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Abstract

This document, is parl of a series of reports deseribing the design decisions made in porting
the Chorus Operating System to the Hewlett-Packard 9000 Series 800 workstation.

The Supervisor is the name given by Chorus to a collection of low-level funetions that are
machine dependent and have to be implemented when Chorus is ported from one machine to
another. The Supervisor is responsible for interrupt, trap and exception handling, managing
low-level thread initialization, context switch, kernel initialization, managing simple devices
{timer and console) and offering a low-level debugger [7]. This document describes the port of
the Supervisor and related low-level functions.

The information contained in this paper will be of interest Lo people who wish to understand:

e The main characteristics of Chorus and PA-RISC architecture that are useful in under-
standing the port of the Chorus Supervisor .

& The requirements and implementation of the Chorus Supervisor .
o The requirements and implementation of Chorus page fault interface
+ The requirernents and implementation Chorus System Call Interlace

¢ The requirements and implementation of muler mterface which is a part of the Chorus
system call interface for efficient thread synchronization.

¢ Reasons for the modifications to the portable layers of Chorus kernel to implement the
above requirements. A summary of the modifications is also presented.

Tt is useful to read the porl overview [17] hefore reading this document. Tu is also a good
idea to have the Precision Architecture and Instruction Set Reference Manual [10] and Chorus
v3.3 implementation guide[7] on hand although it is not absclutely necessary.

*This research is supported by the Hewlett-Packard Clompany (HP), Chorus Systémes, and Oregon Advanced
Clompuling Institute (OGACIS).
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1 Introduction

This document is part of a series of reports describing the design decisions made in porting the
Chorus Qperating System (o the Hewleti-Packard 9000 Series 800 worksiation.

(Chorus 1s horizontally divided inlo a machine independent layer and a machine dependent layer.
The machine dependent layoer exports a machine independent interface that is expected to remain
unchanged as the operating systemn is ported from one machine to another. The machine depen-
dent layer is divided vertically into two major partitions: the Supervisor and the mmu (memory
management unit). I'he mmu is responsible for the implementing the machine dependent memory
management [unctions [1]. This document deals with the implementatlion of the Supervisor and
other related low-level functions. The porl of the mmu is discussed elsewhere [11].

An overview of the port of the Chorus Supervisor and related fanetions is given in section 1.1.
Brief reviews of some of the characteristics of Chorus and the PA-RISC architecture are given in
sections 1.2 and 1.3 respectively. 'The purpose of these reviews is to give sufficient background for
discussing the machine dependent layer. For detailed information aboutl Chorus, refer 1o the Chorus
technical reports CS/TR-90-71 [7] and CS/TR-89-36.1 [2]. For information about PA-RISC, refer
to [15, 10].

The Supervisor requirements and implementation are presented in section 2. The Chorus page
fault interface is presented in section 3, the System call interface in section 4, and the mutex
interface in section 5.

The main reasons for the modifications to the portable lavers of the Chorus kernel and a
surnmary ol the modificalions is given in seclion 6. Pulure work is presented in seclion 7.

1.1 Supervisor Port Overview

We starled our ground work for the porl in Sep 90). The operaling system as well as the architeclure
were completely new (o us al thal lime. We spent aboul a month reading the documentalion and
papers on PA-RISC architecture [10, 15, 16, 13] and Chorus operating system [2, 1, 4]. The
Tut books [8, 3] documenting the mach 2.0 port by HP to PA-RISC proved valuable sources of
information.

In Oct 90 we had a l-week course on porling Chorus al Chorus Syslémes, France. Various
componenls were idenlified. As Chorus personnel were also nol lamiliar wilth PA-RISC, the Cho-
rus port to Motorola 88000 was used as a case study to explain the various machine dependent
components and the porting process. This proved useful for the design of the Chorus Supervisor .

Assembly language programs were written to understand the PA-RISC architecture especially
with respect to nullification, delayed branches, procedure calling conventions and the usage of adb,
the assembly language debugger.

The [ollowing basic principles ol design were applied as ofien as possible:

¢ Use 32 bil addresses. Initially, we considered using 61-bil addresses. However, it would have
caused exlensive changes in the portable layers of lhe kernel and is was not clear how Lo
design an interface with 64-hit address parameters. In any case, it would have incroased the
timne of the port. We left this for future worlk.

