
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

1-1992

Porting the Chorus Supervisor and Related Low-Porting the Chorus Supervisor and Related Low-

Level Functions to the PA-RISC Level Functions to the PA-RISC

Ravi Konuru
Oregon Graduate Institute of Science & Technology

Marion Hakanson
Oregon Graduate Institute of Science & Technology

Jon Inouye
Oregon Graduate Institute of Science & Technology

Jonathan Walpole
Oregon Graduate Institute of Science & Technology

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer and Systems Architecture Commons, and the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
"Porting the Chorus Supervisor and Related Low-Level Functions to the PA-RISC," Ravi Konuru, Marion
Hakanson, Jon Inouye and Jonathan Walpole, OGI Technical Report No. CS/E-92-006, January 1992.

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if
we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/62
mailto:pdxscholar@pdx.edu

Porting the Chorus Supervisor and
B.elated Low-level Functions to the PA-nISC

Ravindranath 1(onuru,
Marion Hakanson,

Jon Inouye,
Jonathan Walpole:

Department of Computer Science and Engineering
Oregon Craduate Institute of Science and Technology

January 27, 1992

Ahstract

ThiR do('.ument. is part of a series of report.s descTihing the design deeisions made in porting
the Chorus Operating SystClll to the Hcwlctt-Packard 9000 Series 800 workstation.

The Supervisor is the name given by Chorus to a colledion of low-level functions that are
machine dependent. <':Ind have 1.0 he implement.ed when Chorus is port.ed from one machine 1.0

another. The SUPCT'1.'iSOT is responsible for interrupt, trap and exception handling, managing
low-level thread initialization, eon text switch, kernel initialization, managing simple deviees
(timer and console) and offering a low-level debugger [7]. This document describes the port of
the Supervisor and related low-level funetions.

The informacion cont.ained in ['h is paper will be of int.erest, Lo people who wish 1,0 underst.and:

• The main characteristics of Chorus and PA-RISe a.rchitecture tha.t are useful in under-
standing the port of the Chorus S'upcn:isor .

• The rcquirC111cnts and implementa.tion of the Chorus 8upcn:isor .

• The rcquirclllcnts and implementation of Chorus page fault interface

• The requirements and implement.ation Chorm, SYf.JLem Call Int.errace

• The requirements and implement.at.ion of muler inLerf<1ce which is a pnft. of t.he Chorm,
system call interface for efficient thread synchroniza.tion.

• R.ea.sons for the modifica.tions to the porta.ble layers of Chorus kernel to implc111cnt the
above requirelllents. A smlllllary of the lllodifications is also presented.

H is useful t.o read t.he port. overview [17J hefore rending chis document. It, is also a good
idea to have the Precision Architecture and Instruction Set Reference Manual [10J and Chorus
v3.3 illlplclllcntation guidc[7J on hand although it is not absolutely nccessary.

"'This research is sllpportf'd by thf' Hf'wlf'tt-Packard Company (HP), Chorus Systemes, and Oregon Advancf'd
Computing Instil ute (OAeIS).

1

Contents

1 Introduction
1. -I Supervisor Port Overview

1.2 Chorus Overview
1.3 PA-RISC

1.3.1 Control Rcglstcn;
1.3.2 Interruption, ..
1.:1.3 Vlemory Vlanagement Support

2 Supervisor
2.1 Supervisor requirements

2.1.1 Supervisor interface requirements
2.1.2 Super vi"" Actor Interface
2.1.3 Event (h,terrupt, Trap and Exception) IIandling
2.-1.4 Timer and Console l'vlanagernent

2.1 .. 5 Low-level Ilebugging facility.
2.1.6 Kernel initialization ...

2.2 Supervisor implementation
2.2.1 Thread Regioter Context
2.2.2 Ylachirw Dependent Thread Deocriptor .
2.2.3 SupCtxInit() ...
2.2.1 SupCtxSwitchO
2.2.Ei SupGetU serCtx() .
2.2.6 SupCtxRe,etO ..
2.2.7 SupCtxI,U,erModO
2.2.8 The variolJs connect and disconnect functions
2.2.9 Supervisor Actor Interface Implementation
2.2.10 Interrupt masking and monitoring functions
2.2.11 Event Handling
2.2.12 Tinwr and Console 11anagcIIlcnt
2.2.13 Debugger
2.2.14 Kernel Initialization

3 Chorus Page Fault Interface
3.1 Requirements.
3.2 Implementation ...

4 System Call Interface
4.1 RcqulrcIIlcnts

4.2 Implementation
4.2.1 System call interface for user actors
4.2.2 System call interface for supervisor actors

5 Mutex Interface
5.1 Requirements
5.2 IrnpleIIlcntatloIl

2

4
4
Ei
t,
7
8
9

12
13
13
17
18
18
18
19
19
19
21
21
21
2Ei
2.5
25
26
29
32
32
37
37
:38

39
39
39

41
41
42
42
45

46
16
47

6 Modifications to the Chorus Portable Layers

7 Future Work

8 Acknowledgements

3

49

50

51

1 Introduction

This document is part of a senes of reports describing the design decisions made in porting the
Chorus Operating System to the Hewlett-Packard 9000 Series SOO workstation.

Chorus is horizontally divided into a machine independent layer and a machine dependent layer.
The IIlachinc dependent la~ycr cxport~ a rnadunc indtpendent interface that i~ expected to rcrnaln

unchanged as the operat.ing ~y~tcln i~ ported froIH one rnadunc to another. The rnachinc depen
dent layer is divided vertically into two major partitions: the Sl1PfTvisor and the rmn.u (memory
management unit). The rnrnl1 is responsible for the implementing the machine dependent memory
management functions [1]. This document deals with the implementation of the Supervisor and
other related low-level functions. The port of the mill" is discussed elsewhere [11].

An overview of the port of the Choru~ Supe,,"vi.so,t and related functions is given in section 1.1.
Dr.ief reviews of senne of the characteristics of Chorus and the PA-RISC architecture are given in
sections -1.2 and 1.~j respectively. The pu rpose of these reviews is to give sufficient backgrou nd for

discussing the machine dependent layer. For detailed information about Chorus, refer to the Chorus
technical reports CS/TR-90-71 [7] and CS/TR-89-30.1 [2]. For information about PA-RISC, refer
to [15, 10].

The Supe'f'vi.so,t requirerllents and irnplerllentation an~ presented in section 2. The Chorus page

fault interface is presented in section 3, the System call interface in section 4, and the Tntdt;r

interface in section .5.
T he main reasons for the modifications to the portable layers of the Chorus kernel and a

summary of the modifications is given in section 0. Future work is presented in section 7.

1.1 Supervisor Port Overview

\Ve started our ground work for the port in Sep go. The operating system as well as the architecture
were completely new to us at that time. \Ve spent about a month reading the documentation and
pape"., on PA-RISC aJThitecture [10, 15, 16, 13] and Choru, operating 'y,teIIl [2, 1, 4]. The
Tut books [8,3] documenting the mach 2.0 port by HP to PA-RTSC proved valuable sources of
information.

In Oct 90 we had a I-week course on porting Chorus at Chorus Systemes, France. Various
components were identified. As Chorus personnel were also not familiar with PA-RISC, the Cho
rus port to 110torola 88000 \\ias used as a case study to explain the vaJ'ious rnadune dependent

cornponents and the porting process. Tlus proved useful for the design of the Chorus Supervisor.
Assembly language programs were written to understand the PA-RTSC architecture especially

with respect to nullification, delayed branches, procedure calling conventions and the usage of adb,
the assembly language debugger.

The following basic principles of design were applied as often as possible:

• r;se 32 bit addresses. Initially, we considered using 0·1-bit addresses. However, it would have
caused extensive changes in the portable layers of the kernel and is was not clear how to
design an interface with 54-bit address pararneters. In an~y case l it would have increased the
tlme of the port. \Ve ldt thl, for future work .

• Keep the design as simple as possible. The aim was to get the first working port as quickly
as possible. Tlus was one of the principles that was reiterated during our course at France.
We whole heartedly agreed with that.

1

• l~ ~e the a vailahle Tnt code for the rIlachine dependent la~yer irnpkrIlentation. The goal again
was to get the port up afl quickly as posflible. (-'or example the code for initiali;;ation would

have taken us a long time to figure out, write and debug if did not use the Tut code albeit
with modifications.

The design and implementation of the SUPf'lTisor did not prove very difficult once we had a

good grasp of the architecture and the Chorus machine dependent layer. The availability of Tut
code was also very beneficial.

Chorul:) provide~ a kernel test ~uite[9] for validating the kernel. Thil:) "vas the only IIwthod we
employed to validate ou r kernel port.

1.2 Chorus Overview

Chorul:) il:) a IIw~sage ba~ed rIlicro-kernel that ~upportl:) the follo"ving ah~tractionsl:

• Actor

• Thread

• Vlessage

• Port

An Actor forms the unit of resource ailocation and identifies a protected address space. An
address space is split into a user address space and system address space. On a given site",
each actoe~ systerIl address ~pace il:) identical and its acces~ is re~tricted to privikged level~ of
execution. An actor in Chorufl can be a Superviflor actor or Cser Actor. A supervisor actor lives in

the syfltem addresfl space along with the kernel. Superviflor actors have higher privilege than user

Actors.
A thread is the basic unit of execution and runs in the context of an Actor. A thread is a

I:)equential How of control and i~ characterized by a thread context corresponding to the ~tate of
the procel:)~or at any gi ven point during the execution of thread. There can be rIlultipk threads per
actor.

Th reads com m u nicate and flynch ronize by excha ngi ng n1essages between thei r actors' ports.

Threads sharing the same address space can use share memory for communication and synchro·
nization. Semaphores and M utexes provided by the Chorus interface are useful for this purpose.

A thread belonging to a u~er Actor i~ called a u~er thread. However during a s~y~terIl call~ it
becomes a superviflor thread. A user thread has 2 fltacks: a user fltack for executing user code and

a flyfltem fltack for executing system callfl, traps, and storing the context of the thread when the

thread is blocked. A thread belonging to a supervisor actor is cailed a supervisor thread. Since a
supervisor thread lives entirely in the system address space, it has only a system stack and no user
,tack.

1.3 PA-RISC

This section consists of extracts from the PA-RISe architecture reference manual useful for under·
I:)tanding the rnachine depen(knt layer irnpkInentation. For Inore details see the cited referencel:).

1 Choru~ is written in an objed oriented language C++. These ab~tra.ctions are implemented a~ C++ dasse~
LA sit.e i~ a grouping or tightly-coupled resources controlled by a ~ingle Chorus Nudeus[f)]

5

PA-RISC Architecture is the frame work for IIewlett-Padmrd's IIP3000/900, IIP9000/800, and
HP9000/700 oeries computer oyotems.

It is based on the principles of RISC and has 1·10 fixed length instructions. It employs a virtually
addressed cache and the I/O sub-system is memory mapped. PA-RISe supports ·18-bit, .')(;-bit or
64-hit virtual a,dclre~~el:) and provides SOIIlC hard ware protection support. The global virtual IIwIIlory

is organised as a set of linear spaces with each space being 4 gigabytes (2 32) long. Each space is
specified with a opace identifier.

PA-RTSe supports 4 privilage levels numbered 0-:1. The higheot privilege level is 0 and the
lowest privilege level is 3.

PA-RISC architecture has the following resources:

• :12 General Regioters. eRO is tied permanently to zero. GRl is the target of Aridil instruc
tions. GR31 is the link register for an inter-space branch and link external (Ble) instruction.
GR27 used as the base pointer for data accesses. This is specified by the procedure calling
con vcntions of the architecture.

• 2.5 Control Registers. CRI-CR7 do not exist. Control registers are discussed in more detail
in the section 1.3.1.

• 8 Space Registers. SRO is the instruction address space link Register for Ble instruction.
SRO-SR4 can be modiJied at any privilege level. SR5-SR7 can be IllodlJied at privilege level
O. The usage of the space registers is left to the operating SystCIIl. The space registers an~
IG-bit long on a level 1 PA-RISC, 24-bit long on a level 1..5 PA-RTSC and :~2-bit long on a
level 2 PA-RISC. On a level 0 PA-RISC, the space registero do not exiot. A level 0 PA-RTSC
supports absolute addressing only.

• Processor Status Word (PSW) The processor state is encoded in a 32-bit register PSW. PSW
does not appear as an operand in instructions. IYhen an inlerruplion J occurs, the old value
of the PSVV is saved in the IPSIY register(CR22). Sorile of the bits in the PSVV arc reserved.
It is software's responsiblllty that these arc zero when written. The PSIY is set from IPSvV
by a retnrn from. interruption instruction.

The PSIY bits that are important for the discussion are:

C bit (PSW_C) Code (instruction) address translation enable. When 1, instruction
addresses are translated and access rights checked.

Q bit (PSW_Ql Interruption Collection Enable. When 1, inlerruplion state is collected.
vVhen an inlerruplion occurs the details of the instruction being executed are recorded
in the control registers (sec 1.3.1).

P bit (PSW..P) Protection Identifier enable. When this bit and the C-bit are both 1,
instruction references check for valid protection IdcntiJicrs(PIDs). ",TheIl this bit and
the D-bit aJ·e both 1, data rcierences check for valid PIDs. IYhen this bit is 1, probe
i nst ructions check for valid PIDs.

D bit (PS\V _D) Data address translation enable. \Vhen 1, data addresses arc translated
and acceoo righto checked.

I bit (PSvV.1) External interrupt, power failure interrupt, and low-priority mach.irw check
interrupt uIlrnask. \Vlwn 1, thcl:lc interrupts arc uIllnaskcd and can cause an interrupt.
when 0 the interrupts are held pending .

.3 An interruption is PA-1USC specific term. An interruption IS a lrap or an inlcrrupt that can occur on PA-1USC.

(j

• Instruction Address queues.

The instruction Address queues hold the address of the currently executing instruction and
the address of the instruction that will be executed after the current instruction, termed the
following InstructIon. There are 2 queues: InstructIon _Address Space Queue (L\SQ) and
the Instruction Address Offset Queue(IAOQ). r:ach queue is 2 elements deep. The elements
are referred to TAOQ_I'RONT, IAOCP1ACI" IASCl-I'RONT and IASQ_HACI<. The 2-deep
queues are used to support the delayed branching capability.

1.3.1 Control Registers

Thifl flection defines the main regiflters ufled in the implementation:

• Protection Identifier Registers: PID1, PID2, PID3, PID1, aliases for CRs 8, 9, 12, and 13.
These registers designate up to four groups of pages accessible to the currently executing
process. \Vhen translatIon is enabled~ the four protection I(kntlIiers (PIDs) an_~ cornpared

with a page access identiJier to validate access. If access is not valid trap is raised.

• Coprocessor ConIiguration Register (CRIO alias CCR) is an 8-bit register which records the
presence and usability of coprocesors. A bit is 1 hnplies the coprocessor corresponding to that
bit is preflent and operational. J-<Jse it is logically decoupled. Tn the current implementation

the entire CCR is set to O.

• int~l"'l1ption Vector Address Register (CR14 alias IVA) contains the absolute address of
the bafle of an array of flervic:e procedurefl aflfligned to the interruption daflfles. Thifl address

must be a multiple of 1021.

• r:xternal Interrupt r:nable Mask (CRI.5 alias r:n:VI) is a :32-bit register containing a bit for
each of the 32 external interrupts. When 0, bits in the EIEYI mask interrupts pending for
the external interrupts corresponding to those bit positions.

• r:xternal Interrupt Request Register (eRn alias URR) is a :i2-bit register containing a bit
[or each external interrupt. vVhen 1, a bit designates that an interrupt is pending [or the
corresponding external interrupt. Doth the PS\V.l bit and the corresponding bit position in
the EIE::\I IIlUSt be 1 for an interrupt to occur.

• Interval Timer Register (CR16 alias ITYIR) consists of 2 internal registers. One of the internal
registers IS continually countIng up b~y 1. ReadIng the ITJ\,fR gi ves the value of thIS Internal
register. vVriting to ITMR updates the other (cOInpaJ·ison) register. '.Vhen the two registers
have identical values, an external interrupt is raised and bit 0 of f:IRR is set to I.

• inierTuption Instruction Address Space and Offset Queues (CRU alias IIASQ, CR18 alias
TTAOQ): '1\\'0 ofFset registers and two flpace registerfl are ufled to save the instruction address

and and privilege level information for use in processing interruptions. The registers are

arranged as two two-element deep queues. The queues generally contain the address(induding
the privilege level field in the rightmost two bits o[the offset part) o[the two instructions in
the L\ queues at the tirne of the interruption.

The ITA queues are continually updated whenever the PSW_Q bit is 1 and are frozen by
an interruption (PS'.V -Ql bit becomes o. After such an interruption these registers contain
copies of tIll' L\' queues. These queue dements will also be referred to as PCOQII, PCOQT,
PCSQII and PCSQT in the context of the implementation.

7

• Interrupt10n pararlleter reg1l:lterl:l are the Interrupt10n In~truct1on Reg1l:lter (CR19 alial:l IIR),
Interruption Space Register (CR20 alias ISR) and Interruption Offset Register (CR21 alias
lOR). As the names indicate, these registers contain interrupted instruction and the virtual
address the instruction was attempting to access.

