imply the Kirkwood equation 
as well. The question of whether Eq. (41) remains 
equivalent to the Kirkwood equation when conditions 
(a) and (b) are not satisfied is of less interest, since as 
discussed above E does not then appear to exist. 

IV. THE MEAN SPHERICAL MODEL 
OF WERTHEIM 

Wertheim has recently published a study of the mean 
spherical model (MSM) for polar fluids. 13 The MSM 
includes our condition (a) (with q replaced by a hard­
sphere diameter R) as part of its definition, and also 
defines p(2) to be zero if I r- r' [< R. Wertheim shows 
that this model is exactly soluble. He first considers the 
infinite-volume case, and then the finite-volume case 
for the special case of a spherical volume. He does not 
investigate the existence of E, but under the assumption 
that E exists he obtains an explicit expression for it in 
closed form. This expression is obtained by considering 
the familiar case of a spherical sample in a uniform 
external electric field. 

It is not difficult to show that our expression for E 
[Eqs. (41) and (39) J reduces, when specialized to the 
MSM, to Wertheim's expression. For this purpose, 
equations in Wertheim's article will be identified by a 
"W"; e.g., Eq. (W63). If we substitute Eq. (WI2) 
for the direct correlation function into Eq. (39), we 
obtain 

a=t(411')2jR s2dsCA(S) , (42) 
o 

where Eq. (W30) has been used. Equation (W41) , 
together with the fact that CA (r) = CA (r), implies that 
cA(r) = 2K[c+(r) -c_(r)]. Combining this relation with 
Eqs. (W45) and substituting the result into Eq. (42), 
we obtain 

a=t(411')2(2K) jR s2ds[c8 (s, 2Kp)-c.(s, -Kp)J 
o 

= (411'/3p)[3-q(2~) -2q( -~) J, (43) 

where Eq. (W50) has been used. Substituting Eq. (43) 
into Eq. (41), we obtain 

(E-1) / (E+2) = 3y[q(2~) +2q( -~) ~I, (44) 

where y=411',u02/3p/9. If we now eliminate y from Eq. 
(44) by means of Eq. (W51), we obtain precisely 
Eq. (W63). This agreement provides a simultaneous 
check on both our work and Wertheim's. 

It is also noteworthy that Wertheim's expression for 
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the direct correlation function, Eq. (W12), is of the 
form of our Eq. (26). This means that our condition (b) 
is rigorously satisfied for the MSM, and since condi­
tion (a) is satisfied by definition we see that the dielec­
tric constant is rigorously well defined for the M SM. 
The MSM therefore acquires the distinction of being 
the only nontrivial model of a polar fluid for which E 

is known rigorously to exist. We re-emphasize, however, 
that condition (b) is not in general expected to be 
satisfied; its validity for the MSM must for the present 
be regarded as a feature peculiar to this particular 
modelY 

V. CONCLUDING REMARKS 

We have seen that it is convenient to investigate the 
existence of E by focusing attention on the kernel 
l(r, r') inverse to the kernel K(r, r'), since if E exists 
the former exhibits a much simpler behavior than the 
latter. This approach leads one naturally to inquire 
into the behavior of the direct correlation function in 
polar fluids. It is found that sufficient conditions for 
the existence of E can be simply expressed in terms of 
the short- and long-range behavior of the direct cor­
relation function. The condition on the long-range 
behavior is intuitively quite plausible, but that on the 
short-range behavior is probably valid only to a certain 
degree of approximation. These results lend a great 
deal of new intuition and insight into the question of 
the existence of E for polar fluids. 

The present context provides a good example of how 
the direct correlation function may be a useful concept 
even though it is not short ranged in comparison to the 
total correlation function. The direct correlation func­
tion is useful not because it is short ranged but because 
it is simple. Since in the present case the system is 
finite and the direct correlation function is long ranged, 
the convolution in Eq. (23) transforms the simple 
behavior of the direct correlation function into a com­
plicated shape-dependent behavior for the total cor­
relation function or p(2). The use of the direct correlation 
function allows one to see how this complicated behav­
ior, which at first appears somewhat mysterious, may 
arise in a simple manner. 

It should be emphasized, however, that the definition 
of the direct correlation function is intuitively moti­
vated, and one has no real assurance that this quantity 
rigorously possesses the simple physical interpretation 
we would like it to. The basic idea behind the concept 
is simple and has a strong intuitive appeal, namely that 
the total correlation between two molecules may be 
regarded as the sum of a direct and an indirect effect, 
the indirect effect being transmitted by chains of direct 
effects between intermediate molecules. All possible 

such chains must be summed over. The definition of the 
direct correlation function is based upon the tacit sup­
position that a chain of direct correlations involving 
more than two molecules can be expressed as a product 
(actually a convolution) of direct pair correlations. 
(This is reminiscent of a Markoffian assumption, 
usually encountered with time as the random variable.) 
The sum over chains may then formally be carried out 
to yield Eq. (23). Logically, of course, Eq. (23) is 
simply the definition of the direct correlation function, 
and thus involves no assumption whatever. The above 
discussion is intended only to emphasize that care must 
be taken in attributing to the direct correlation func­
tion properties which are not strictly implied by its 
definition. 
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