¢ Leep Lhe desien as simple as possible. The aim was Lo gel Lhe firsi working portl as quickly
as possible. This was one of the principles that was reiterated during our course at France.
We whole heartedly agreed with that.



¢ [se the available Tut code for the machine dependent layer implementation. The goal again
was to get the port up as quickly as possible. lor example the code for initialization would
have taken us a long time Lo figure oul, write and debug il did not use the Tut code albeil
with modifications.

The design and implementation of the Supervisor did not prove very difficult once we had a
vood grasp of the archilecture and the Chorus machine dependent layer. The availability of Tut
code was also very heneficial.

Chorus provides a kernel test suite[9] for validating the kernel. This was the only method we
employed to validate our kernel port.

1.2 Chorus Overview

Chorus is a message based micro-kernel that supports the following abstractions':

¢ Aclor

e 'I'hread
o Message
o Tort

An Actor [orms the unit of resource allocalion and identlifies a protecled address space. An
address space is split into a user address space and system address space. On a given site?,
cach actor’s system address space is identical and its access is restricted to privileged levels of
execution. An actor in Chorus can be a Supervisor actor or User Actor. A supervisor actor lives in
the system address space along with the kernel. Supervisor actors have higher privilege than user
Actlors.

A thread is the basic unit of execulion and runs in the conlext of an Aetor. A thread is a
sequential low of control and is characterized by a thread context corresponding to the state of
the processor at any given point during the execution of thread. There can be multiple threads per
actor.

Threads communicate and synchronize hy exchanging messages between their actors’ ports.
Threads sharing the same address space can use share memory for communication and synchro-
nizalion. Semaphores and Mutexes provided by the Chorus intetface are uselul [or this purpose.

A thread belonging to a user Actor is called a uwser thread. Iowever during a system call, it
becomes a supervisor thread. A user thread has 2 stacks: a user stack for executing user code and
a system stack for executing system calls, traps, and storing the context of the thread when the
thread is blocked. A thread belonging o a supervisor aclor is called a supervisor thread. Since a
supervisor thread lives enlirely in the syslem address space, il has only a system slack and no user
stack.

1.3 PA-RISC

This section consists ol extracis [rom the PA-RISC architecture reference manual useful lor under-
standing the machine dependent layer implementation. For more details see the cted reforences.

"Chorus is written in an object oriented langnage C'++. These abstractions are mplemented as C+44 classes
2A site is a grouping of tightly-conpled resources controlled by a single Chorus Nuclens[6]



PA-RISC Architecture is the frame work for Ilewlett-Packard’s ITTP3000,/900, IIP9000/800, and
HPA000/700 series computer systems.

It is based on the principles of RISC and has 110 fixed length instruclions. It employs a virtually
addressed cache and the I/ sub-system is memory mapped. PA-RISC supports 18-bit, 56-bit or
G4-bit virtual addresses and provides some hardware protection support. The global virtual memory
is organised as a set of lincar spaces with cach space being 4 gigabytes (292) long. Fach space is
specified with a space identifier.

PA-RISC! supports 4 privilage levels numbered 0-3. "T'he highest privilege level is 0 and the
lowesl privilege level is 3.

PA-RISC architecture has the following resources:

o 32 General Registers. GR0O is tied permanently to zero. GR1 is the target of Addil instruc-
tions. GR31 is the link register [or an inler-space hranch and link exiernal { Ble) insiruction.
GR27 used as the base pointer for data accesses. This is specified by the procedure calling
conventions of the architecture.

¢ 25 Control Registers. CRI-CR7 do not exist. Control registers are discussed in more detail
n the section 1.3.1.

¢ & Space Remisters. SR0 is the instruction address space link Register for Ble instruction.
SRO-SR4 can be modilied at any privilege level. SR5-SR7 can he modilied at privilege level
0. The nsage of the space registers is left to the operating systemn. The space registers are
16-bit long on a level 1 PA-RISC, 24-bit long on a level 1.5 PA-RISC and 32-bit long on a
level 2 PA-RISC. On a level 0 PA-RISC, the space registers do not exist. A level 0 PA-RTISC
supporls absolule addressing only.