1.3.2 Interruptions

Table 1: PA-RISC Interruption

Interruption # Description
1 High-priority machine check
2 Pm,ver failu re interrupt

a Recovery counter trap
4 External interrupt
.') Low-pr1or1t~y rllach1ne chcck
(j h"truction TLll mi" fault
7 Infltruction memory protection trap
R Illegal instruction trap
9 Break instruction trap

III Pr1v1legcd operat1on trap

11 Privileged register trap
12 Overflow trap
13 Conditional trap
14 Assist exception trap
1.5 Data TLB miss fault
Hi N on-accel:ll:l 1nl:ltruct1on TLD rIl1~~ fault

17 Non-access data TLll miss fault
18 I)ata memory protection trap! C naligned data reference trap
19 Data memory break trap
20 TLB dirty bit trap
21 Pagc refercnce trap

22 .A.BI:l1I:lt crllulat10n trap
23 Higher-privilege transfer trap

24 tower-privilege transfer trap
25 Taken Branch trap

All interruptions (traps or interrupts) on PA-RISC are precise, i.e., the software sees a single
unpipelined processor executing one instruction at a time. PA-RISC supports 25 interruptions
d1v1ded 1nto 4 pr1or1ty groupl:l~ w1th group 1 hav1ng the h1ghest pr1or1ty and group 4 thc kl\·ve~t.
The interruptions a re listed in table I.

Interruption 1 belongs to group 1. Interruptions 2-.5 belong to group 2. Interruptions 6-22
belong to group 3 and the rest to group -i.

8

1.3.3 Memory Management Support

Like most microprocessor architectures, the PA-RISe contains some form of memory management
unit (YIYIT;).

Thll:l section describes the features of the PA-RlSC that arc used to support virtual IIwIIlory

operations. These features Induck a translation look-aside buffer (TLD) for transforIning virtual
add resses to physical add resses, bit traps for memory management fllJpport, and memory protection

mechaniflllls. The material preflented in this section is covered in more detail in chapter 3 of the

Precision Architeclucc and Instruction Set Reference JUanltal [10].

Page Tables and the TLB :

The PA-RISe (along with the MIPS R2000/R3(00) is unusual in that it requires software to
handle TLll rnisses4 . lly allowing software to perform TLll loads, the PA-RISe architecture gives
the operating system lots of flexibi1ity in the format of page tables. Normally, architectures specify
some page table format to follow so the hardware can perform TLH loads.

Rather than develop our own page table design for the initial port, we decide to use the Physical
Page Directory (PDIR) format suggested by the PA-RISe architecture manual [10]. We made litis
decision because it alio\lYccl lU; to reuse a great deal of Tnt code for the low level TLD IIllSS haJLdler~.

Figure 1 shows the structure of a, Physical Page Directory (PDIR) entry.

H o (6)):ext PDE Index (21) 0(4)

Space Id (:l2)

Page Frame (21) o (11)

R 0 T D n Access Rights 0 Access ID 0

1 1 1 1 1 7 4 L1 1

Figure 1: PDm Entry (PDE)

Bit Flags:

The TLB and PDIR contain a variety of bit flags which can be used to generate traps. The
followIng InfoIInatlon cLel:lcrIbel:l the functIon of each of the 1-blt IidcL~.

T Page Reference Trap. \Vhen 1, data references using this translation cause a page reference
trap interruption. The T-bit is most commonly used for program debugging.

D Dirty. IVhen 0, store and semaphore instructions cause a TLB dirty bit trap on systems with
software TLB miss handling. \Vhen 0, store and semaphore instructions cause the D-bit in

4The T'A -RTSC A rchilccllln; (}nd rn~l,nu-,li()n Sci M(Htwd mentions t.hat. hardware implement.at.ions can exist. bllt.

to our knowledge no such implementation exists at this time.

9

the DTLD entry and the PDIR to be sd to Ion systems with hard wan' TLD miss handling.
When I, no trap or update occurs. The Il-bit may be used by the operating system to
determine which pages have been modified.

H Hreak. When I , instructions that could modWy data using this translation cause a data
memory break trap interruption, if enabled. Store instructions, the PURe: r: IlATA eACH r:
instruction, and semaphore instructions are the only instructions that potentially modify
data. The D-bit is most cOInrllonly used for program debugging.

R is the reference bit (only present in the PDIR entry). If R = 1, the page has been accessed
(read, write, execute, or non-access) by a processor since the bit was last set to O. For systems
with software TLD miss handling, this bit is managed by the software and not clirectly set by
the hard\vare.'-;

Memory Protection

The TLB is also responsible for enforcing memory protection. The PA-RISC protection mecha
nisms are disabled when physical addressing is used or when the PSIV _P bit is disabled. The TLD
rnaintalns protection infonnationln two Ildcb: the ([eeest! f'iyht.s and the aC('ViS ID. The '(-bit access

right field encodes the allowed access types and privilege levels into three sub-fields: type, privilege
level 1 (/'1,/), and privilege level 2 (1'1,2). The access If) is a IS-bit field that can be thought of
as a capability. This field must match one of the four protection ID's in the PA-RISC's control
registers (CR8,9,12,13).

Logical Page Replacement

The PA-RTSC allows the software to operate on a logical page size of2K, 4K, 8K, or 161, bytes.
\Vhen operating on a logical page size greater than 2K bytes, the TLB miss handling procedures
may insert ail translations for that page group provided that the translation for the faulting page
is inserted last. This is probably because the software has no ability to know which TLD entry
is invalidated to IIlakc IOOIn for a He"" insertion. Dy inserting the faulting page cntry last~ the
Roft\vare enfllJreS that upon return, the 'ITH rniflfl has been flatisned.

PA-RIse Memory Management Traps:

Out of the 25 interruptions that can occur on PA-RISC, 9 of the interruptions are traps to be
dealt b~y the rncIIlory rnanagcIIwnt unit of the operating s~ystcln. These IIlcIIlor~y IIlanagcIIlcnt traps
are listed in table 2.

Thefle trapfl can be partitioned into four groups: TLH miss faults, non-access TLH miss faultfl,

meory protection faults, and bit flag traps.

TLB Miss Faults (#6,#15) :

The P,\-RISC architecture allows both software and hardware TLD miss handling. The lIP
9000/8:14, the target processor for the port, does not have hardware TLH miss handling. Tt has
separate trapfl for instruction and data T'f..H miflfles \vith the hard\vare making no distinction be

tween TLB misses and page faults. IVhen a TLB miss fault occurs, the handler must determine

·'The unused bit is used by some implementations. This A bit acts similarly to t.he R bit except non-access raults

will not sct it.

10

Table 2: PA-RISe Memory Ylanagement Exceptions

Trap # I)eflcription

(j Instruction TLD miss fault
7 Instruct.ion IneIIlor~y protection trap

L5 Ilata TLK mi" fault
16 SOil-access instruction 'II, K miss fault
17 :'Ion-access data TLB miss fault
18 Data memory protection trap/Unaligned data reference trap
19 Data, IIlcIIlory break trap

20 'ILK dirty bit trap
21 Page reference trap

whether or not the 1ll1ss1ng page is in memory. One difladvantage of an inverted page table(i.e,
PDIR) is that it is more expensive to determine whether a particular virtual page is in memory.
\Ve use a hashing function and linked list search to determine whether a virtual page entry is
present in the PDIR. The handkr hadws the faulting (virtual) address to obtain an offset into a
hash table. This hash table contains a reference to the PDIR list that represents the hash bin.
This bin is organized as a linked list of PllTR entries. The handler then sequentially searches this
list for the desired virtual page. A successful match results in the entry being placed in the TLK.
A failure in the matching process results in a page fault. Figure 2 presents a flow chart of the steps
for handling a TLB miss.

Non-access TLB miss faults (#16,#17) :

The PA-RISC architecture also has the notion of non-access TLD faults which dilkr from other
TL.D faults in that the fault.ing page need not be loaded into IIwIIlory. Our platfoIIn requires both
infltruction and data non-access T'f..H miss faults to be handled by software.

Non-access data TLK miss faults are caused by LOA I) PH YSIeA I, A I) I)R~;SS (LPA), PRO K~;,
and PT;RGE/FLUSH DATA CACHE instructions. When the requested page entry is not present
in the PDIR, the action of the trap handler depends on the type of instruction causing the fault.
For LP,\ and PRODES, zero is returned if the desired page cannot be found in the PDIR. There is
a problem \vith the PROHI-<: infltrudion that ifl covered in more detail in sedion ~j.2.

In HP-UX and Tut, cache PURC:~: and I'TUSH instructions that cause non-access TI,K miss
faults are handled as if a TLB miss occurred, i.e. the page is loaded into physical memory and the
page descriptor is inserted into both the PDIR and TLB. :'Ion-access instruction TLB miss faults
are caused by FLUSH INSTRCCTION CACHE (FIC) instructions. These an, handled similar to
other cachc non-accc~~ fault~ clcl:)crlbccl ahovc.

Memory Protection Traps (#7,#18) :

The PA-RJSC has two traps used to detect memory protection violations. The instruction

lHf'11wry protf'ction trap (7) ifl the reflult of invalid acceflfl rightfl or invalid protection TJ)fl for an
instruction fetch". The data memory protection trap (18) is the result of an invalid access right
or protection ID for any load, store, semaphore, and PURGE DATA CACHE instruction. This

(;Prote:d,ion TD che:cking is only done: whe:n the: PS\V P-bit is sd,.

11

'lHAP

IIash address

Empty

'!

Yes

Page Faull

\[0 Sf'arch

PDlH

1'0

lnsert

inlo'lLB

Figure 2: TLB Miss Handling

trap is alflo caused by any load or store to addreflfles not aligned at the boundaries required by the

infltructions. Detection of unaligned addressefl ifl performed by examining the least flignificant bits
of the virtual address.

TLB Dirty, Page reference and Data memory break traps (#20,#21,#19) :

The HP 9000 Series 831 workstation does not have a hardware supported TLB, so the manip
ulation of the D (dirty) and R (reference) bit Hags is left to the operating system.

'.Vlwn the D bit is 0, stores and semaphore operations will cause a TID dirty bit tmp (20). The
trap handler must then set the J) bit in both the PIHR and 'ILK entry. Once the J) bit has been
set, further modifications to that page are ignored. If the T bit is set, data reference using the
translation causes a page reference trap (21). The data memory break trap (19) is triggered when
instructions that could possibly modify data require the translation and the B bit in the Processor
Status 'Nord (PS\V) is 1. '.Vhen software loads an entry into the TLD, it should set the R bit to
indicate that the page has been referenced.

2 Supervisor

The Supervisor is the component that directly interacts with the underlying hardware. It is respon
sible for managing interrupts, traps and exceptions and other machine dependent functions. The
SUjJf'''''Ui.so,t along "v1th the lInn'll layer fornm the rnachlnc dependent layer and 11:) expected to olfer
a machine independent interface to the portable layerfl of the Chorus kerne1. The requirernentfl to

be satisfied by the S/Jp~l·vi"m· layer are detailed in section 2.1 and the implementation is detailed
in section 2.2.

12

Thread . t· Tl _D. , ,t'

Real-Time Virtual Mem
mThread Executive portable

SupThreadDcsc
Supervisor Mmu Layer

"igure :3: thread Claoo hierarchy

2.1 Sapervi80T requiren1ents

The Chorus Suptrvisor ifl expected to export a flpec:ified machine independent interface l and is

responsible for interrupl, trap and exception handling, limer and console management, kernel
initializalion, and offering a low-level debugger. The SlIpervisor interface is detailed in section
2.1.1. The sections on event hanclling~ tlrllcr and commIe rnanagcIIlcnt and low-level debugger
regroup the functionfl in the interface according to their fUllctionality and provide the requirements

for the fu nction group 3fl a whole.
In addition lo the above functions, the SlIpervisor is responsible for defining two fundamen

tal structure lypes : KnThreadCtx, and SupThreadDesc. KnThreadCtx defines the register con
text fraIIlc that .is used to save state dur.ing .interrupts, traps, exceptions and context s\lvitchcs.
SupThreadDesc dclincs the Iuachinc dependent thread descriptor. As IIwnt.ionccl in section 1.2, a

thread in Chorus has a user fltack and a flYfltem stacie The descriptor SupThreadDesc keepfl track

of the stacks and other machine dependent thread attributes (if any) of the thread and is the base
class for the Thread class. The Thread class hierarchy is shown in fig 3. The dolled lines show
the levels of definition and managemenl of base and derived classes. Variables and pointers of type
KnThreadCtx and SupThreadDesc get ddined and pa"edln the portable layer, of the kernel but
are treated as black boxefl. Functions are defined in the S'npel'vifwl' interface (see flection 2.1.1)

that allow the portable layers to query and update the contents of the data structures in a machine
independenl manner.

A portion of the Chorus Inlerface lo supervisor actors allows handlers to be attached for inler
rupts, traps~ exceptIons and tiIIle-outs. In vocation of senIle of these handlers Is the responsIbility

of the Supe'(Ti.'w'(' . This requlreIIlent Is detailed In sectIon 2.1.2.

2.1.1 SlIpervisor interface requirements

The followIng functIons IIlUSt be lIIlpleIIlented by the SuptTviso'(' .

SupCtxInitO: H uild the initial context fra me on the system stack ofthe new th read and initialize
it's machine dependent thread descriptor SupThreadDesc. The initial values inserted into the
conlext frame on the syslem slack are used by SupCtxSwitchO when swilching to the new
thread. SupCtxInitO should build the frame as if the thread is relurning from an exception.
This function takes the followIng paraIIlders:

• The system stack bottom, unsigned char *stackbot .

• Thread parameters descriptorl KnThreadDesc *threadParams. Thifl descriptor has the

entry poinl of the thread, the thread privilege, priority, the user stack bottom, and the
inItIal executIon status. The user stack bottoIIl Is used onl~y when the thread Is a user

thread. In the case of a supervIsor thread~ this Jield is Ignored.

13

• Pointcr to thc thrcad\; rIlachinc dcpcndcnt thrcad dCl:)criptor, SupThreadDesc *ptThreadDesc.

• Pointer to the virtual address space descriptor of the actor in which the thread will be
crcatcd, context *ptContext. Notc that context il:) a dasl:) ul:)cd by thc virtual rIlcrIlory

system and is not the same as the machine dependent thread context \vhich is basically

a set of registers.

SupCtxSwitch(): Switch thrcad rIlaclunc dcpcndent contcxt. Thi~ function takc~ thc following
parameters:

• Pointer to the old thread, SupThreadDesc* oldThread

• Pointer to the new thread, SupThreadDesc* ne"Thread

SupGetUserCtx(): Retu rn a Pointer to a th read's saved context, KnThreadCtx* SupGetUserCtx(. ..).
This function takes the following parameter:

• Pointer to the machine dependent thread context descriptor, SupThreadDesc* desc.

SupCtxReset(): Rcsct thrca(r~ contcxt fraJIle on thc stack by thc valucl:) given in thc rIlachinc
dependent th read context descriptor. This fu nction takes the follcnvi ng parameters:

• Pointcr to thrcad rnachinc dcpcndcnt contcxt l SupThreadDesc* desc

• Pointer to exception context frame on the stack, KnThreadCtx* ctx

SupCtxIsU sel'Mod(): Return trUE if th read execution is in User mode else false. This function
takes the followi ng para meters:

• Poi nter to a context frame, KnThreadCtx* ctx.

SupCallConnect(): Conncct a vcctor of handlcrs to a trap. This function takcs thc following
pararllctcrs:

• Thc trap nurIlbcr, unsigned trapNb

• Pointer to the vector of handlers, KnCallEntry* hdl Vect

• Nurnbcr of ckrIlcnts in the vcctorl unsigned NoRdl

• The privilege level unsigned sup. Basically there are two privilege levels: Supervisor
and User. If sup il:) Supervisor in thil:) call thcn thi~ vcctor i~ exccutcd for ~upcrvil:)or

actor~ cau~ing a trap cqual to trapNb. If a ul:)cr Actor causc~ a trap cqual to trapNb,
this vector will not be executed u nless another S upCallConnect has been explicitly called
with the same parameters and sup is set to User.

SupCallDisConnect(): Disconnect a Vector oftrap handlers. This function takes the following
parameters:

• Thc trap nurIlbcr, unsigned trapNb

• The privilege level, unsigned sup

SupItConnect(): Connect a handler to an interrupt. This function takes the following paramo
eters:

• The interrupt number, unsigned intrNb

11

• The handler to be executed on the Interrupt occurrence, KnHdl hdl.

• The prlvllege level l unsigned sup

SupItDisconnect(): Disconnect a TnterrlJpt handler. This flJnction takes the following param
eters:

• The interrupt number, unsigned intrNb

• The handler to be executed on the interrupt occurrence, KnHdl hdl.

The handler parameter is required since there can be a list of interrupt handlers connected
to the interrupt. The (intrNb, hdl) pair uniquely identifies the element to be removed from
the li,t.