¢ Processor Status Word (PSW) The processor stale is encoded in a 32-bit register PSW. PSW
does nol appear as an operand in instructions. When an inferruplion © occurs, the old value
of the PSW is saved in the TPSW register(CR22). Some of the bits in the PSW are reserved.
It is software’s responsibility that these are zero when written. The PSW is set from TPSW
by a return from interruption instruction.

The PSW bits that are important [or the discussion are:

— C bit (PSW_C) Code (instruction) address translation enable. When 1, instruction
addresses are iranslated and access rights checked.

— Q bit (PSW_Q) Interruption Collection Enable. When 1, inferrupiion state is collected.
When an inlerruplion occurs the details of the instruclion being execuied are recorded
in the control registers (see 1.3.1).

— P bit (PSW_P) Protection Identifier enable. When this bit and the C-bit are both 1,
instruction references check for valid protection identifliers(PIDs). When this bit and
the D-bit are both 1, data references check for valid PIDs. When this bit is 1, probe
instructions check for valid PIDs.

— D bit (PSW_D) Data address translation enable. When 1, data addresses are translated
and access rights checked.

— Ibit (PSW_I) External interrupt. power failure interrupt, and low-priority machine check
interrupt unmask. When 1, these intorrupts are nnmasked and can cause an interrupt.
when 0 the interrupts are held pending.

An interruption is PA-RISC specific lerm. An interruption is a (rap or an intcrrupl that can occur on PA-RISC.
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1.3.1

Instruction Address quenes.

The instruction Address queues hold the address of the currently execuling instruction and
the address ol the instruciion that will be execuled aller the current instruclion, termed the
Jollowing nstruction. There are 2 queues: Instruction Address Space Queue (IASQ) and
the Instruction Address Offset Queue(TAOQ). Fach queue is 2 elements deep. T'he elements
are referred to TAOQ_I'RONT, TAOQ_BACK, TASQ_I'RON'I" and TASQ_BACK. The 2-deep
queues are used Lo supporl Lthe delayed branching capability.

Control Registers

T'his section defines the main registers used in the implementation:

Protection Identifier Registers: PID1, PID2, PID3, PIDA, aliases for CRs &, 9, 12, and 13.
These registers designate up to four groups of pages accessible Lo the currently execuling
process. When translation is enabled, the four protection identiliers (PIDs) are compared
with a page access identilier to validate access. If access is not valid trap is raised.

Coprocessor Conliguration Register (CR10 alias CCR) s an 8-bit register which records the
presence and usability of coprocesors. A bit is 1 implics the coprocessor corresponding to that
bit is present and operational. Else it is logically decoupled. Tn the current implementation
the entire CCR is set to 0.

interruption Vector Address Register (CR14 alias IVA) contains the absolute address of

the base of an array of service procedures assigned to the interruption classes. T'his address
musl be a mulliple of 1024,

External Tnterrupt Enable Mask (CR15 alias KTEM) is a 32-hit register containing a bit for
each of the 32 exiernal inlerrupts. When 0, bits in the EIEM mask interrupls pending lor
the external interrupls corresponding Lo Lthose hil positions.

kExternal Tnterrupt Request Register (CR23 alias ETRR) is a 32-bit register containing a bit
[or each external inlerrupl. When 1, a hil designaies ithal an inlerrupt is pending for the
corresponding external interrupt. Doth the PSW_I hit and the corresponding bit position in
the EIEM must he 1 for an interrupt to oceur.

Interval Timer Register (CR16 alias ITMR) consists of 2 internal registers. One of the internal
registers is continnally counting up by 1. Reading the ITMR. gives the value of this internal
register. Writing to ITMR updates the other (comparison) register. When the two registers
have identical values, an external interrupt is raised and bit 0 of ETRR is set to 1.

interruption Instruction Address Space and Oflset Quenes (CR17 alias TTASQ, CRIR alias
ITAOQ): T'wo offset registers and two space registers are used to save the instruction address
and and privilege level information for use in processing interruptions. 'I'he registers are
arranged as two lwo-element deep quenes. The queues generally contain the address(including
the privilege level field in the rightmost two bits of the offset part) ol the two instructions in
the TA queues at the time of the interruption.

The TTA queues are continually updated whenever the PSW_Q) hit is 1 and are frozen by
an inlerruption (PSW_Q)) bit becomes (). Aller such an interruption these regisiers contain
copies of the IA quenes. These quene clements will also be referred to as PCOQIL PCOQT,
PCSQI and PCSQT in the context of the implementation.



o Interruption parameter registers are the Interruption Instruction Register (CR19 alias IIR),
Tnterruption Space Register (CR20 alias TSR) and Tnterruption Offset Register (CR21 alias
IOR). As the names indicale, these registers contain interrupted instruction and the virtual
address the instruction was allempiing 1o access.

1.3.2 Interruptions

Table 1: PA-RISC Interruption

High-priority machine check
Power failure interrupt

Interruption # | Descriplion
1
2

3 | Recovery counler irap
4 | External interrupi
5 | Low-priority machine check
6 | Instruction TLD miss fault
7 | Tnstruction memory protection trap
8 | Hlegal instruction trap
9 | Break instruction irap
10 | Privileged operation trap
11 | Privileged register trap
12 | Overflow trap
13 | Conditional trap
14 | Assisl exceplion Lrap
15 | Data TLB miss [ault
16 | Non-access instruction TLDB miss fault
17 | Non-access data TLD miss fault
18 | Data memory protection trap/Unaligned data reference trap
19 | Dala memory break irap
20 | TLB dirly bil trap
21 | Page reference trap
22 | Assist ciulation trap
23 | Higher-privilege transfer trap
24 | Tower-privilege transfer trap
25 | Taken Branch trap

Al interruptions {traps or interrupts) on PA-RISC are precise, i.e., the sollware sees a single
unpipelined processor execuling one instruction ai a time. PA-RISC supporie 25 inlerruplions
divided into 4 priority groups, with group 1 having the highest priority and gronp 4 the lowest.
T'he interruptions are listed in table 1.

Interruption 1 belongs to group 1. Tnterruptions 2-5 belong to group 2. TInterruptions 6-22
belong o group 3 and the rest Lo group .

0



1.3.3 Memory Management Support

Like most microprocessor architectures, the PA-RISC coniains some lorm of memory management
unit (MMT).

This section describes the features of the PA-RISC that are used to support virtnal memory
operations. These features inclnde a translation look-aside buller (TTB) for transforining virtual
addresses to physical addresses, bit traps for memory management support, and memory protection
mechanisms. T'he material presented in this section is covered in more detail in chapter 3 of the
Precision Architecture and Instruction Sel Reference Manual [10].

Page Tables and the TLB :

The PA-RISC (along with the MIPS R2000/R3000) is unusual in that il requires sollware o
handle TLB misses?. By allowing software to perform TLD loads, the PA-RISC architecture gives
the operating system lots of flexibility in the format of page tables. Normally, architectures specify
some page table format to follow so the hardware can perform TT.B Toads.

Raiher than develop our own page table design [or 1the initial port, we decide to use the Physical
Page Dircctory (PDIR) lormal suggested by the PA-RISC architeciure manual [10]. We made this
decision becanse it allowed us to reuse a great deal of Tut code for the low level TLD miss handlers.
Figure 1 shows the structure of a Physical Page Directory (PDIR) cntry.

H| 0(6) Next PDE Index (21) 0(4)

Space Id (32)

Page I'rame (21) O (11)
R0 |T|D|[B]| Access Rights | 0 Access ID 0
1 1 1 1 1 7 4 15 1

Figurc 1: PDIR Entry (PDI)

Bit Flags :

The TLB and PDIR contain a variely ol bii flags which can be used Lo generale traps. The
following information deseribes the function of cach of the 1-bit lields.

T Page Reflerence Trap. When 1, dala relerences using Lhis (ranslation cause a page relerence
trap interruplion. The T-bil is most commonly used for program debugging.

D Dirly. When 0, store and semaphore instructions cause a TLB dirly bil trap on systems with
software TLB miss handling. When (), siore and semaphore insiruclions cause Lthe D-bil in

*The PA-RISC Architeclure and Tnstruction Sei Manual mentions that hardware implementations can exist but
to our knowledge no such implementation cxists al this time.



the DTLDE entry and the PDIR. to be set to 1 on systems with hardware TLD miss handling.
When 1, no trap or update occurs. The 1-bit may be used by the operating system to
determine which pages have been modified.