SupItLevel{): Rcturn thc current Interrupt nel:ltlng lcvcl. T hll:l function takel:l no paJoaJIwtcrl:l.

svMask(): Set the interrupt level. All interrupt' equal or Ie" than thi, level arc masked. Return,
previous interrupt level. This function takes the following parameters:

• Interrupt level mask, int intLvlMask.

svU nMaskO: Reset the i nterrlJpt level. All i nterrlJpts eq lJal or less than this level are IJ nmaBked.
Ret urns previous interrupt level. This function takes the following parameters:

• Interrupt level unmask, int intL vlUnMask.

svMaskAll(): Mask all interrupts. This function has no parameters.

svUnMaskAll(): Unmask all interrupts. Tltis function has no parameters.

svCopyln{): copy fnun User space Into kernel spacc. Thll:l function takes the following paJoarnc

ters:

• Sourcc addrel:ls In ul:lcr space, char* src

• Destlnatlon address In kcrncl space, char* dst

• Slze of transfcr In b~ytes, unsigned int count.

svCopyOutO: copy from Kernel space to User space. This flJnction takes exactly the same
parameters as svCopyInO, only that the source and destination spaces are reversed.

The functions sv*{) are also part of the Chorus Supervisor actor interface.

SupTrapConnect(): Connect a handler to a trap. This function takes the following parameters:

• The trap number, unsigned trapNb

• The handler to be executed on the trap occurrence, KnHdl hdl.

SupTrapDisConnect(): Disconnect a Trap handler. This function takes the following parame
ters:

• The trap nurnbcr, unsigned trapNb

• The handler to be cxccuted on the trap occurrencc l KnHdl hdl.

SupPanic{): Fatal abort. Thls function takcs no pararneterl:l.

15

SupDebugger(): Call the debugger. Thi, function take" the following paranwtero:

• The except.ion context fraJIw polntcr~ KnThreadCtx* ctx

• The trap or exception number, unsigned no

SupPreciseTilneO: Return the current precise time. This function takes no parameters.

SupPutCharO: ",Trite a chaJoactcr 011 the COIll:lok device. Thi~ is a synchronous operation, i.e.,
the \vrite returns only after the output is completed. This fundion takes the following pa
rameters:

• the character to be written, int c

SupGetChar(): Returns a characler from the input device. This is a synchronous operation.
This function takes no paraIIwtcrs.

SupPoliChar(): Poll the input device. This funclion returns () if no input is waiting else it
rdurns the character. This function takes no paraIIlctcrs.

Tn addition to exporting the interface, the Supervisor is expected to make up-calls into the
kernel upper layers for various synchronous and asynchronous events. The calls are:

KnDebugEnter(): The Supervisor is expected to call this function to inform the portable layers
whenever it enters the deb ugger. This fu nctions informs the portable layers not to perform

context switching when the debugger is entered. This function takes no parameters.

KnDebugLeave(): The SIJperV;80r is expected to call this fu nction to inform the portable layers
whenever it leaves the debugger. This function takes no parameters.

KnLock(): Lock the kerne1. This function takes no parameters.

KnUnLock(): L.ock the kernel. ThIs function takes no paraJIleters.

KnHandler(): Exception Handler of the kerneL This funclion should be called for all unrecov·
erable exceptIons. This functIon executes the actor speciJic exceptIon handler if present else
calh KnIpcIIandlerO to abort the thread. Thi, function take, the following parametero:

• Pointer to the exception frame on the stack, KnThreadCtx* ctx

• ~:xception n umber int excNb

KnltRetSup(): Return from interrupt to supervisor thread. The supervisor after executing

the interrupt handlers connected by SupTtConnect() prepares to return from the interrupt.
This function should be called by the Supervisor if the thread executing at the time of the
interrupt was a supervisor thread. This function takes no parameters. A supervisor thread
can be preernpted only if there Is a supervIsor thread of higher prIority ready to run.

KnItRetUserO: Return from interrupt to supervisor thread. The supervisor after executing
the interrupt handlers connected by SupllConnecl() prepares to return from the interrupt.
This functIon should be called by the Supe,,"vi.so,t If the thread executIng at the tlnw of the
interrupt waB a user thread. This function takes no parameters. This function can cause

preemption of the user thread.

Hi

KnAbortHandler(): Abort Hamlln. If the thread i, found to be aborted while returning from
an interrupt, then I<nAbortHand1er() is called. This function takes the following parameters:

• The exception frame on the stac:k l KnThreadCtx* ctx as parameter.

KnTimeIn(): Record a clock tick. Thi, function dlOUld be called by the SuptTviso{" every time
a dock interrupt occurs. This routine increments the Chorus software dock and executes any
routines that have reached their timeout period. This function takes the following parameters:

• The execution mode at the time of the dock interrupt, int supOrUsr.

• The prograIIl counter at the tlIne of the dock IntcITuptl int pc.

2.1.2 Supervisor Actor Interface

A portion of the Chorus interface is available only to supervisor actors and would be referred to as
the supervisor actor inlerface. Some of the functions of the supervisor actor interface get directly
rnappccl to corrcl:lponcllng fUIlctions of the supcrviscn interface and the rest of the functions an~
handled in the portable layer' of the Choru, kernel. Ideally, all the call, of the ,uperviwr actor
interface except svCheckUserSpaceO. svCopy[InjOut]O. sv[Un]Mask[All]O are expected
to be implemented in the portable layers of the Chorus kernel by calling the appropriate functions
in the Supervisor interface. However. due to the way in which instructions are generated on the PA
RISC by the compiler. additional work and portable layer modifications were required to implement
thi~ fUIlct.ionalit~y (See I:)cction 2.2.9 for details and functionalit~y lIIlplcIIlcntation).

On ly those fu ndions of the supervisor actor i nterfac:e that needed additional i Illplementation are

specified below. Note that svCopy[InjOut]O. sv[Un]Mask[All]O have already been covered
under the Supervisor interface.

sv A bortHandler(): Define an abort handler for the Actor. This function takes the following
parameters:

• Actor Capability, KnCap *actcap.

• Abort Handler. KnHdl routine.

This function is expected to be entirely implemented 1n the portable layers of the kernel.

svCallConnectO: Exactly the same function and parameters as SupCallConnectO (see sec
tion 2.1.1). This function is expected to be entirely implemented in the portable layers of
the kernel.

svCheckUserSpaceO: verify that an address is within the IJser address space. This function
takes the following parameters:

• the address to be checked. char* addr.

This fu nction is expected to be i Illplemented d IJ ri ng the port to the target arc:hitec:tu reo

svExcHandlerO: define an exception handler for the Actor. This function takes the following
parameters:

• Actor Capability, KnCap *actcap.

• Exception Haneller. KnHdl routine.

17

Thil:) function il:) expected to be entirely irnpkrnented in the portabk laJ'T~rl:) of the kerneL

svItConnect():
2.1.1). This
kernel.

Exactly the same function and parameters as SupItConnect() (see section
function il:) expected to be entirely irnpkrnented in the portabk layer~ of the

svTrapConnect(): Exactly the same function and parameters as SupTrapConnect() (see sec
tion 2.1.1). This function is expected to be entirely implemented in the portable layers of
the kernel.

svTimeOut(): set a time out and call the given routine when the time-out occurs. This function
takel:) the following pararnder~:

• The routi ne to be called by kernel on ti me out, KnToHdl routine.

• The paJoaJIwter to be pasl:)ed to routine, void pararn

• TimeOut period in millisecondfl, unsigned int delay.

Thi~ function is expected to be entirely irnpleIIwnted in the portabk layerl:) of the kerneL

2.1.3 Event (Interrupt, Trap and Exception) Handling

The Supervisor is expected to save the register context on the stack, call the appropriate handlers
and restore regi~ter context when required. The function~ in the SUjJf',t'Ui.so,t interface that fall
in this group are SupTrap[Dis]ConnectO, SupIt [Dis] ConnectO, SupCall[Dis]ConnectO,
SupItLevelO. and sv[Un]Mask[All]O. The SIJpuvisor implements the data structures and
code for these functions and calls the appropriate connected handlers. In the case of interrupts, the
Supervisor should execute the list of handlers in the decreasing order of priority and acknowledges
the interrupt to the external device raising the interrupt. In all case~, up-call~ should be rnade at
the precise points in execution a~ i(kntiIied by the ~upervil:)or interface. The general algorithrns
to be ufled for interrupt, trap, and exception handling are detailed in the Chorufl implementation
guide [7].

2.1.4 Timer and Console Management

The 5'uptrrisor manages the timer and console devices. It programfl the timer device flO that it gen
erates clock ticks at a freq uency den ned by the (,_CH" constant den ned in include/ chorusConf.h.
Each time a timer interrupt is received, the supervisor calls the KnTimeIn() function (see section
2.1.1). The functions of the Supervisor interface that fall under this group are SupPutChar(),
SupGetCharO, SupPollCharO.

The SUjJtT'Ui.so"o il:) rel:)ponsible for conIHxting, at least, SupPutChar{) and SupGetChar{)
behind a trap. This trap is used in the implementation of library functions PutCharO and
GetChar().

2.1.5 Low-level Debugging facility

The 5'uptrrisor ifl responflible for implementing the kernel debugger. The function that implements
the debugger is SupDebuggerO (see section 2.1.1).

The Supervisor is responsible for connecting the debugger entry point to a trap number. This
trap number wlll be used by the implementation of the callDebugO library function. The callDe
hug{) function il:) paJt of the Chorus kernel interface exported to Chorus Actors.

18

The Supervisor dlOuld call KnDebugEnterO and KnDebugLeaveO when entering or kav
ing the debugger. This avoids context switches when in the debugger.

2.1.6 Kernel initialization

The Supccvisor implements the function (usually called startO) that performs the kernel initial
Ization. This function perforrns all the IIlachinc dependent and rnachinc independent initialization
necessary for calling the portable layers of the kerneL The fUIlction startO fOrIns the entry point of
the Chorufl kernel image. Transfer of control to this entry point ifl performed by the boot program

portion of the boot archive loaded by the resident boot monitor. For more detailfl on the boot
archive and Chorus booting procedures see the PA-Chorus booting document[12].

The kernel initialization function is responsible for:

• Initialization of processor spedfic data like interrupt vector) setting the process fltatus word

for appropriate execution mode, etc.

• Static: confltruc:torfl' invocation. Chorus is \vritten in C++, an object oriented language and
the static constructors for the various static objects of the kernel mUflt be called.

• Initialization of memory management) by calling Vn1InitO.

• Initialization of var.ious devlccs and connection of dcvice handlcrs and trap handlers. This
function is crllbedded in thc routine SupBoardlnitO.

• Calling KnlnitO, a function that initializcs thc portablc part of the kcrncl. This includes
schedulcr data structure initialization) connection of systcrll call handlcrs~ and creation of thc
first thread of the system. This first thread is the transformation of the kernel initialization
code being executed into a Chorus abstraction. KnlnitO rettHnfl the new fltack pointer to
be used by the executing first thread.

• Switching to the new stack pointer and call knMainO \vhich lfl the maln routine of the
kerne1. knMainO never retlHnfl.

2.2 Sapervi80T Implementation

The fundamental data structures KnThreadCtx and SupThreadDesc manipulated by the S/J,p~l'vi.,m'
code are defined first in sections 2.2.1 and 2.2.2 respectively. This will establish the background to
detail the implementation of the Supccvisor in the rest of the sub-sections.

2.2.1 Thread Register Context

The thrcad registcr context is basicall~y is the sd of gcncral rcgisters and control rcgistcrs of thc
processor and any other information that ifl needed for monitoring~ manipulating and refluming the
thread at a later stage. The thread register context is required to be typedefined as KnThreadCtx
and is declared for PA-RISe in inciude/PARISC/threadCtx.h. The following are the elements
of the KnThreadCtx structure:

• state-.flags, a software register used to track current stat us of the thread, ex: in-system-call,
in- trap, etc.

19

• General regioters grl, .. ,gr31. PA-RISC has only 31 32-bit general registers. GrO io perrna
nently tied to O.

• Control regi~terl:) crO,cr8, .. ,cr31. Crl-cr7 do not exi~t.

• Instruelion space queue tail pcsqe(alias PCSQT), instruction offset queue tail pcoqe(alias
PCOQT). These Jidds contain the addreoo (space and oJI'sct) of the next inotruction to be
executed.

• Kernel I:ltack pointer ksp~ tlli~ Held is a soft\lvare register. It is 0 when rUIlning OIl the kernel
stack and contains the stack pointer to the kernel stack when running 011 the user stack in
user mode.

• Space registers srO .. sr7.

• Floating point registers frO .. fr15.

• Special functional unit statufl registerfl, mdhi, mdlo, mdov, keep track of the status of the
special funelional units, emulated or actual hardware.

The -Aoating point registers and flpec:ial fUllctional unit fields are ignored in the current imple
mentation. This implies that code having floating point instructions or special function instructions
wiil currently abort. The next version of the implementation wiil have floating point and special
function unit crllulation.

Discussion :

The cldinit.ion of the thread context follows frorll our design objective of reu~ing as lIluch of the
Tnt code afl possible. The Tnt projed was done in two phasefl. I"irst the HP-CX virtual memory

system \vas replaced by ,'Vlach virtual memory system. Tn the flecond phase, HP-UX wafl modified

to provide the mach thread abstraction and interface. In the case of the Tut kernel with threads,
there are 3 different struel ures used to store the thread context depending on the execution mode
of the thread and the purpol:)c of acccs~ing the contcxt.

The purpose of each of the I:)tructurel:) of the Tnt kernel i~ gi ven below:

• save_state structure il:) ul:)cd whcn thc thrcad cntcrl:) the kernel lIlode through l:)y~tClIl call~,
trapl:) and interruptI:).

• PCB struel ure is used when the thread was executing in kernel mode.

• hppa_thread_state structure is the context visible to the user for interrogation and modifi
cation.

Tn the case of Chorus, the machine independent layers recognize only one structure for the

thread context, i.e., KnThreadCtx. For the PA-Chorus port, we defined KnThreadCtx structure as
the union of the three structures. This enabled us to use the same structure uniformly through out
the kcrnel and allowed U~ to UI:)C the low-level Tnt cock for the ~~y~telIl-call interface, interrupt and
trap handling as our I:)tarting point and IIlakc the Chorus I:)peciIic IIlodiIications relati vely ea~ily.
li'urther, \ve saw no reason to have distinct structures as a flingle structure can be used to store

different levels and types of information.

20

typedef struct {
unsigned
long

reserved;
typeCtx;

KnThreadCtx *currCtx;

KnThreadCtx *userCtx;

} SupThreadDesc;

f* reserved for simple links *f
f* Supervisor or User Thread *f
1* indirect pointer to saved context of

* thread *f
f* indirect pointer to initial context
* of the thread *f

Figure 4: Ylachine dependent thread descriptor: SupThreadDesc

2.2.2 Machine Dependent Thread Descriptor

The machine dependent thread descriptor is typedefined as SupThreadDesc. As described in section
2.1, thi~ descriptor is used to keep track of the thrcacl\; systcrll stack, user stack and the thread's
context. In the case of PA-RISC, SupThreadDesc is ddined in include/PARISC/sv.h as in Jig
4.

The fields of SupThreadDesc, except the link field, get initialized in SupCtxInitO (see section
2.2.3), and remain fixed during the Jife time of the thread.

2.2.3 SupCtxInitO

This function is implemented in kern/PARISC/sv.cxx. The initialization of the new thread 1S

performed in the following manner:

1. If the thread is the first thread of the kernel then exit from the function. The first thread
of the kernel is nothing but the kernel initialization code being made part of the thread
abstraction and recognizable b~y the Chorus portahle layers. This thread ultiIIlatdy bCCOIIlCS
the icllc thread oftlw s~ystcln. Since this ~~thrcacll1 was already executing before it was created,
there is nothing to be done at this stage. The machine dependent initialization for the first
thread would have been already performed in startO in kern/PARISC/sv.cxx during
kernel initialization.

2. Force the allocation of the system stack of the thread. At the point of calling SupCtxIllitO,
the syfltem stack of the lle\V thread is mapped, but phYflical memory is not allocated, by
the virtual memory layerfl. It ifl necessary for the syfltem stack to be actually allocated in

physical memory before starting up the new thread since traps caused by the new thread
must be handled on its system stack and this would cause recursive traps if the system stack
is not physically allocated.

3. Allocate two frames of type KnThreadCtx*: userFrame and switchFrame on the system stack
(see fig 5).

4. Initialize the user Frame as follows:

(a) Tfthe thread is a IIser thread then initialize the stack pointer as follows:

userFrame~sp = threadParams~sp + FlVLSIZE.

FlVLSIZE is the frame size needed to satisfy the PA-RISC procedure calling conventions.

21

(b) If the thread io a oupervi"" thread then initialize the ,tack pointer ao follow"

fLsize = sizeof(KnThreadCtx) + FYLSIZE + Fl\LFIXED_ARG_SIZE.
userFraIIlc-----;.-sp = stackbot + 2 *' fr _size.

The FM* operands above are needed to satisfy the PA-RISe procedure calling; conven
tions.