B Break. When 1, instructions that could modify data using this translation cause a data
memory break trap interruption, if enabled. Store instructions, the PURGE DATA CACHE
instruction, and semaphore instruclions are the only insiruciions thal polentially modily
data. The B-bit is most commonly used for program debugging.

R is the reference bil (only present in the PDIR enlry). Il R = 1, the page has been accessed
(read, wrile, execule, or non-access) hy a processor since Lhe hit was last sel Lo (. For systems
with soft ware TLT miss handling, this bit is managed by the software and not directly set by
the hardware.’

Memory Protection :

The TLB is also responsible [or enlorcing memory proteclion. The PA-RISC proiection mecha-
nisms are disabled when physical addressing is used or when the PSW_I bit is disabled. The TLD
maintains protection information in two liclds: the aecess rights and the aecess ID. The 7-hit access
right field encodes the allowed access types and privilege levels into three sub-fields: type, privilege
level 1 (°1.1), and privilege level 2 (7L2). 'I'he aeccess [1) s a 15-bit field that can be thought of
as a capability. This field must match one of the four protection ID’ in the PA-RISC’s control
registers (CR8,9,12,13).

Logical Page Replacement :

The PA-RISC allows the software to operate on a logical page size of 2K, 4K, 8k, or 16K bytes.
When operaling on a logical page size grealer than 2K hyles, the TLB miss handling procedures
may inserl all lranslalions for that page group provided thal Lhe translalion for ihe laulting page
is inserted last. This is probably becaunse the software has no ability to know which TLD entry
is Invalidated to make room for a new insertion. By inserting the faulting page entry last, the
software ensures that upon return, the 'I'LLB miss has heen satisfied.

PA-RISC Memory Management Traps :

Out of the 25 inierrupiions thal can occur on PA-RISC, 9 of the interruplions are iraps Lo be
dealt by the memory management unit of the operating system. These memory management traps
are listed in table 2.

T'hese traps can he partitioned into four groups: TT.B miss faults, non-access ‘I'T.B miss faults,
meory protection faults, and bit flag traps.

TLB Miss Faults (#6,7#15) :

The PA-RISC architecture allows both software and hardware TLD miss handling. The IIT
9000/834, the target processor for the port, does not have hardware TLB miss handling. T has
separate traps for instruction and data 'I'T.B misses with the hardware making no distinction be-
tween TLB misses and page faulls. When a TLB miss [aull occurs, the handler must delermine

*The unused bit is used by some implementations. This A bit acts similarly to the R bit except non-access laults
will nol sci it.

10



Table 2: PA-RISC Memory Management Exceplions

Trap # | Description
6 | Instruction TLD miss fault
T | Instruction memory protection trap

15 | Data 'I'T.B miss fault

16 | Non-access instruction I'T.H miss fault

17 | Non-access data TLB miss (aull

18 | Data memory protection irap/Unaligned data relerence trap

19 | Data memory break trap

20 | 'I'T.B dirty bit trap

21 | Page reference trap

whether or not the missing page is in memory. One disadvantage of an inverted page table(i.e,
PDIR) is thai it is more expensive o determine whether a particular viriual page is in memory.
We use a hashing [unction and linked lList search (o determine wheiher a virtual page eniry is
present in the PDIR. The handler hashes the faulting (virtual) address to obtain an oflset into a
hash table. This hash table contains a reference to the PDIR list that represents the hash bin.
I'his hin is organized as a linked list of PDIR entries. T'he handler then sequentially searches this
list for the desired virtual page. A successful match results in the entry being placed in the T'LB.
A [ailure in the matching process resulls in a page fault. Figure 2 presents a flow charl ol Lhe steps
for handling a TLB miss.

Non-access TLB miss faults (#16,217) :

The PPA-RISC architecture also has the notion of non-access TLD faults which diller from other
TLD faults in that the faulting page need not be loaded into memory. Our platform requires both
instruction and data non-access ‘I'l.B miss faults to be handled by software.