(e) Initialize the thread's Proeesoor Status Word. As mentioned earlier, the thread frame
should be initialized as if the thread is returning; from exception. So the required inlcr
'('uption paJoaIIlcter rcgistcn; an~ updated as follow:

userFrame---+ips,", = Q + C + Il + I,
userFrame---+eiem = Enable-ali-inlcrrupls

(d) Initialize the thread\ protection identity registers 3fl followfl:

userFrame---+pidl = 0,
userFrame---+pid3 = 0,
userFrame---+pid4 = 0,
userFrame-----;.-pid2 = Protection Id of the Actor's context.

(e) Initialize the thread\ flpace registers and the instruction address queues as follows:

userFrame-----;.-sr4 = spaccld of thread's Actor,
userFrame----;..sr5 = spac:eTd of thread's Actor,

userFrame---+pcsqh = spaeeId of thread's Actor,
userFrame---+pcsqt = spaceId of thread's Actor,
userFrame---+sr6 = KernelSpaceID.
userFrame---+sr7 = KnndSpacclD.
userFrame---+pcoqh = threadParamo--cpc,
userFrame---+pcoqt = userFrame---+pcoqh + Instruction length (4 bytes).

(f) Initialization of the data pointer (dp) of the thread i, performed ao follow"

1. If the thread is a kernel thread then set dp as follows:

userFrarne-----'o-dp = data_pointer (the kernel's data pointer).

11. If the thread belongs to a user Actor then set dp as follows:

userFrarne---+dp = Ox40000000 (the ahwlutc virtual addre" ofa u,n Actor',
data pointer).

111. If the thread is not the first thread of the supervisor actor then initialize the dp
from the datapointer value in the saved context of the first thread of the supervisor
actor. This value can be found by looking; at the thread list attached to the thread's
actor.

1V. Tf none of the above caRes is true, then do nothing to initialize the dp. This is

the case when the new thread is the first thread of the supervisor actor. Since this
thread is the main thread of the actor, the start up sequence will be similar to a unix
proce~l:), l.e., the executIon starts at an entry point in a crtO.o equivalent and thcn
branches to rnainO after SOIIlC initialization. The dp in this case \lvould be set by the
code in utO.o. The code for the ertO.o equivalent is in ktests/PARISC/kLass.s.

It is lIIlportant for the dp to be set before aJL~y part of the rna.1n prograJIl gets executed
since instruct.ions produced by the COIIlpikr an~ generated with respect to the dp.

22

S. The varlable swi tchFrarne polntl:l to the frarlle that ll:l equlvalent to a context frarlle I:laved
by the ocheduler during a context switch operation. The fields are initialized such that on a
context switch to the new thread, control is transferred to the kernel procedure SupThread
StartO which executes in privileged mode without preemption. SupThreadStartO is im
plemented in kern/PARISC/supctx.s. Thi, routine loa(b the value, from the userFrarne
portlon of the l:lyl:lterIl I:ltack and perforrll~ a rdurn froIIl exceptlon ~equence to tranl:lfer control
to the new thread's actual entry point. The return from exception sequence is deflcribed 1n
section 2.2.1-1. The frame poi nted by swi tchFrame ifl initialized as follows:

(a) Inltlalize the Processor ~tatu~ word as follo\lvs:

switchFrarne--+ipsw = Q + C + I), Note that Interrupts are not enabled.

(b) Initialize the data pointer dp to the kerne]', data pointer:

switchFrame-+dp = data_pointer

(c) Inltlalize the I:lpace regll:lter~:

swi tchFrarne--+sr4 = I<ernelSpaceId:
swi tchFrarne--+sr5 = KernelS paceId;
swi tchFrarne--+sr6 = KernelS paceId;
swi tchFrame--+sr7 = KerndSpaccld;

(d) Initialize the instruction address queues:

swi tchFrame--+pcsqh = KerndSpaccld:
swi tchFrarne--+pcsqt = I<ernelSpaceId;
swi tchFrarne--+pcoqh = SupThreadStart,
swi tchFrarne--+pcoqt = SupThreadStart + Instruction length (-1 bytes).

G. Th read descriptor ptThreadDesc fieldo are initialized as follows:

(a) typeCtx = privilege value passed in threadParams.

(b) currCtx = stackbot + 2 * fLsize.

(c) userCtx = stackbot + fr_size.

Discussion :

Note that to change a value in the switchFrame, we have to subtract fLsize bytes from currCtx
and then u~e the re~ultant address a~ KnThreadCtx*. The I:larlle aJogurllent Is true for the userFraJIle.

The pointer~ currCtx and u~erCtx are lixed for the life tlrIle of the thread. There i~ an indIiclency
in space usage and time of access to the context by this definition. ii'irst l 2*fr_size bytes are lost

in the sYfltem stacie To access a register in the current context, one hafl to firflt get the context

pointer from the context pointed to by currCtx and then access the register. This would not have
been necessary if currCtx was not fixed but pointed directly to the current context. The advantage
of the current approach i~ In debugglng. Slnce the currCtx l~ alwa~y~ available at a lixed posltlon

relati ve to the bottorIl of the s~y~tern I:ltack, It oifers an easy way of looklng up the current context
of the thread during memory dumps.

The initialization of the dp io complicated by the fact that the dp io not always available to the
kernel at the time of performing the machine dependent initialization.

Thll:l ll:l a consequence of the fact that we clid not have a data polnter Jield as paJt of the rIlachlne

dependent context mmuContext. IIavlng a dp Jield In the class mmuContext works line as long as

23

::~i~~'t::~V
------------ KnThreadCtx Structure

l1serCl.x

Frame for Proc Callin~ Convn.

!
I
I
I

I
stack growth

towards

higher memory

Sup ThreadDesc pcoqh = ·C ser Specified Entry pt 1+-_____ userFrame

pcsqh = thread's Actor Space Id

KnThreadCtx Structure

stackbot ______ ~L-------------~

Thread's system stack

l'igllre .5: Machine dependent Thread Tnitialization

there 11:) one executable lInage per virtual address space. hL the case of Chorus all supervisor actors,
which are independent executable images) share the same context) i.e., KernelContext. Tn slJch
a cafle, it ifl no longer fllJffident to have one dp field per IIllILuContext. One solution to simplifying

the initialization code for dp is to have a dp in the actor and have this field initialized during the
startup sequence of the main thread of the actor. Then for all the threads created then onwards in
this actor, this Jield can be used to initialize the dp in their startup thread context. '\ote that in
this case, a thread of actor A canIlot create any other thread other than the rnain thread of actor B
IJnleflfl the main thread of adorB hafl already executed its fltartup fleqlJence and initialized it's ador

specific dp. The most elegant solution would be to do the dp initialization at the time of creating
an actor. But there is no clear way of initializing; the data pointer of an actor in the portable layers.

2.2-4 SupCtxSwitchO

SupCtxSwitch()~ the thread IIlachlnc depen(knt context I:l\lvltch functl0n~ Is lIIlpkrrwnted In
kern/PARISC/supctx_s. This function performs the switch in the following manner7 .

1. Allocate a fLsize frame on the system stack ofthe old thread from the current stack pointer.
Save gcncral registers Inducl.ing the current I:lp and thread speciJic control regil:ltcrl:l. Thc

rdurn address of SupCtxSwitch() becornes the new point of resumption for the oldThread.
This implies that when a context switch loads back the old thread, it will be as though it has
returned from SupCtxSwitchO. To achieve this pcoqh and pcoqt are set to RP and RP+1

Note that old Thread is really the runl1lng thread and the purpose or SllpCtxSwitc:hO lS to save the register
context of the running thread and switch to the new thread

21

respectively. T.:pdate the stack pointer value in the lixed switchFrarne pointed to by currCtx
R

2. FInd the pOI:l.itlon of the sa ve context fralne froIH the stack pointer Jield in the lixcd context
frame pointed to by newThread----j-currCtx. Restore general regiflters and !'lome control regis

ters. Perform a retu rn from exception seq uence (see step (:If) of trap handli ng) to set the
instruction queue registers and the process status word.

Discussion :

Doing a return from exception sequence is not necessary to implement the context switch. An
alternate way is to do a procedure call return into the context of the new thread (the thread to be
scheduled). This can be achieved by performing a branch to the value in the RP of the context of
the lle\V thread. The reason the return from exception sequence was choflen is to have more control

over the PSW bits during debugging. The PSW bits can be changed in the saved context of the
blocked thread and thus enable any debug traps if required. The disadvantage is the inefficiency in
this rncthod of iIIlpkIIlcntation due to the greater rLlnnbcr of operations that need to be pcrforIncd.

2.2.5 SupGetUserCtx()

This function is implemented in kern/PARISC/sv.h.

2.2.6 SupCtxResetO

This function is implemented in kern/PARISC/sv.cxx. The function blindly overwrites the
context frame on the stack by the user context frame portion of the SupThreadDesc.

Discussion :

This function needs to be changed to perf OrIn senne sanity and protection checks before Inodi{ying
the thread context.

2.2.7 SupCtxIsUserMod()

This fucntion is implemented in kern/PARISC/sv.h. The function returns true if the sr4 of the
context is not the same as the kernel's space id. Other wise it returns false.

Discussion :

One of the experiInents which we ",rant to do is to take the supervisor actors froIn the saIne space

as the kernel and use the multiple pri vikge kvelo. One of the interesting aopecto of the architecture
is the cheap mechanism for system calls and the multiple privilege levels. This function would
den nitely break if such a fleparation is done.

3 Adually currCtx points to lhe top of the switchl'rame. Therefore, fLsize bytes have to be subtracted from
currCtx before accessing a field in the EnThreadCtx structure portion of the s",ritchFrame

25

2.2.8 The various connect and disconnect functions

This section details the implementation of SupCall[Dis]ConnectO, SupIt[Dis]ConnectO and
SupTrap[Dis]ConnectO. These three pairs of functions are implemented in svConnect.cxx in
the directory kern/P ARISC.

The~e function~ an_~ provided by Chorul:l I:lO that the portahle la~yer~ of the Chorul:l kernel can
attach handlers to traps, interrupts l system calls in a machine independent manner. The chorufl

kernel maps the ConnectO syfltem calls provided to supervisor adors to the corresponding Con

nectO calls of the Supervisor interface. IVe found that we needed to have more information than
the I:lpeclIicd paraIIwter~ for thc ConnectO calls to ~atil:l{y the ~y~tcrll call intcrface for ~upervil:lor

actors. Thi~ probkrll is di~cu~~cd in detail in section 2.2.9. In thi~ section l we ""ill di~cu~1:l thc
different semantics that apply to some of the parameters to these *ConnectO calls on PA-RlSC
1 n cont rast to \vhat Chorus origi nally envisaged. The flema ntic differencefl are as follcnvs:

• The Chorus interface expects the Iirst parameter to SupCaliConnectO and SupTrapCon
nectO to be a trap n umber. SupCallConnectO is used in the Chorus kernel to con ned
a vector of handlers behind a trap. In the case of implementing T;NIX as a collection of
actors (sub-system), a SupCaliConnectO is made from the sub-system actor called the
PJ\,f to connect a vector of sy~teln call routincs behind a ~pccllied trap nUlnbcr to handk

L:NIX system calls. In the case of PA-RISC, it is not necessary to cause a trap to perform a
system cal1. There ifl an efficient gnJelDa;l) mechaniflm (flee fledion 4) by which a controlled

transfer behveen privilege levels can be achieved. This method is the proper mechanism for
making system calls on this architecture (HP-T;X and YIPE use the same approach) and
has been used in the implementation of system calls for PA-Chorus. The consequence is
that calling the Iirst parameter to SupCaliConnect() as trapNb is not quite correct. Since
the purpose of having SupCaliConnect() and SupTrapConnect() is to build sub-systems
(including Chorus as the bafle case), this number is distingushed in the SUPf'lTisor layer as

a real hardware trap number or a sub-system number to which a vector of handlers (Sup
CaliConnect()) or a single handler (SupTrapConnectO) should be connected. Hence an
appropriate name for the Iirst parameter would be subSysOrTrap:'\b. Additional constants
were added in include/P ARISC / syscall.h to map symbolic constants for sub-systems to
numbers. I'or example:CHORUS_SUHSYS is defined to be:31. The range of hardware trap
numberfl does not overlap \vith the range of flub-flystem numberfl pOflsible. Thifl makes difFer
entiation bet ween a sub-system number and a trap number simple .

• The Chorus interface expeds the first parameter to SupltConnectO to be a hardware in

terrupt number. ln the case ofPA-RJSC, all the external devices including the clock raise the
same interrupt #1 (External Interrupt). vVe found it more elegant to pass the number of the
external device as a parameter to SupItConnectO rather than the interrupt number. For ex
ample:To connect dock and clisk handlers, two calls SupItConnect(CLOCK, dockIIcll, dock
prio), SupItCoILIwct(DISKOl, cliskIIcll, diskOlprio) are required. The interface is not changed,
only the meaning of the fi rst parameter is slightly diiferent. However l it is possible to conned

all the device handlers to the external interrupt #1. Hence an appropriate name for the first
parameter would be DeviceOrIntrNb. An include file include/PARISC /extern_intr.h was
creatcd to IIlap ~~Ylnbolic constants for devicel:l to Inapped to integcrs. The nUlnber~ po~~ibk

for hanl""are intcrrupt~ do not overlap with that of the devicel:l. This Inakel:l dilfercntiation
bet\veen a device number and a interrupt number simple.

The basic data ~tructure~ that havc bcen ul:lcd for the irllpkIIlcntation arc pre~ented in ligurc 6.

26

typedef struct {
unsigned long
KnCallEntry*

} vector_dese;

typedef struct {
unsigned int
union {

funcNb;
calls;

connectType;

vector_dese vector;

KnHdl hdl;
};

VmAddr
} supCall Tbl;

dataPointer;

1* No of functions in the array being connected *1
1* address of the array *1

/* Array or function connected */

1* The $global$ of the Supervisor Actor *1

1* MAX_SYS_NUM = 25 from include/PARISC/syscall.h; the maximum number *
* of sub-systems that can simultaneously run on top of Chorus *1

supCallTbl userTrapVect[MAX_SYS_NUM]; 1* For User Actor System Calls *1
supCallTbl kernTrapVect[MAX_SYS_NUM]; 1* For Sup Actor System Calls *1

Figure 6: Data structures for System Call Handling

• The structu res userTrapVect and kernTrapVect are used by SupCaliConnectO, Sup
TrapConnectO.SupCaliHandlerO fi nds and executes the routi ne attached by the Con
nectO calls during system call execution .

• vect, DeviceVect are updated by SupItConnectO and SupTrapConnectO. The rou
tines attached to the various interrupts and traps by the ConnectO calls are executed by
SupItHandlerO,SupItSelectorO or SupTrapHandlerO on the occurrence of the those
inttTf'Uptions. The data structures for interruption handling are presented in ligurc 7.
In addition to the 25 PA-RISC interrupt.ions, there an_~ 3 psucdo-intcrruptions generated by
the low-level event handling layers. Therefore, we maintain an TNTRVIAX element array
(2.5+:3 elements) and a110w handlers to be attached to one single vector vect. Currently the
psuedo-interruptions are handled in the kernel itself.

PA-RISC has one external interrupt for all external devices including the ITMR. This implies
that all handlers for different external devices would have to be connected to the same position
in vect. To avoid this~ DeviceVect IS introduced to keep the interrupt handlers clcvicc-spccllic
rather than connect1ng all the devlce handierl:) to one pOl:)lt1on 1n the vect array.

The 1rnpierrwntat1on of the var1ou~ ConnectO call~ 11:) now prel:)ented:

SupItConnect(itN um, hdl) : ca11s SupItConnectPariscO with kernel's $global$ as addi
tional parameter. SupItConnectPariscO allocates a itLink structure from the it Pool,
stores the parameters of the function in the structure and aiiaches it to vect or DeviceVect
depend1ng on the actual1nterrupt nurnber pararneter (itNurn) being a PA-RISC 1nterrupt
nurnber or a I:)~yrnbolic devlce narne. Two or rnore handler~ for the I:)arrw 1nterrupt or devlce
are li n ked in desc:endi ng order of priority.

typedef struct {
itLink* lnk;
KnHdl routine;

unsigned long priority;
VmAddr dataPointer;

} itLink;

typedef struct {
KnHdl routine;

VmAddr dataPointer;
} KnHdlEntry;

typedef union {
itLink* Ink;
KnHdlEntry hdlEnt;

} VectEntry;

VectEntry vect[INTRMAX];
VectEntry DeviceVect[NurnOfExternalDevices]

FIgure '7: Data Structure~ for Inte,('f'Uldion handling

The ad va ntage of havi ng a sepa rate table for external devices is for efficiency of search d lJ ri ng

interrupt handli ng.

SupTrapConnect(trapOrSubSysNum, hdl) : calls SupTrapConnectPariscO with the ker
nel's $global$ as an additional parameter. SupItConnectPariscO does the following:

• If trapOrSubSysNum is a PA-RISe trap, then store the dataPointer and hdl at
vect[trapOrSubSysNurn].

• If trapOrSubSysNurn 11:) sub-s~ysteln InlInber~ then this tHlplies a single rout.ine interface

for systcrll calls in contrast to a vector of handlers cOIlIlected by SupCallConnect().
Update both userTrapVect and kernTrapVect by the same parameters and update
connectType to be FT;NCTYPE.

• If neither of the above condition holds, then return illegal value status.

As explained in the beginning of this section, it is not necessary to cause a trap to perform a
system call on this architecture. If a sub-system manager requires a single routine to handle
all the systcrll calls iIlstead of a vector of handlers, there arc now two ways of cloing it:

• SupTrapConnect() "vith subSystCIIl IluIIlbcr Inl:ltcad of trap nUlnbcr al:l I.irl:lt paraJIwtcr
and the ha ndler as second parameter. This is the interface used by the U NTX su b-system
i rnplelllentation to provide U .\TX syfltelll call flervic:efl to the ac:torfl of the flU b-systelll.

• SupCaliConnectO with size of the array equal to one. Tn this case the stub li
brary should always have the system call number equal to 1, and the single handler
In vectorOfHandlers rCl:lponslbk for dll:ltlngul:llung varIous SYStCIIl calls of thc acton;

runnIng on that sub-s~ystcln.

28

SupCaliConnect(no, vectorOtHandlers, NoRdl, privilege) : calb SupCaliConnectParisc()
with the kernel's $global$ as an additional parameter. SupCaliConnectParisc() connects
the vectorOfHandlers to userTrapVect [noJ if privilage is User or to kernTrapVect [noJ
if privilage is Supervisor. The connectType is set to VECTOR_TYPE.

DisConnect functions : All the disconnect functions are straight forward and basically reset
the corresponding locat.ions to Nl~Ll or deallocate the allocated structure as in the case of

interrupts.

2.2.9 Supervisor Actor Interface Implementation

In the case of PA-RISC, the compiler generates instructions that access data relative to general
register 27 (DP or DataPointer). During the startup of a thread this register is set to $global$
(of the address space) before the actual code gets executed. The $global$ refers to the staJting
address of the the $DATA$ section of a typical UNIX process. Chorus requires the kernel and
supervisor actor to live in the kernel address space. Chorus aflSlJrnefl that it ifl possible to make

a simple procedure call to a procedure in the the supervisor actor from the kernel as the actors
are in the same address space, i.e., the kernel address space, even though the two actors are
t\lYO separate executable lInages. During the port~ this rcquirCIIwnt that the supervisor acton;
should live in the saIne context as the kernel has been satidiccl by laying out the supervisor acton;

including the kernel in difltinct regions in the :30-bit virtual addreflfl space corresponding to the
same spaceTd=KernelSpaceTd. Hecauoe of thio, the $global$ address is diiferent for each of the
supervisor actors and the kernel. The consequence of this design decision is that it is no more a
simple procedure call from the kernel into the supervisor actors. If a procedure Jh of a supervisor
actor .~ has to be called In the interrupt handling sequence~ then the procedure Ps can be called
only after the DP register has been updated to that of the supervisor actor. h, addition the
kernel's dp should be restored when returning from p!j. \Ve (;{1nflidered the following implementation

approaches:

• IlP of the supervioor actor ohould be known by the kernel at the time of calling the interrupt
handler.

• The routine should know that it should set the IlP to its $global$ and restore the kernel'o
$global$ at the end of the routine.

• The routine should know that it should the set the DP to its $global$ and the kernel should
restore its own DP after returning from the call.

The second approach was rejected because, even if submerged, the setting and restoring of DP
using static variables in the system call stub at the time of the Connect(), it is not a robust
rnechanisrn and can be broken by a rnisbehaving supervIsor actor. Of course~ as supervIsor actors

are trusted, there are other ways in wh.ich a rnisbehaving supervIsor can crash the kernel but we
did not want add more ways.

The third approach required modification in the kernel interface and the stubs. Tt was rejected
because using static variables in system call stubs did not appear to be elegant and it required
kernel modification.

\Ve exarnined t\lYO alternatives of obtainIng supervIsor actor's DP at tirne of calling the handler:

• Ylodify the Supervisor Actor interface and the SlIpervisor interface to pass the datapointer
as an addItIonal paJ'aJIwter to all those functions that required a routIne in the supervIsor

actor to be called.

29

• Pasl:) the DP al:) a hidden pararlleter during the ~~y~terll call and keep the rllachine dependency
in the the machine dependent layers as much afl possible.

The Jirl:)t approach wa~ rejectcd bccause it would rllodify the rllachinc indepcndent interfacc of
the Choru~ Kernel and would rcquire rllodiJications in thc supervil:)or actor~ alread~y written.

Tn the current implementation, the DP of the superviflor actor ifl paflsed as a hidden parame
ter during the oyotem call. I'or all the calls given in the oection 2.1.2, the following ocheme has
been adopted. If the system call name is 8C] then this would call a PA-RISe specific function
":HJPo'f'isc which takes the DP of the actor al:) an additional aJ'gurllent. The stub will bc gcncr
ated for scjPaf'isc rather than for "HI For exaJIlplc: svTimeOut(routine, paraln, delay) calls
svTimeOutParisc(routine, param, delay, geLdpO). geLdpO returno the IlP of the actor.
The system call otub is generated for svTimeOutPariscO rather than for svTimeOutO.

In the kernel, kern/ scSystem.cxx is modified. All the kernel routines which now require the
knowledge of the DP of the requesting supervisor actor are replaced by functions that have the
l:)arllC narllC with Parisc l:)uJIix. For exarllple: KnThneOut() i~ replaccd KnThneOutParisc()
and the nurllber of argurllentl:) Jield is increrllented by 1.

The following is a liot of the changes at the supervisor otub library level:

• svAbortHandler(actcap, routine) calls svAbortHandlerParisc(actcap, routine, geLdpO).
A stub is generated for sv AbortHandlerPariscO.

• svExcHandler(actcap, routine) calls svExcHandlerParisc(actcap, routine, geLdpO).
A ~tub il:) generatcd for svExcHandlerParisc().

• svCaliConnect(trapNo, hdlVect, NoHdl) calls svCaliConnect(trapNo, hdlVect,
NoHdl, geLdpO). A stub is generated for svCaliConnectParisc().

• svItConnect(trapNo, hdlVect, NoHdl) calls svItConnect(trapNo, hdlVect, NoHdl,
geLdpO). A stub is generated for svItConnectPariscO.

• svTrapConnect(trapNo, hdlVect, NoHdl) calls svTrapConnect(trapNo, hdlVect,
NoHdl, geLdpO). A stub is generated for svTrapConnectPariscO.

• svTimeOut(routine, paran1, delay) callfl svTilneOutParisc(routine, paran1, delay,
geLdpO). A stub is generated for svTimeOutPariscO.

The following is a list of changes in kern/scSysten1.cxx: All the modifications are done under
compilation flag PARISe.

• Replace scSv AbortHandlerO taking 2 parameters by scSv AbortHandlerO that takes
an additional pararlleter DP.
The call workActor-setAbortHdl(f) is changed to workActor-+setAbortHdl(f, dataPointer).

• Replace scSvExcHandler() taking 2 parameters by scSvExcHandlerO that takes an ad
ditional IlP parameter.
The call workActor-setExcHdl(f) is changed to workActor-setExcHdl(f, dataPointer).

• Replace SupCaliConnectO taking 2 parameters by SupCaliConnectParisc() that takes
an additional Ill' parameter.

30

• Replace SupItConnectO taking 2 parameter, by SupItConnectPariscO that take" an
additional IlP parameter.

• Replace SupTrapConnectO taking 2 parameter, by SupTrapConnectPariscO that take,
an additional IlP parameter.

• Replace KnTimeOutO taking 2 parameter, by KnTimeOutPariscO that take, an addi
tional IlP parameter.

T he following is a list of changes in kern/knMk.hxx: All the modifications are done under
compilation Hag PARISe.

• Add two fields acPariscExcDp, acPariscAboDp for recording the DPs of the supervisor actors
that have performed svExcHandlerO, svAbortHandlerO respectively.

• r:xtend the parameter list of setExcHdlO, setAboHdlO to take IlP as a parameter. Add
an additional assignment of the DP to acPariscExcDp and acPariscAboDp respectively.

• Vlodi~y execExcHdlO/execAboHdlO to call SupTrapStubO with exception context,
exception number, exception/abort handler to be called and the DP of the exception/abort
handler routine as parameters.

The following is a list of changes in kern/knMk.cxx. All the modifications are done under
compilation flag PARISe.

• The timeOutItem ,tructure has an additional Held: DataPointer that give, the $global$
of the supervisor actor to which the routine belongs.

• KnTimeOutO calb KnTimeOutPariscO which has an additional parameter DP. The DP
i, the $global$ of the kernel.

• KnTimeOutPariscO IS exactly the SaJIle as KnTiIneOut() but takes an additional pa
raIIlctcr and pcrforIrm the data poInter ass.ignIIlcnt Into the tiIIlcOutItcrll structure.

• KnProcessTimeOutsO has been modified at the point of calling the timeOut routine.
SupTrapStubO i, called to take caJ·e of ,witching to the data pointer of the timeOut routine
before executIng the routine and then restoring the data pointer of the kernel when returning
to the kernel.

SupTrapStubO i, implemented in kern/PARISC/SupTrapStub.s. It allow, the kernel to
call the supervisor actor routines that have instructions generated with a clilfcrcnt $global$. It
takes the followi ng parameters:

• Pointer to the thread~s context, KnThreadCtx* ctx

• Interruption number, int no

• Routine address, int (HnPtr) 0;

• $global$ of the actor to which the routine belongs, VrnAddr global.

31

HardWare Software

loeore.s asrnJv.s: ehorus_trap.exx . svConnect.exx, vrntrap.c '.' '.' '.'
TV;\ Reg . Sivaaddr:

: eigh~ instruct.ions: ihandler(itype J:
I $ivaaddrl . per mterruptIOn. . .

interrupt(itype, etx): SupItHandlcr(ctx, itypc)

: SupTrapHanlder(ctx, itype
. 2') interruptions. :

: Sreslore_ss_lrap . thandlcr(itype) trap(itype, ctx)

: VrnHandlcr(ctx, itype)

Layer 1 Layer 2 Layer :1

I'igu re 8: Chorus ~;vent H andli ng Seq uenee

2.2.10 Interrupt masking and monitoring functions

The oeetion detaib the impkmentation of SupItLevdO, ovMask[All]O and sv UnMask[All]O. SupItLevdO
is implemented in kern/PARISe/sv.h and the functions sv[l'n]Vlask[All]O are implemented in
lib/HP800/svMask.s The mask/unmasking functions are implemented by calling the appropriate
splO routines of Tut code implemented in lib /P ARIse / asnLutl.s.

2.2.11 Event Handling

The event handling ~equcIlcc has been lrnpkIIlcntccl in 3 la~ycrl:) and 11:) I:lhO\lVIl in Iig 8.
The IVA control register is fi rot initialized with the code add r $ivaaddr in kern/PARISe/locore.s

during the kernel Initialization phase. This address is page-aligned and is therefore l024-byte
aligned as required by the PA-RISC interrupt architecture. This will be referred to as the inter
rupt vector table in the following discussion.

PA-RISC iIltClTupt.ion~ an~ da~~iJicd in the follo\lving lnanIler:

• PA-RISe Interruptions #1, #2, #·1 and #5 have been classified as interrupts .

• The remaining PA-RISe Interruptions are handled as traps. Ofthese traps, #6, #7, and #1.5
to #'21 pertain to memory management. HP 9000/831 (the target architecture) has software
TLB handling. So the interruptions #6, #15, #1(;, #17 are actually TLB misses but may
result in page faults if the page io not in the PDIR (see section 1.3.3).

Recall that on an interruption, hardware branches to the code address given by the following
relation:

code address = IE4 + 8*1*inlerraplion number.

])epending on the interruption, the interruption parameter registers are updated by hardware. The
processor is in physical mode. Interrupts are turned off. The PSW _Q bit in the PSW is disabled.

All the interrupt and trap handling code resides in the directory kern/PARISe. An overview
of the interrupt and trap handling is ao follow"

32

• IIanlv"are branche~ to the dfective addrel:)~ In the interrupt vector table as detalkd above.
At this level a fe\v registers are fla,ved in control regiflters to obtain some working registerfl.

A branch is performed to ihandler() for handling interrupts or to thandler() for handling
trapsD.

• ihandlerO and thandlerO oave the context of the executing thread. thandlerO alwayo
stores the context on the system stack of the current thread and executes on the same. ihan
dler() uses the system stack of the current thread for storing the context and for execution if
lntcrrupt nel:)tlng kvcl 11:) zero. OthcrwIl:)e, the functIon ul:)es the inte'('f'UIJt contT'01 .stack (leS).
Tn the general caoe thandlerO callo trapO and ihandlerO callo interruptO.

• interruptO executcl:) the Interrupt routine~ attached by {Sup, sv}ItConnectO by calling
SupItHandler(). trap() directs all the memory manageIIwnt traps to V mHandlerO and
non-memory management traps to SupTrapHandlerO.

• ihandlerO, after returning fnun thc call to interruptO~ chccks if rel:)chccLuling or abortIng
the thread io neceooary, and by default, restores the context of the current thread. Ilepending
on whether ihandlerO was running on the lCS or on the flyfltem stack of the current thread,

it has to perform a different restore sequence to return to normal execution. The reason for
the difference is that threads' system stacks are not equivalently mapped, whereas the IeS
11:) equIvalently Inapped, i.e.~ virtual and phYl:)ical addrel:)ses are thc ~aJIle. $restore_ss IS thc
Linal restorc sequence used on the leS and $restore-Bs_trap 11:) the Linal rcstore ~cqucnce
used on the flystem stack. $restore_ss_trap and $restore_ss are text add reflfles in locore.s.

A branch is taken to this code to cause a potential TLH refill and then the code geto executed.
This branch is necessary because code updating the interruption instruction queues and IPSvV
should not cause TLB misses as the PSW _Q bit is turned off.

thandler() after returning from the call to trap() restores the context not connected with
ln~truction queuel:) and PS\V etc~ and pcrforIrll:l the Linal rel:)tore sequence to rel:)taJt cxccutlng

thc codc of the current thread by branching to restore-Bs_trap.

Thi~ COIIlpkte~ the overvlev" of the ilnplelnentation of trap and lntcrrupt handling.

A dctailed de~crlption of the controlllow of lntcrrupt handling l~ nov" prcsented. Thc vaJ·iahlc
istackptr containo the pointer to the bottom of the TCS if the code is not executing on the TCS.
istackptr is set to zero whenever the code is running on the lCS. The variable nbit indicatefl

the current interrupt nesting level.
The detailed flow of control for interrupt handling is given below.

1. Hardware branches to one of the first level interrupt handlers in locore.s. The processor is
in physical mode. Interrupts and the PSW _Q bit are disabled.

2. The fi rst-level handler oaves registers ARGO, SP, rl which will be uoed ao scratch and brancheo
to ihandler(itype) in asnLrv.s

3. ihandlerO performs the followi ng operations:

9PA_IUSC interruptions #6, #15, #16, #17 are are treated slightly differently. All TL13 misses are first handled
in kcrn/PARISC/locorc.s. If the page is found in the PDIR then the tlb is refilled and control is returned to
the executing thread. If the page is not found in the PDIR (see Inouye [11]), then thandlcrO is called ¥!ith the
appropr-jat~ pag~ rault typ~ (Tnstruction [non-ao::e:ss] pag~ rault. or Data [non-ac.ce:ss] page: rault) as the: case: may be:.

33

(a) Incremcnt nbi t. If nbi t e~uab two, thcn ,wItch to thc ICS.

(b) If nbi t is greater than two, continue using the current SP as we will be definitely on
thc ICS.

(c) If nbi t equals one, then check for which one of the following cases is true and execute
the corresponding code:

i. Already on TeS. This cafle "vas posfli ble as interrupts were tu rned on d IJ ri ng booti ng.

T his case can arise only if interrupts are enabled during booting. The interrupts are
not enabled during booting in the nOrIIlal execution. In an~y case, if .iIltcrrupt~ an~
Ie-enahled eluring booting~ the current SP 11:) used.

11. Check if we are running 011 the user stack or system fltack of the thread. The state

has to be saved on the system stack in this case. This requires saving the interruption
parameter registers in the equivalently mapped tmp_save_state struelure, turning
on virtual rIlcrIlory and checking CurThread\; ksp. If ksp (XIUab zero, the thread

was executing on its SystCIIl stack and so keep the SP unchanged. If ksp is not equal
to zero, the thread was executing on itfl IJser stack and ksp contains the pointer to
its system stack. Set SP equal to ksp and set ksp to o.

(d) lVIake sure there ifl enough flpace on the selected stackfl. If executing on the flystem

stack and flyfltem stack overflow is detected, switch to TCS and change interrupt number

to kernel stack overflow pseudo-interrupt. If executing on the ICS and ICS overflow
is detected, change the protections of the overflow page available just after the ICS.
Change the interruption rLlnnber to ICS overflow p~uedo-interrupt. Doth the~e event~

are cUlTentl~y unrecoverahle. interruptO pa~se~ thern to trapO whleh gives a panle
message and craflhefl.

(e) _Allocate the context frarne of size fr_size(see ~ection 2.2.3) on the selected ~tack.