Non-access data T'LB miss faults are caused by LOAD PHYSICAL ADDRESS (LPA), PROBE,
and PURGE/FLUSH DATA CACHE instructions. When the requesied page enlry is nol present
in the PDIR, the action of the trap handler depends on the type of instruction causing the fault.
For LPA and PRODBLES, zero is returned if the desired page cannot be found in the PDIR. There is
a problem with the PROBL instruction that is covered in more detail in section 3.2

In HP-UX and Tut , cache PURGE and I'T.USH instructions that cause non-access TT.B miss
[aults are handled as if a TLB miss occurtred, i.e. the page is loaded into physical memory and the
page descriplor is inserted into both the PDIR and TLB. Non-access instruction TLB miss [aults
arc caused by FLUSIT INSTRUCTION CACIITE (FIC) instructions. These are handled similar to

other cache non-access faults described above.
Memory Protection Traps (7£7,#18) :

The PA-RISC has two traps used to detect memory protection violations. The instruction
memory protection trap (7) is the result of invalid access rights or invalid protection TDs for an
instruction fetch®. The dala memory protection trap (18) is the result of an invalid access right
or prolection ID for any load, store, semaphore, and PURGE DATA CACHE instruction. This

“Protection TD checking is only done when the PSW TP-bit is sct.
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trap is also caused by any load or store to addresses not aligned at the boundaries required by the
instructions. Detection of unaligned addresses is performed by examining the least significant bits
ol the virtual address.

TLB Dirty, Page reference and Data memory break traps (#20,7#21,719) :

The HP 9000 Series 834 workstalion does notl have a hardware supported TLB, so the manip-
ulation of the D (dirty) and R (reference) bit lags is left to the operating system.

When the D bit is 0, stores and semaphore operations will cause a TLR dérty bit trap (20). The
trap handler must then set the 1) bit in both the PDIR and TT.H entry. Once the 13 bit has been
set, further modifications to that page are ignored. Tf the " bit is set, data reference using the
translation causes a page reference trap (21). The date memory break trap (19) is iriggered when
insiructions that could possibly modify data require the translation and the B bit in the Processor
Status Word (PSW) is 1. When software loads an entry into the TLD, it should set the R bit to
indicate that the page has heen referenced.

2 Supervisor

The Supervisor is the componenl thal direclly interacts with the underlying hardware. Il is respon-
sible [or managing inlerrupls, traps and exceplions and other machine dependent [unctions. The
Supervisor along with the rmmw layer forms the machine dependent layer and is expected to oller
a machine independent interface to the portahle layers of the Chorus kernel. 'I'he requirements to
be satisfied by the Supervisor layer are detailed in section 2.1 and the implementation is detailed
in seclion 2.2.
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2.1 Supervisor requirements

The Chorus Supervisor is expected to export a specified machine independent interface, and is
responsible for interrupt, trap and exceptlion handling, limer and console management, kernel
initialization, and offering a low-level debugger. The Supervisor interface is detailed in section
2.1.1. The sections on event handling, timer and console management and low-level debugger
regroup the functions in the interface according to their functionality and provide the requirements
for the function group as a whole.

In addition 1o the above [unclions, the Supervisor is responsible [or defining two [undamen-
tal struclure types : KnThreadCtx, and SupThreadDesc. KnThreadCtx defines the regisier con-
text frame that is used to save state during interrnpts, traps, exceptions and context switches.
SupThreadDesc delines the machine dependent thread descriptor. As mentioned in section 1.2, a
thread in Chorus has a user stack and a system stack. ‘T'he descriptor SupThreadDesc keeps track
of the stacks and other machine dependent thread attributes (if any) of the thread and is the base
class [or the Thread class. The Thread class hierarchy is shown in fig 3. The dolled lines show
the levels of definition and managemen! of base and derived classes. Variables and pointers of lype
KnThreadCtx and SupThreadDesc get delined and passed in the portable layers of the kernel but
are treated as black boxes. l'unctions are defined in the Supervisor interface (see section 2.1.1)
that allow the portable layers to query and update the contents of the data structures in a machine
independenl manner.

A portion of the Chorus Inlerlace Lo supervisor aclors allows handlers Lo be aliached for inter-
rupts, traps, exceptions and time-outs. Invocation of some of these handlers is the responsibility
of the Supervisor . This requircment is detailed in section 2.1.2.

2.1.1  Supervisor interface requirements

The following functions must be implemented by the Supervisor .

SupCtxInit(): Build theinitial context frame on the system stack of the new thread and initialize
it’s machine dependent thread descriptor SupThreadDesac. 'The initial values inserted into the
contexi [rame on the system stack are used by SupCtxSwitch() when switching to the new
thread. SupCixInit() should build the frame as il the thread is returning from an exception.
This function takes the following parameters:

¢ The system siack bottom, unsigned char *stackbot.

¢ ‘T'hread parameters descriptor, KnThreadDesc *threadParams. 'l'his descriptor has the
eniry poinl of the thread, the thread privilege, priority, the user stack hollom, and the
initial execution status. The user stack bottom is nsed only when the thread is a user
thread. In the case of a supervisor thread, this lield is ignored.
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¢ Pointer to the thread’s machine dependent thread descriptor, SupThreadDesc *ptThreadDesc.

¢ Poinler 1o the virtual address space descriptor of the actor in which the thread will be
created, context *ptContext. Note that context is a class nsed by the virtual memory
system and is not the same as the machine dependent thread context which is basically
a set of registers.

SupCixSwitch(): Switch thread machine dependent context. This function takes the following

parameters:

s Dointer to the old thread, SupThreadDesc#* oldThread

¢ Poinler Lo the new Lhread, SupThreadDesc* newThread

SupGetUserCtx(): Returna Pointertoa thread’s saved context, KnThreadCtx* SupGetUserCtx(...).

This funclion lakes ithe [ollowing parameler:

s Pointer to the machine dependent thread context descriptor, SupThreadDesc* desc.

SupCtxReset(): Resct thread’s context frame on the stack by the values given in the machine

dependent thread context descriptor. T"his function takes the following parameters:

¢ Pointer to thread machine dependent context, SupThreadDesc* desc

¢ Pointler Lo exceplion context [rame on the stack, KnThreadCtx* ctx

SupCtxIsUserMod(): Return true if thread execution is in User mode else false. I'his function

takes the following parameters:

¢ Pointer to a context frame, KnThreadCtx* ctx.

SupCallConnect(): Connect a vector of handlers to a trap. This fanction takes the following

p'cll"dJILl(,‘,t (4

¢ The trap number, unsigned traplib

¢ Poinler Lo the veclor of handlers, KnCallEntry* hdlVect

¢ Number of clements in the vector, unsigned NoHdl

¢ The privilege level unsigned sup. Basically there are iwo privilege levels: Supervisor
and User. If sup is Supervisor in this call then this vector is executed for supervisor
actors causing a trap equal to trapNb. If a user Actor causes a trap equal to trapNb,
this vector will not be executed unless another SupCallConnect has been explicitly called
with Lhe same paramelters and sup is sel Lo User.

SupCallDisConnect(): Disconnect a Vector of trap handlers. T'his function takes the following

parameters:

¢ The trap number, unsigned traplib

¢ The privilege level, unsigned sup

SupItConnect(): Connect a handler o an inlerrupl. This functlion takes the following param-

elers:

¢ The interrupt number, unsigned intrlb
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s The handler to be exceuted on the interrupt occurrence, KnHdl hdl.

¢ The privilege level, unsigned sup

SupltDisconnect{): Disconnect a Interrupt handler. T'his function takes the following param-
eters:

¢ The interrupt number, unsigned intrhlb

e ‘T'he handler to he executed on the interrupt occurrence, KnHdl hdl.

The handler parameter is required since there can be a list of inlerrupl handlers connected

to the interrupt. The (intrNb, hdl) pair uniquely identifies the element to be removed [rom
the list.

SupItLevel(): Recturn the current interrupt nesting level. This function takes no parameters.

svMask(): Sect the interrupt level. All interrupts equal or less than this level are masked. Returns
previous interrupt level. T'his function takes the following parameters:

e Interrupt level mask, int intLv1Mask.

svUnMask(): Reset the interrupt level. All interrupts equal or less than this level are unmasked.
Returns previous interrupt level. This lunclion lakes the lollowing parameiers:

¢ Inlerrupl level unmask, int intLvlUnMask.
svMaskAIll(): Mask all interrupts. This [unction has no parameters.
svUnMaskAll(): Unmask all interrupls. This [unclion has no parameters.

svCopyIn(): copy from User space into kernel space. This function takes the following parame-
toers:

e Source address in user space, char* src
o Dostination address in kernel space, char* dst

¢ Sizce of transfer in bytes, unsigned int count.

svCopyOut(): copy from Kernel space to User space. 'T'his function takes exactly the same
parameters as svCopyIn(), only that the source and destination spaces are reversed.