(f) save context on the stack, set DP to $global$ of the kernel and call interruptO in
chorus_trap.cxx with arguments context pointer and interrupt number.

1. There are two ways interrnptO could be called: If a trap occur~ on the leS or a
genuine interrupt hafl occurred. Tn the first case, redirect the parameters to trapO.
Tn the latter case, call SupItHandlerO.

ll. SupItHandlerO calls routines attached by the ItConnectO calls. The various
interrupt~ are handled a~ follows:

• r"';rierna! Int~lTl1pt #4: the attached routine is SupItSelectorO. This routine
is attached in SupBoardInitO in svBoard.c during kernel initialization. The
clock handlers connected in SupBoardInitO get executed by SupItSelectorO
every tIme Interrupt #4 occur, and the EIRR 0 bit I, ,d. Thc"" handle" aJ·c
part of the kernel and are nece~~aJ·y to satisfy the irnplernentation ~peciJication.

• Power failucc interrupt #2, Low-priority machine check #5: These interrupts
do not have a real handler in the current implementation.

• IIigh [Jl·iol'ity ;VIachifie check #1: Thi, interrupt I, handled at the Jir,t levd it,df
in locore.s and is u ncha nged from the Tnt implementation.

(g) Disable interrupts. Decrement nbi t. If nbi t equals one, then restore istackptr to ICS
stack bottom. This is because the interrupt handling at nesting level () is performed on
the ~ysteln stack of the current thread.

31

(h) Ifnbi t equab zero then check for execution mode of tIll' interrupted thread. if the thread
was executing supervisor mode then call KnRetSupO and go to step (:3j. Otherwise
call KnRetUserO.

(i) If KnRetUserO returns non-zero, call KnAbortHandlerO.

(j) Restore saved context by loading all the context except those related with PC queues,
SP l PS\V ~ and .interruption paraIIwtcr rcgi~tcrl:). If executing on the interrupt ~tackl thcn
branch to $restore_ss in locore.s. Othenvise, branch to $restore_ss_trap in locore.s.

4. In $restore_ss interrupt.ion instruct.ion CJUCHes and pararllctcr registers an~ going to be \lvrittcn
into and since the Q-bit will be disabled, there can not be any TIn nusscs. Disable interrupts.
Turn off VM and Q bit and Protection bits. Restore the remainder of the state from the
previolJs interrupt after calculating the new psw. Restore SP and perform l~fi instructioll.

The new psw is given by the following relation:

New psw = (CLOHAL_VAR_MASI< && ipsw) II globaLpsw

The operations at $restore_ss_trap will be de,cribed in the trap handling description.

Once the restore sequence is done, the normal mode of execution is resumed. A detailed flow
of execut.ion for trap handling i~ now prcl:)cntcd:

1. Hardware branches to one of the first level trap handlers in locore.s.

2. The fi rst-level handler saves registers A RCO. SP, "1"1 which will be used as scratch registers
and branches to thandler(itype) in asnLrv.S

3. thandlerO performs the following operations:

(a,) If currently executing on the ICS~ then allocate a context fraIIlc 011 the ~tack~ storc the
interruption paJoaIIlctcr rcgistcn; and branch to step (3f) in ihandlerO. IncrCIIlcnt nbi t
to 8nfllJre compatibility \vith interrupt handler code to execute correctly.

(b) If not executing on the leS. then the context has to be ,aved on the system stack of
the thread. Find ,tack on which the thread was executing. This requires the v:vr to be
enabled. Hefore turning on VM, store the registers that might get trampled by turning
on v:vr due to tlb misses into the equivalently mapped tmp_save_state structure. If
current thread's ksp equals zero. the thread is executing on system stack. Otherwise,
ksp contains the sy,tem stack pointer of the thread. Obtain the stack pointer if ksp is
nOll-zero and sd the SP register to ksp. Otherwise, do nothing.

(c) If sufficient space is unavailable on kernel stack, switch to the lCS and change interrup
tion number to the psuedo interruption "e,.nel-~tack-ocerjlow (LKS_OVFL) and allow
the interruption nUlubcr to lloat up to the next layer just as in ihandler{).

(d) Allocate space on the selected stack. store the context onto the stack. Set DP to
$global$ of kernel and call trap().

(e) trap() passes all the memory management traps to V mHandler(). The traps Break,
High Privilege Transfer, Low Privilege Transfer, Taken Branch are passed to Sup
TrapHandlerO. The traps /1.ssist Ernulation and /1.ssist E:ntptio'(l an~ not currently
I:lupported. The default behavIor for un-I:lupported or Irrecoverable errorl:l II:l to panle
with a message.

35

SupTrapHandlerO calls the connected handkr if a handler to the trap is connected.
Otherwise, it calls KnHandlerO. SupBrkHandlerO is connected to the Hren,j, trap.
This checks the parameter of the break instruction available in the context and cails the
Kernel debugger if the condition succeeds otherwise, it calls KnHandlerO.

VmHandlerO chech the type of trap and the space (user or system) in which the trap
hafl occurred. (-'or Rome of corn bi natiollfl that are unrecoverable (for example:Tnstruc:tion

page fault in the system space), the function panics. For the various trap and space pairs
for which the portable layers can make a decision, V mHandlerO calls faulLhandleO
which cails execPageFaultO. The Chorus page fault interface requires execPage
FaultO to be impkmented by the machine dependent layer (sec section 3). The han
dling ofvariolJfl memory management traps ifl outlined belcn\':

TLB miss faults : Before performing any other action, the Chorus memory manage
ment data struct ures need to be consulted. fault_handleO cails execPageFaultO
to detennlnc \lvlwtlwr the page has been rnappcd .in the portahle I:ltructuTCI:) but not
yet allocated by the machine-dependent layer.

Non-access TLB miss faults: For non-access TLB misses, PDIR search failure for
LPA and PROBE instructions does not result in a page being brought into memory.
Therefore, fault handling for these cases abo ends in stage one. For LPA, we IIlay

have to modify the base register (if speciJied in the faulting instruction). PROBE
and LPA handling ends by setting the N bit which nullifies the next instruction.

Memory Protection Faults: Protection and alignment faults are handled exclu
sively in stage three. AligIlIIwnt faults result whcn a either a storc or a load in

struct.ion access an address "vllich is not aligned as per the rCCJU1rCIIlcnts of the
flpec:ific instruction. Alignment faults are exclusively due to bad code and their han

dling ends in stage three by sending an error message to the user process. Protection
faults may occur due to iilegal accesses to pages or due to copy-on-write violations.
The latter necessitates a call to execPageFaultO.

(f) Hegin the return from exception sequence. Restore mOflt of the context from the context

frame except those pertai ni ng to interruption add reSfl q ueues l pSTJ and \vorki ng registerfl.
Branch to restore.ss_trap.

4. $restore-Bs_trap is more complicated tha n restore_ss si nce we are deali ng with non-eq uivalently

mapped system stacks. \Ve need to first copy the context to be restored in to the equiva
lently mapped tmp_save_state structure before we can turn off VM. Operations similar to
restore_ss are perfonIled. In add.ition l if the thread .is returning to user rIlo(k, the ksp of

the thread is updated. This check can be done by check.ing the nest.ing level of the traps on
the system stack.

Discussion :

IVe reused most of the Jirst and second level handling code from the Tut project and this greatly
s.irIlpliIied the irIlpleIIlentation. The Iirst level of .interrupt.ion handling in locore.s is unchanged
from Tilt. The second level of Trap handling code asm_rv.s remained basically the same except for
a few modifications related to the accesfling the current thread and its descriptor. The ofFsetfl had

to be modified to access the appropriate fields in the KnThreadCtx structure. Interrupt handling
code required extensive changes. Chorus requires that on the Jirst interrupt (nest level O)~ the

context of the current thread .is saved on the systerIl stack and not on the IeS as .in the case of

36

Tut . This means all the probkms of non-e~ui valently mapped stacks that arise in trap handling
also find their way into interrupt handling. Chorus requires the current interrupt nesting level to

be maintained by the machine dependent layers. This was one of the additions. The third level of
handling is more operating system specific and had to be wrillen for Chorus, although some pieces
of Tnt code were rcw:;ccl.

2.2.12 Timer and Console Management

Timer management ifl implemented in kern/PARISC/svBoard.c.
The fu nction SupBoardInitO connects clock handler clockO and clock_ackO to the clock

interrupt in descending order of priority. ciock() calls the portable kernel exported function Kn
TimeInO and returns. clocLack() acknowledges the interrrupt by resetting the dock interrupt
bit in BIRR and rescheduks the interrupt by writing (currentTime + rescheduling interval) into
the TTfvlR register.

SupPreciseTimeO is trivially implemented in the sallle file by returning the value in the
ITMR register.

SupPutChar(), SupGetChar(), SupPoliChar() are also implemented in
kern/PARISC/svBoard.c. For details on their implementation, see [14].

The Sllpt./'vi~o/' is responsibk for connecting at kast SupPutChar() and SupGetChar()
behind a trap so that library functions can be implemented. Tn the case ofPA-RTSC, three system
calls PutCharO, GetCharO, PoliCharO are implemented using the system call interface and
can be called from user or supervisor actors.

2.2.13 Debugger

The debugger function SupDebugger() is implemented in kern/PARISC/debug.c. yIost of
the code to implement the debugger has been ported from Chorus 3.3 sources for the compaq386.
The debugger is minimal and can perform the following functions:

• Show what cornrnands aJ·e available and syntax (help facility).

• Recover froIH a, break lIl~tructioIl. The debugger does not have the capability of setting a,

break point. Currcntly thc dcbugging il:) donc b~y having an cxplicit uf'(:ak inl:)truction in thc
sou rce code.

• YIodify data

• Hex dump of memory

• Show interruption context if the debugger is called during the interruption handling phase.

• Changc dcbug tracc level

• Toggle thc Inorc option in during traccl:). Sctting thil:) option "vould cau~c traccl:) to paul:)c for
input aftcr cvcry 24 linc~.

• Show the context switch history of whole system or that of a particular thread. The history
di~play~ thc following infonnation ahout thc I:)witch:

Is the switch voluntary or caused by preemption

cause of preemption

37

- The thread descriptor oftlw thread which is the destination thread of the context switch.

The hil:ltory is IIlalntalncd in a clrcular bulfcr.

• Show the history of the interrupts and traps. The histories of traps and interrupts are
maintained in separate circular buffers .

• Visualize the scheduler, actor, thread, message and port data structures. This functionality
is provided by the portable layers of the kernel (kern/knPrint.cxx, kern/knMk.cxx) and
the appropriate fUIlct.ions ""ere calleel fnnn SupDebuggerO

The debugger has been connected behind the PA-RISe break Trap (#9). The instruction
break causes a break Trap. The break instruction takes two parameters that can be used in re
solving the break instruction processing. The instruction b'('eak BI1_DEBUG,O causes the pro
gram to enter the debugger. To achieve this, a generic break handler function SupBrkHan
dlerO is first connected to the H"mle trap using SupTrapConnectO. See SupBoardInitO
in kern/PARISC/svBoard.c. This handler is invoked by the event handling code(see section
2.2.11). SupBrkHandlerO calls SupDebuggerO if the first parameter of the break instruction
is DILDED"CG.

The library function callDebugO is impleIIwnted in lib/PARISC/utDbg.s and basically
contains the bren,j:instruction with HTLIH:HUC as it's first parameter.

2.2.14 Kernel Initialization

The function startO is implemented in kern/PARISC/sv.cxx but is not the entry point of
the kernel image. In most other Chorus implementations, virtual memory initialization is done
cntlrd~y in the boot prograIIl portion of the boot archive and the kernel has to perfoTIn oIll~y its
own initialization. Tn the c:afle ofPA-RTSC, because of the reUfle of Tnt code, it ""vas easier having
the kernel do all the initialization in one, mostly unchanged, procedure than try to break up and
modularize the low-level code. For more details on booting, see [12].

Control is transferred to the kernel entry point rdb_bootstrap in kern/PARISC/locore.s
fnnn the boot prograrn part of the boot archIve. At thll:) poInt InterruptI:) an~ dll:)abled and the
procel:)l:)or 11:) In phYl:)lcal rno(k. DP, EIRR, IVA l SP~ I:)pace regll:)terl:) and ~orne global varlablc~1:) an~
initialized fo11owed by a ca11 to realmainO in kern/PARISC/vm_machdep.c. realmainO
maps the kernel and returnfl the next available phYflical page. Then virtual memory is turned on
in kern/PARISC/locore.s and control transfers to startO.

startO performs all the functions specified in section 2.1.6 in addition to disabling the scheduler
and Initializing the CurThread variable that pointl:) to thc current executing thrcad. Thc initializa
tion of Cur Thread is neceflsary so that trap and interrupt handling code that refer to CurThread see
a legal value even though the thread has not actua11y been created. startO ca11s KnInitO which
makes the executing kernel initialization code the first thread of the operating system. KnInitO
returns the system stack pointer to be used by the first thread. At this point, the first thread's
dCl:)crlptor getl:) rnanually built, in a rnanner I:)lrnilaJ· to that b~y SupCtxInit(). Thll:) 11:) nccel:)~aJ·y

because the thread i~ already runnIng. It i~ like bootl:)trapPlng the thread abstraction. Then a
stack switch from the interrupt control stack (TCS) to the a110cated system stack is done fo11owed
by a branch to KnMainO. This function never returnfl.

38

Page Fault :rviaehine Dependent :rviaehine Independent

I exeePageFault() VmFtHandler{)

I'igure 9: Chorus Page I'ault Interface

3 Chorus Page Fault Interface

AI:) there 11:) little dOClunentatlon on portIng the Chorul:) virtual rnernory urut, rno~t of thl~ Infonnatlon

was gathered through word-of-mouth and aSflumptions made from reading Chorus flource code.

3.1 Requirements

FIgure 9 showl:) the procedural Interface bd\lveen the rnachine-dependent cock and the rnachlne

independent code. The routine execPageFaultO should be called by all the low-level trap handlers
requesting access to the portable layers. This procedure represents the machine specific end of the
bridge between the machine dependent (ynn;) and the machine independent (VY!) layers. The
routine VmFtHandlerO repre",nts the VM end. The Ilk kern/vrn/pvm/pvrn.hxx contains a
fault descriptor structure (grniPullInArgs) (shown in Figure 10) that is used to pass information
between these two layers and is the only parameter paflfled to Vn1FtHandlerO. The deflcriptor is

created in execPageFaultO. The machi ne-dependent layer is responsi ble for filii ng in the fields for
jtAddr. jtAcccss. nonAccess and prContext. The field jtAddr contains the address which caused the
faul\. The type of access i.e., read or write, is specified in the field jtAcccss. A pointer to the faulting
context Is Inserted Into p,.Contt'J:t. ~on-access page faults an_~ IndIcated when the non/icct'88 Hag

Is non-zero. The norL:\ccel:)l:) Hag IndIcates that the portable layers are onl~y being consulted about

page protections and that the faulting page should not be swapped back into memory.
If the page fault is resolved by the upper layers then VlllFtHandler() returns K_OK. The

prPage field should now contain a refererence to the mmuPage descriptor that represents the desired
page. The jJl'Pmt Jidd represents the protections that should be assigned to the page. It is then
the respon~lbillty of the rnachlne-depen(knt ~ectlon to load the page Into the proper context.

3.2 Implementation

The routIne VmHandler(KnThreadCtx* ssp, int type) lrnplernents the rnernor~y rnanage

ment trap hamllers. All the handlers in stage three which need access to execPageFaultO call
fault_handleO , which performfl additional checks on the space T]) and performs certain recovery

actionfl as described below.

execPageFault() is implemented in kern/PARISC/llllllU.CXX. This routine sets up the
fault descriptor and calls the portable layer.

The Chorus portable layer, speciJically VrnFtHandlerO, is called by execPageFau1tO and
Is pa~l:)ed a poInter to a fault de~crlptor. Should the page fall to be found, then the kernel exceptIon

39

struct grniFaultArgs {
grniAddr

};

grniFlags
grniOffset
grniCache*
grniFlags

struct grniPulllnArgs
int

};

grniContext*
vrnPage*

grniFlags
grniOffset
gmiSize
operationDesc*
grniCache*
int
grniFlags
grniOffset
grniSize
grniCache*
grniOffset
grniFlags

ftAddr;
ftAccess;

ftOffset;
ftCache;
ftFlags;

grniFaultArgs {
nonAccess;
prContext;
prPage;
prProt;
prOffset;
prSize;
prOper;

II Set in MMU layer
II Set in MMU layer

II Set in MMU layer
II Set in MMU layer
II Returned to MMU layer
II Returned to MMU layer

prCache;
rnapWasOut;

rnpRequeredAccess;
mpAccessOffset;
rnpDataSize;
rnpTransitSegrnent;
rnpTransi tOffset;
rnpGrantedAccess;

I'igure 10: I'ault Ilescriptor

handler, KnHandlerO, must be called. In the M88K sources, this is not done in execPage
FaultO but by either codefault() or dataFault(). This is probably done in this manner because
KnHandler() locks the kernel, but execPageFault() runs with the kernel locked.

The routi ne execPageFaultO is responsi ble for determi ni ng the fau Iti ng context, fa u lti ng
address, and the faulting page and loading this information in a fault descriptor.

The fault address is passed to this routine by the low-level trap handlers i.e., VmHandlerO.
The page address can be found by masking off the lower page offset bits from the faulting address.
The faulting context can be dctcnnlnccl by cxarn1nlng the acldrc~1:) I:lpacc.in \\Ihich the fault occurred.
If the address space is STIlO, then the l<ernelContext is responsible for generating the fault.

Discussion :

There are loopholes that still need to be plugged.
One serious problem is the PROBE instruction. This instruction presents a problem in the

presence of copy-on-write pages. The non-access TLB miss routines can return the correct values if
they arc called, but if a page 11:) in IncIIlor~y and rnaJokcd cOPy-oIl-\lvritc then the PROllE instruct.ion

10

that checks for write a,cce" will fail. The way the Tut group wIved this problem was to track
down all the OC;ClJrences of PROHI-<: instructions in the kernel and add another procedure call

when PROBE fails. This cail would check with the Mach portable layers and is similar to our
execPageFaultO routine when the nonAccess flag is set. Unfortunately, user programs which use
the PRODE instruction are 011 the.ir own. This issue is not addressed in the current port. It rnight
be "vise for future PA-RISC iIIlpkIIlcntations to lIIlpkrrwnt the PROnE instruction as a software
trap which would allow user programs to receive the correct treatment of the infltruction.

The presence of non-access T'f..H rniSfl faultfl requirefl that certain additions be made to the page
fault handler in the portable layers. Non-access TLB miss faults are not supposed to cause the
faulting page to be brought into memory. Since the portable layer is cailed to resolve access rights
in the case of nOll-access faults caused b~y PA-RIse [J'rouf: .instructioIlS~ it was necessary to Iuake a
fev" changes to the interface so that the faulting page "vas not ~wapped back into Inelnory.

Rather than change the number of arguments passed to each procedure in the fault handling
sequence, a field, nonAccess, was added to the fault descriptor, i.e.,the structure gmiPullInArgs.
This modification results in not having to change the format of any procedure cail in the portable
layer. "Vhen the nonAccess Jidd is non-zero, it indicates that the current fault should be handled
as a non-acce~~ fault and the swapper should not be called.

4 System Call Interface

The system call interface dea1fl with the code and control flcnv that OCCIHfl during the execution of

a system call. The purpOfle of a system call is to gain higher privilege flO that a Ufler can execute

privileged operations in a controiled fashion.
The usual method of making a system cail on many architectures is to execute a trap instruction.

SOIIW arllount of state get~ storcd~ at "vhich point thc operating systern recognize~ the trap a~ a

request for a s~y~teln call. Then the user pararnetcr~ get copied into kernel space and thc ~J'rsteln
call routine ifl performed in privileged mode. The return values are then copied to user space and

regiflters are appropriately flet. FinallYl a return to user mode OCClHfl afl \vith an exception.

T he Chorus system cail interface requirements and system cail stub generation environment is
detailed in section 1.1 and the implementation on PA-RISC is detailed in section 1.2.

4.1 Requirement.s

Chorus supports two types of actors: supervisor actorfl and Ufler actors. Supervisor actorfl are

privileged and live in the kernel space. Although Chorus can conceptually use the same system
cail interface for user and supervisor actors, it is expected that different system cail interface
is ilnplcrllented for each type of actor. The rationale is that ~upervi~or actors do not require
the protection chccks and the cop~ying that is needed for user actor~ and thu~ can have a Inorc
streamlined interface. It is important to note that this is only an implementation dec:iflion and that

the same interface can be ufled for both user and supervisor actors if flO deflired. Our goal was to

implement both types of interfaces.
Chorus provides a general frame work for writing the stubs for supervisor and user system

cails. The stubs are expected to be generated by the utilities mk[s]lib(). The Jile lib/mklib.c
is expected to produce the cxccutable mkslib for gcncrating ~upervi~or s~ysteln call ~tubs when
compiled with -llSl"P_CALLS flag, or produce the executable mklib by default for generating user
system call stubs. The executables mklib and mkslib have the following command line syntax.

Ink[s]lib tiystt'IIl-call-lulIIlt' tiy.,:;iurl-call- l1undJt',t

11

The otandard output for mk[s]lib io stdout.
All the compiled stubs for the supervisor acto", are expected to be in lib/chorusSv.a and

those for user actors in lib / chorus.a.
The kernel attaches the system call routines for user and supervisor actors by executing scSys

temInit() and sc U serInit() which, in turn, call SupCaliConnect() with appropriate paJ·ame
ters. It .is the rcspollsihillty of the Supf'f'visof' and the systcrll call interface lIIlpleIIwntat.ion to call
the corred system call routine inside the kernel \vith the parameters for the system call given by
the IJfler or slJperViflor thread.

4.2 Implementation

Tn the case ofPA-RJSC) there are hvo mechanisms that can be IJfled for implementing a system call
interface for a user .

• By causing a trap in the system call stub. This method is similar to that described in the
introduction of system call interface (section ·1. An example for PA-RISe is to have a break
instruction with an appropriate paraIIlctcr value as the last instruction in the stub .

• ily UI:,ing the gatt,way IIlcchanlsIIl. PA-RISC provides a (iJITE instruction [10] to pcrfonn

a controlled transition from a lower privilege level to a higher privilege level. Pagefl can

be mapped with special access control information and are called gateway pagefl. A gate

instruction executed in these pages promotes the privilege level of the code that is executing.
The pri vilege kvel obtained depends on the access control inforrllation for that page.

The gateway mechanism was chosen in PA-RISe for implementing the system call interface for
user actors. The advantage of this rllechanisrll over trap-based systerll calls is eHiciency because no

saving and restoring of full user state is necessary (as for any trap or interrupt) before it is realized

that the trap is a deliberate mechanism to enter the kernel to perform privileged operationfl. Tnt

code uses the same mechanism for implementing system calls. The stub interface for user actors is
detailed in section 1.2.l.

For rllost Chorus irllplerllentations~ the supervisor actor systerll call stubs rllake a procedure call

to the required systerll routine in the kerneL The address of the systerll routine was calculated

from the starti ng add reflfl of the kernel's vedor of system routi nefl for flupervisor ador flystem callfl.

Thifl add ress is made available in the /loot structure for all the supervisor actors and is set by the

kernel during kernel initialization. \Ve decided to adopt the same approach. The implementation
of this interface turned out to be more complicated than most chorus implementations on other
architectures and is ddalled in section 4.2.2.

Tn ollr port, code executes at privilege level 0 (the higheot privilege) or at privilege level a
(lowest privilege). l,evels 1 and 2 are not used. Code in superviflor adorfl and kernel executefl at
privilege level () and that of user actors at privilege level 3.

4.2.1 System call interface for user actors

The s~ysterll call interface for user actors is irllpkrllented in lib / lTIklib.c, kern/PARISe /locore.s~

kern/PARISC / asm...scall.s, and kern/PARISC / svConnect.cxx.
The gateway pages are mapped d II ri ng the kernel initialization phaoe and are oet lip such that

promotion to privilege level () occurs at the target address of the gate instruction.
A new gate\lvay page has been ddined exdusi vely for chorus systerll calls that rllirll1cs the IIP-UX

gateway page. It is physically contiguouo with the IIP-UX page but is mapped at virtual address

12

""'" , begining of stub ;;;;;;;;;;;;;
.code

.export threadCreate,code
threadCreate

Idil L%Oxc0006004,r1
Idi 31,r21 ; Sub System No
ble R%Oxc0006004(sr7,r1)
Idi 30,r22 ; Call No for threadCreate
bV,n rO(rp)
nop

""'" , end of stub """""" ,

Figure 11: T; ser Actor System call stub example

CHORl'S_SYSCALLCXIT defined in include/PARISC/syscall.h. This virtual address is six
4K pages greater than SYSCAT.T.CAT~;, the virtual address of the HP-l'X gateway page. The
address assignment is based on lhe following constraints:

• The new gateway page address should not clash or overlap with HP-UX gateway pages.

• Thcrc ~hould bc suHicicnt rOOln for growth in thc virtual addrcss spacc for Inorc IIP-UX
gateway pages.

• The addre," should be in the fourth quadrant.

lib/mklib.c has been modified to produce lhe user and supervisor stubs for various syslem
call~. Thc a,sscIIlbly languagc stub for thc SYStCIIl call thrcadCrcatc is ~hown in ligurc 11 as an
cxaJIlplc.

The stubs for the user actor system calls are similar to the system call stubs for HP-l'X except
that one more temporary register has a dedicated Ufle. Tn HP- U X , the system call n umber is loaded

into gr22 (referred to as CN). In Chorus, HP-T;X or unix-like operating systems are expected lo
be implemented as sub-systems on top of the micro-kernel. Therefore, the syslem call stub should
specify the sub-system which should handle the system call. IIence, in PA-Chorus, the sub-system
number is also passed (in register gr21) to the kernel. The IIP-rx gateway page has been retained
for the long term goal of maintaining HP-CX binary compatibility. The idea is that when a binary

image makes a system call using a slandard HP-T;X slub and branches to lhe HP-UX gateway page,
we just branch lo the Chorus gateway page with lhe hpux subsystem number sel. The system call
can thcn bc handlcd in thc ~alnc way for all SYStCIIl call~, \lvhcthcr fnuIl Chorus or froIIl othcr
subSYStCIIlS.

The control flcnv during a system call is as follows:

• A uscr actor IIlakc~ a s~y~tcln call by cxccuting thc corrcsponding labelcd stub in lib / chorus.a.

• The system call stub loads the sub-system number in gr21, lhe system call number in gr22, and
performs an inter-space branch and link (ble) to the virtual addw," CIIORCS_SYSCALLGATE.
Thc uscr arguIIlcnt~ to thc SYStCIIl call arc in gr~ 23-26 and/or on thc u~cr stack. Thc Chorus
gateway page is implemented in kern/PARISC/locore.s.

13

• The code In the Choru~ gate"vay page rajl:)e~ the prlvllege level to 0 and perfonnl:) a vectored
branch to a potentially different label based on the sub-flYfltem number. Tn the current im
plementation, a single label (chorus->;yscallinit) is used [or system call handling [or all sub
system numbers. This is a hook in case system call handling needs to be per [armed differently
bal:)(xl on the ~ub-I:)yl:)tern nurnber. chorus~yscallinit 11:) In kern/PARISC/asm~calLs.

• At chorus~yscallinit, the followlng operatlon~ an~ perfonned:

Switch to the current thread's kernel stack to perform the system call. To achieve the
switch, the sYfltem fltack pointer is read from the ksp field of the current thread's currCtx

structure.

Allocate a context frame on the kernel stack by incrementing the system stack pointer
by fr->;ize. Ylark that we are on the kernel stack by zeroing the ksp field in the context
frarne. Thc bcglnlng of contcxt frarnc would be refcrred to as ssp.

Save thread 'peel!ic register, SP, DP, GR31 (contain, '''LT ,tub rdurn addre,,), RP,
SR4, in the and mark that this is the first frame on the system stack.

lVIark that \ve are performing a flystem call:

ssp--+state-.flags = TCH_L\SYSCALL,

Pass the system call number in the context by setting a temporary register in ssp:

ssp--+TCH_RXII = CN

This system call number is used by SupCaliHandlerO.

Copy argO-arg3 into the context frame. These arguments are passed to the system rou
tine by SupCaliHandlerO. Call SupCaliHandlerO (kern/PARISC /svConnect.cxx)
"vlth thc polnter to sa vcd context (~~p) and sub-systcrn nurnbcr.

• SupCallHandler{) perfonrll:l the followlng operatlons:

Get sYfltem call number from ssp:

SysCallNo = ssp--+TCH_RXII.

Check the userTrapVect table. Check if a handler is present.

If a handler is present then check ifthe num ber of arguments to the system call is greater
than [our. If true, then copy the extra arguments [rom the user stack using svCopyInO.
Otherwise do nothing. Call the handler with all the parameters. The decision to copy
the extra user aJogurnents Into a tcrnporary space before calling thc handler l~ rnakc

Ufle of the compiler in creating the stack frame to call the handler routine. Copying of
parameters that are passed by reference from Ufler space to kernel space ifl left to the

individual system calls.

If a handler is not present, then call KnHandlerO.

• Check if system call needs to perform a complete restore sequence. This check was needed in
IIP- UX to handling ,ignal" It wa, retained ,ince it could be a u,dul faellity for ,ub-sy,tem
managers. This check is done by checking state31ags Held of ssp for the TCll_DORFI
bit. If the bit is set) then perform a full restore flequence that ifl very similar to return

ing from an exception. Othenvifle, the thread flpec:ific registers that have been stored at
chorus->;yscallinit are restored, the ksp field in the thread's currCtx is updated, and an
cxtcrnal branch Is perfonned to thc uscr actor'~ return addrc~s, I:)lrnultancousl~y lowerlng the

pri vilege level to 3.

11

Thll:) corIlpletel:) the outline of l~ ~(T actor l:)~y~terIl call1nterface.

Discussion :

T his implementation is another instance where Tut code was reused. The main file of reuse is
asm_scall.s. vVe started from this file and modified to suit Chorus calling conventions and thread
acccl:)l:).

4.2.2 System call interface for supervisor actors

Tn the cafle of flyfltem call interface for superviflor actors, the flystem call fltub is flimilar to a

procedure call in most Chorus implementations. This was possible as the requirement of Chorus
that supervisor actors live in the kernel context was sufficient to perform this optimization.

In the case of PA-RISC~ thls was not qulte the ca~e. Thls l~ because of the l:)aIIle data polnter

($glabal$) probkm mentioned in section 2.2.9. Since each image in the kernel space has its
own datapointer ($glabal$), calling a rolltine directly in another execlltable is not possible even
though all the flupervisor actorfl flhare the same flpace id. To execute a procedure of the kernel
from a supervisor actor, the processor's DP register should be set to that of the kernel's $glabal$
before calling the kernel's procedure and restore the supervisor actor's $glabal$ on return from the
kernel procedure. This 11:) exactl~y what the ~upervl~or stub perforrIl~. An exaIIlple of a ~upervll:)or
system call stllb generated by lib/mkslib is given in figllre 12. The stllb is for the system call
threadCreateO·

The stub performs the following actions:

• Save the cllrrent DP and RP in the frame marker allocated by the calling conventions,

• Initialize the DP register by the Kernel's DP available in the Root Stl'uctu'('e [12] which is
mapped, privilege level 0 read-write, into qlladrant 4.

• Gd the address of the Supervisor system call tabk from the Root St'l'llcfllre and calculate the
olr~et of the l:)y~teIIl call routlne a~~oclated wlth the ~~y~terIl call nUIIlber.

• invoke the system routine

• Restore the supervisor actor's DP and RP from the frame marker and return to the supervisor
actor code.

Hy branching directly to the system rolltine, the parameters to the system call can be directly
reused by the system routine thus avoiding the copying of parameters on the system stack.

Discussion :

The system call table is an array of structures. The structure has 2 elements: a function
pointer and the number of arguments. T,\llL_ELYIT_SIZE and yeN C_OFFSET deJine the size of
the structure and offset to the function pointer respectively. Thefle definitions are fragile and mUflt
be automatically generated from the structu re defi nitions.

·15

""'" , begining of stub ;;;;;;;;;;;;;
.code
.export threadCreate,code

threadCreate
#define TABL_ELMT_SIZE 8
#define FUNC_OFFSET 4

stw dp,-32(sp) ; fm_edp posn in the frame
stw rp,-24(sp) ; fm_erp posn in the frame
ldil L%Oxd0000448,dp
ldw R%Oxd0000448(dp),dp
ldil L%Oxd0000024,r1
ldw R%Oxd0000024(r1) ,r1
ldw 30 * TABL_ELMT_SIZE + FUNC_OFFSET(r1),r1
blr rO,rp
bv rO(r1)
nop
ldw -32(sp) ,dp
ldw -24(sp) ,rp
bv rO(rp)
nop

#undef TABL_ELMT SIZE
#undef FUNC_OFFSET

""'" , end of stub

fm_edp posn in the frame
fm_erp posn in the frame

"""""" ,

Figure 12: Supervisor Actor System call stub example

5 M utex Interface

In Chorus, Semaphores and l'iIutexes are data struelures that are defined by an aelor in it's address
space. The kernel is invoked for ail semaphore operations. For mutex operations, the kernel is
Invoked only only when the threadl:) have to be blocked behInd a IIlutex or unblocked. In the

Ideal ca~el ""here the thread~ never atteIIlpt to enter a crItIcal regIon w hlle another thread l~ In Itl:)
critical region, the kernel will never have to be invoked. Thus, mutexes provide an efficient means
of synchronization at the cost of fairness. Semaphores, in contrast, guarantee fairness at the cost
of efficiency.

In the case of I:)upervlsor actor, the seIIlaphore or IIlutex data I:)tructure 11:) dIrectly acces~ed,
whereal:) In the ca~e of user actor, the seIIlaphore or IIlutex data I:)tructure 11:) copIed Into the kernel
space (as in any IIser system call).

5.1 Requirements

The IIlutex Interface con~l~t~ of the followIng functlonl:). .All the functlon~ take the addre~~ of
mutex (KnMutex *mutex) as parameter. The specification is taken from the Chorus Programmer's
manllal[.5].

mutexlnitO The Illutex Is InitIalized to I('t£.

16

mutexTryO : Acquire a rllutex. If rllutex il:) free l then rIlutex i~ lockexl l returns value 1 and
execution proceeds normally. If mutex is locked, then the call returns O.

mutexGet() : Acquire a mutex. If mutex is free, then mutex is locked, returns value 1 and
execution proceeds normally. If mulex is locked, block the thread until the mutex becomes
free.

mutexRelO : Release a rIlutex. If threads are blocked on the rIlutex~ one of therIl is awakened.

5.2 Implementation

The following atorIlic read-rIloclify-v..irite in~truction~ are available on PA-RISC. Thel:)e an~ basically

load and clear instrudions:

• Idew;/:: Load and Clear ,Vonl Indexed

• IdClD8: Load and Clear Word Short; Short refers to usi ng a short displacement parameter
rather than a short \vord.

Doth instructions clear the location at the dfective addre~s and the previou~ contents of the IIwrIlory
location are loaded into the destination register. (-'or details on the instrudions l see the PA-RTSC

architecture manual[lO). Anyone of the inslructions can be used for mutex implementation. The
Idcw.t instruction was chosen for PA-Chorus.

The factor~ to be n~l:)olved in irllpkrIlenting rlluteXel:) were:

1. PA-RISC load and clear inslructions require the effective address of the memory location lo
be aligned on a 16-byte boundaJ·Y.

2. Since rlluteXel:) are declared in an actor'l:) addresl:) I:)pace, there i~ no kernel control over what

the align ment will be.

3. The m utex strudu re is a black box to the user or supervisor ador and all operations are

performed lhrough kernel exported functions.

·1. There should nol be any change in the syslem call interface.

5. The portable la~yers of the kernel involved in irllpkrIlenting the kernel paJt of the rllutex

operations a~~urIle that a value of 1 indicate~ locked and 0 indicate~ unlocked. In the case
of PA-RISC it is not possible to have a value 1 for locked as the instructions provided are
load and clear i nst rUdions.

The fi rst alternative \vas to enter the kernel for every mutex system call. Tn the kerne1 l the system

call routine \vou1d disable interrupts, perform the read and write operations in separate steps) re

enable interrupts and return. This allernative was rejected since it decreased the performance of
mutex opera lions greatly. It made them as costly as semaphore operations which defeated the
purpose of using rllutexe~.

The following alternative was adopted. The }Iutex structure ddinition given in the choru~

public interface file includejchorus.h has been modified. The structure prior to modification is

given in figure 1:3.
The alomic operalions for mulexes need lo be performed on the lock field of the Knl'iIu

tex/KnSerIl structure. The other rIlerIlber~ corlle into play onl~y when the rllutex is not free or there

are thread~ to be rdea~ed.

17

typedef struct

int
SemQueue*
int
unsigned

} KnSem;

typedef KnSem

{

lock;
threads;
count;
key;

KnMutex;

/*
/*
/*
/*

used by the mutex operations only */
pointer to blocked thread queue */
Semaphore Count value */
Semaphore key */

F.igure 13: KnSeIIl structure ddiultlon before rIlocliJicatlon

typedef struct
int
SemQueue*
int
unsigned

} KnSem;

typedef KnSem

{

lock[4] ;

threads;
count;
key;

KnMutex;

/*
/*
/*
/*

ARRAY used by the mutex operations only */
pointer to blocked thread queue */
Semaphore Count value */
Semaphore key */

Figure 1-1: KnSem structure definition after the modification

To guarantee a 16-byte aligned lock field, the KniV1utex structure definition was modified as
shown in figure -14.

Since lock is now ·1 words or Hi bytes long, there will be one word that is l(i-byte aligned among

the 1 words allocated for lock.
The lIIlpkrrwntation of the various IIlutcx functions is given belcn-v.

mutexInitO : The stub is generated by /lib/mk[s]lib. The corresponding system call routines
ScUsMutexInit() and ScMutexInitO in kern/scUser.cxx and kern/scSystem.cxx
have been modified to handle the changed data type of lock and the lock status values.

mutexTryO : This function is implemented in lib /P ARISe / mutex.c. This function performs
the follo\lving operations:

• l'ind the address of the aligned word in the lock array. This is done by the macro

alignLock .

• Pass this address to the assembly routine low _mutexTry() in lib /P ARISe / chorusSync.s
and return the rdurn value.

This function is entirely an user level librar~y fUIlction. ~o kernclinvocatioll is needed.

mutexGetO : This function implemented in terms of mutexTryO in lib/PARISe/mutex.c.
Tfthe mutex is available, then call returns immediately. Otherwise, kernel is invoked to block
the thread. The blocking call ret urns when the mutex becomes free and the procedure is
repeated again until the IIlutex becoIIle~ available. The call returnl:l to the u~er only when the
Illutex i~ obtained by the I:ltub.

18

mutexRelO : Thi, function i, implemented in lib/PARISC/mutex.c. Thi, function write,
VIl"'ITX_U NLOCIO;1l into the J6-byte aligned word ofthe lock array. Tfthreads are waiting
on this mutex, then the system call k_m utexRel() is invoked to release the threads. The
function then ret urns to user.

The stubR for k_lllutexGet and IClllutexRel are generated from lib/mk[s]lib. IVlodifications
were made to kern/scSystem.cxx and kern/scUser.cxx to deal with the change of lock from
an int to an int array and to address the l(i-byte aligned word of the lock array. Note that
.in the case of the kernel routines to handler user-actor systcrll calls there .is an added factor to

be cOllflidered. Since the user data fltrudure ifl copied into a correflponding temporary kernel data

structure, finding the aligned word in the kernel copy of the mutex may not be the same as that of
the user mutex. Additional code was required to take care of the potential difference in alignment.

6 Modifications to the Chorus Portable Layers

Several sInali IIlodiJicatioIlS were rnadc to the "portable11 la~ycrs of Chorus to carr~y out our port to

PA-RISC. This section 811IIlIIlaJ-1:ZCS these IIlodiJicatioIlS and outlines the reasons for rnaking thCIU:

• Calling the handlers attached by supervisor actors: Chorus requires the kernel and supervisor
actors to share the SystCIIl addre~1:l I:lpace. The initial del:lign that all ~upervil:lor actor~ and the

kernel have the ,arne 'pace identity meant that each one of them had a ,eparate $global$
. This complicated the calling of attached handlers as Chorus assumed in its portable layers
that these routi nes can be called di rectly ((*fn)(...)) as the supervisor actors are in the same
system space. This cannot be done on PA-RISe (see section 2.2.9). This accounted for most
of our modifications to the portable layers. See the Supervisor actor interface implementation
I:lection for a fuillil:lt of the IIlodiJicationl:l and additional functionl:l iIIlpkIIlented.

Of COlUl:le, even if the kernel and I:lupervi~or actor~ were put in different ~pacel:l "vith different
'pace Id, but with the ,ame value for $global$ (For example: all u,er actor, on Choru, have
their $global$ equal to Ox40000000), we will have to deal with other problems of inter space
linkages similar to a system call. In either case it entails some modification in the kernel
and/ or the Chorus interface.

• Stack direction: The portable layers of Chorus aflflurne that stackfl gro\vs tcnvards knver ad

dresses. For example, the system stack bottom is taken as the end of the stack area, whereas
on PA-RISC it is the begining of the stack area. This is actually a problem in the Chorus in
terface ddinition for threadereate "vllich takel:l stack bottOIIl as paraIIleter. The stack bOttOIIl

would be dilkrent if the ,tack direction i, dil!"erent. A better ddinition would be to 'pecify
two parameters:

Addre" of the bulkr allocated for the ,tack.

Size of the buffer

On PA-RTSC\ the second parameter could be ignored. On architectures on which the stack
grows towards lower addresses the size parameter could be used to locate the bottom of the
stack.

• Stack initialization: In addition to finding the stack bottom, a frame must be allocated on
the stack for PA-RISC in accordance with procedure calling conventions of the architecture.

19

For cxarIlple~ for ul:)cr thrcad stack initialization~ it is 48 bytcl:). Thcrc is onc instancc in
knMain.cxx where Chorus does not submerge this fu ndion in the machi ne dependent layers.

• Stack allocation: The system stack has to be physically allocaled during the thread initial
ization. Thcrc il:) onc instancc ""hcrc thc portable la~ycrl:) of Chorul:) assurnc that thc sizc of
the system stack is one physical page. Tn our port it \vas 4 logical pages. This could have
been done in a portable manner by using the symbolic: constants exported by the included
machine dependent header files.

• 16-b~ytc alignrIlcnt constraInt on addrcl:)scl:) for atorn1c load and dcar instructions: This rc
quired a modification in the mutex data strudure definition in the Chorus public interface
file. This \VaB the only modification necessary to guarantee a 16-byte aligned address for
mutexes. The user lreats the mulex slruelure as a black box and this feature aided in main
taining exactly the same inlerface to the user, wilh very little degradalion in space utilization
and perforrnancc.

• Values for mutex unlocked and locked status: This is far more senous than the earlier
problem. The code in the kernel implementing the mulex operations assumes thal lock

= 1 implies a locked mutex and lock=O implied an unlocked mutex. vVith load and clear
Instructions, this assignrncnt will not guarantcc s~ynchronization. A bctter approach \\ioulcL
havc bccn to irnport a rIlachlnc dcpcndcnt rnutcx hcadcr Jile and UI:)C thc valucs cxportcd by
this header file in checking for mutex status. The list of modifications is specified in sedion
.5.

• ~on-acccss TIn rniss faultl:): Thcsc faults do not rcquirc a pagc to bc brought into rncrnory.
The portable layers need to know that they need not have to bring in the page. This resulted
in some modification. See sedion ~j.

Thc rIlodlJicatlonl:) that Involvcd stack direction, allocation and InItIalization arc as follows. All

have been done under the compilation Hag PARISe:

• KnlnitO in kernjknMain.cxx. Correded for stack di redion and allocation.

• ActorInitO in kern/knMain.cxx. Corrected for stack inilializalion and direction.

• }Icrnbcr function init() of class mThread. Corrcctcd for stack dircction.

A qualitative evaluation of Chorus on HP PA-RTSC is presented in[IR].

7 Future Work

The first item that will receive the highest priority is the -Aoating point and coprocessor emulation.
Right now, any thread performing lhose inslruclions is aborted. This has to be rectified.

Thc ncxt I:)tcp is to enable thc Iloating point coproccssor and handle the varIoul:) cxccptions.
Thc Tut codc I:)hould bc ul:)cful in reaching thcl:)c two short-tcrrIl goals.

Some of the more i nteresti ng experi ments \ve would li ke to do are:

• li'aster context s\vitches based on recognizing the thread's type and status. For example: A
system thread uses no -Aoating point coprocessor. This charaderistic: can be used in making
a fasler context switch. Ylore generally, we would like lo recognize the characteristics of
thc thrcad that can bc utilizcd to providc dIlcicnt contcxt switchcs. l~ sing thc cornpllcr
Inforrnation about thc thrcad il:) also an Intcrcsting pOl:)l:)lbility.

50

• Taking the I:lupervil:lor acton; out of the ~aJIW I:lpace a~ the kernel and put theln in I:leparate
spaces. l'vlultiple privilege levels and protection ids can be used to control the access of these

actors. Inter space calls are very cheap on PA-RISC. System call costs are marginally higher
but approximately 3 orders of magnitude beller than using a trap to implement system calls
on PA-RISC. PA-RISC ,eern, to be ,uitable for decoupling of function, becau"" oftlw global
virtual IIlelnory, Inultiple privilege levell:l l orthogonal protectiOIll:l~ dc. It "vould be interesting
to get some experimental results with various configurations and interfaces .

• Evaluate the usc of 64 bit addre~~el:l and to detenIline where the operating I:lYl:lteIIl inter
faces need to be broadened in the interests of globally addressable memory, efficiency and
identifi cation.

8 Acknowledgements

\Ve thank Chorus for their sources and the valuable time spent in making us understand the machine
dependent la~yer~ of Chorus. \Ve espec.ially thank Jean-Jacques Gennond, Freder.ick IIenIlann~ and
\ladiIIl Abl"(m~iII10v for being very re~ponl:live and helpfuL

Our sincere thanks to Hart Sears for providing us \vith the Tut sources and his visit \vhic:h saved
us a considerable amount of time. \Ve thank Ahmed Ezzat for answering the 'help!!' questions
at the time we didn't have the low-level documentation. \Ve would also like to thank the other
IneIIlber~ of the Tut project "vho provided Ul:l "vith such high quality infonnation.

Srikanth Karnbhatla of OGI rnodlJied the original Tut trap.c Jile '0 that it could cornpile in
ou r envi ron ment.

I'inally, the project would not have reached this stage without helpful discussion and input with
the other members of the PA-Chorus group.

References

[1] \lacLiIIl Abrossilnov~ }Iarc Rozier~ and 11ichd Gien. \lirtua111eIIlory 11ana,gelnent in Chorul:l.
Tn l)l'OCtFriings of Vrogrt'ss in /Jistrifnded Operating System.s and /Jistributt'd Systerns il1anage

ment. Springer Verlag, April 1989. Also published aB technical report CS/TR-89-30.

[2] Fran~:ois Annand, 11.ichd Gien, Frecl6r.ic IIernnann, and }Iarc Rozier. Revolution 89 or ~~Dis
tributing rNIX Hrings it Hack to its Original Virtues". In 1',."eFedinqs of the Workshop on
Experiences with Building Distributed and]'viuitiprocessor Systems, October .5-0 1989. Also
published as technical report CS/TR-89-30.

[:3] Chia Chao, Milon ';Iackey, and Hart Sears. Tut Threads Hoole Technical Report HPL-IlSIl-
90-23, Hewlett-Packard Laboratories, 1990.

[4] CHORrS Kernel v3.2 Implementation Cuide. Technical Report CS/TR-90-.5, Chorus
Systemes, 1990.

[.5] C H ORr S v3.3 Progra mmers Reference Manual. Tech nical Report CS /TR-90-.59, Chorus
Systemes,1990.

[6] Overview of the CHORUS Distributed Operating Sy,tem. Technical Report CS/TR-90-2.5,
Chorus Systemes, 1990.

51

[7] CHORCS Kernel v3.3 Impkmentation Guide. Technical Report CS/TR-90-71, Chorus
Systernes,1991.

[8] Ahmed Ezzat, Chia Chao, Milon Mackey, and Bart Sears. Tut VM Book. Technical Report
H PL-I)S I)-89-:32, H ewlett-Packard La boratories, 1989.

[9] Jean-Jacques Germond. SpeclJlcations ofthe CHORUS/YIlX Kernel v3.2 Test Suites. Tedmical
Report CS/TR-90-27, Chorus Systernes, 1990.

[10] Hewktt-Packa,.,!. Prcci~ion firchitcd",rc and Instruction Set RtJcnnc(" Manual, third edition,
April 1989.

[11] .Ton Inouye, YIarion Hakanson, R.avindranath Konuru, and .Tonathan IYalpole. Porting Chorus
to the PA-RISC: Virtual Memory Manager. Technical Report CSE-91-.5, Oregon Graduate
Institute, .JanuaryI992.

[12] Jon Inouyc l }Iarlon IIakanl:lon, Ravindranath Konuru l and Jonathan \Valpolc. Porting Chorus
to the PA-RISC: Booting. Technical Report CSE-91-4, Oregon Graduate hLStitute, 1992.

[13] David V . .Tames, Stephen G. Burger, and Robert D. OdineaL Hewlett-Packard Precision
Architecture: The Input/Output System. Ilewldt-Packard Jml'f"{wl, 37(8):23-30, August 1986.

[11] Ravindranath Konuru, Marion Hakanson, .Ton Inouye, and .Tonathan IYalpole. Porting Chorus
to the PA-RISC: Building, Ddmgging, Testing and Validation. Technical Report CSE-92-7,
Oregon Graduate hLStitute, January 1992.

[Hi] Ruby B. Lee. Precision Architecture. IEEE Compuler, 22(1):78-91, .Tanuary 1989.

[Hi] YIichael .T. Ylahon, Ruby Bei-Loh Lee, Terrence C. Miller, .Terome C. Huck, and William R.
Bryg. Hewlett-Packard Precision Architecture: The Processor. Hewlell-Packard .Journal,
37(8):4-22, August 1986.

[17] .Tonathan \Valpole, Marion Hakanson, .Ton Inouye, and Ravindranath Konuru. Porting Chorus
to the PA-RISC: Project Overview. Technical Report CSE-92-3, Oregon Graduate Institute,
1992.

[18] .Tonathan \Valpole, Marion Hakanson, .Ton Inouye, and Ravindranath Konuru. Porting Chorus
to the PA-RISC: Overall Evaluation. Technical Report CSE-92-8, Oregon Graduate Institute,
January 1992.

52

	Porting the Chorus Supervisor and Related Low-Level Functions to the PA-RISC
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1391018808.pdf.RPoYN