The functions sv¥*() are also part of the Chorus Supervisor actor interface.
SupTrapConnect(): Connecl a handler to a trap. This [unclion takes the following parameters:

¢ The irap number, unsigned trapNb

¢ The handler 1o he execuled on the lrap occurrence, KnHdl hdl.

SupTrapDisConnect(): Disconnect a Trap handler. This [unction takes the following parame-
ters:

¢ The trap number, unsigned traplib

¢ The handler to he execnted on the trap ocenrrence, KnHdl hdl.

SupPanic(): Fatal abort. This function takes no parameters.



SupDebugger(): Call the debugger. This function takes the following parameters:

¢ The exception context frame pointer, KnThreadCtx* ctx

¢ The trap or exception number, unsigned no
SupPreciseTime(): Return the current precise time. This function takes no parameters.

SupPutChar(): Write a character on the console device. This is a synchronous operation, i.c.,
the write returns only after the output is completed. 'T'his function takes the following pa-
rameters:

s the character to be written, int c

SupGetChar(): Relurns a character [rom the inpul device. This is a synchronous operation.
This function takes no parameters.

SupPollChar(): Poll the input device. This lunction returns () il no inputl is waitling else it
returns the character. This function takes no parameters.

In addition to exporting the interface, the Supervisor is expected to make up-calls into the
kernel upper layers [or various synchronous and asynchronous events. The calls are:

KnDebugEnter(): 'I'he Supervisor is expected to call this function to inform the portable layers
whenever it enters the debugger. 'I'his functions informs the portable layers not to perform
conlext swilching when the debugper is enlered. This [unclion takes no paramelers.

KnDebugLeave(): 'The Supervisor is expected to call this function toinform the portable layers
whenever il leaves the debugeger. This [unclion takes no parameters.

KnLock(): TLock the kernel. This function takes no parameters.
KnUnLock(): Lock the kernel. This function takes no parameters.

KnHandler(): Exceplion Handler of the kernel. This function should be called for all unrecov-
erable exceptions. This function exceentes the actor specilic exception handler if present clse
calls KnIpcellandler() to abort the thread. This function takes the following parameters:

¢ Poinler Lo the exceplion [rame on the stack, KnThreadCtx* ctx

s Exception number int exclb

KnltRetSup(): Return from interrupt to supervisor thread. The supervisor after executing
the interrupt handlers connected by SupltConnect() prepares to return from the interrupt.
This [unction should be called by the Supervisor il the thread execuling al the lime of the
inlerrupl was a supervisor Lhread. This [unclion lakes no paramelers. A supervisor thread
can be preempted only if there is a supervisor thread of higher priority ready to ran.

KnItRetUser(): Relurn [rom inlerrupt to supervisor thread. The supervisor aller execuling
the interrupt handlers connecled by SupIlConnect() prepares Lo return [rom the interrupt.
This function should be called by the Supervisor if the thread executing at the time of the
interrupt was a user thread. ‘T'his function takes no parameters. This function can cause
preemption of the user thread.
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KnAbortHandler(): Abort ITandler. If the thread is found to be aborted while returning from
an interrupt, then KnAbortHandler() is called. This function takes the following parameters:

e I'he exception frame on the stack, KnThreadCtx* ctx as parameter.

KnTimeln(): Record a clock tick. This function should be called by the Supervisor every time
a clock interrupt occurs. "I'his routine increments the Chorus software clock and executes any
routines that have reached their timeout period. This function takes the following parameters:

¢ 'I'he execution mode at the time of the clock interrupt, int supOrUsr.

s The program connter at the time of the cock interrupt, int pe.

2.1.2 Supervisor Actor Interface

A portion of the Chorus interlace is available only Lo supervisor actors and would be reflerred (o as
the supervisor aclor inferface. Some ol the [unctions of the supervisor actor interface get direcily
mapped to corresponding functions of the supervisor interface and the rest of the functions are
handled in the portable layers of the Chorus kernel. Ideally, all the calls of the supervisor actor
interface except svCheckUserSpace(), svCopy[In/Out](), sv[Un|Mask[All](} are expected
to he implemented in the portable layers of the Chorus kernel by calling the appropriate functions
in the Supervisor interface. However, due 1o the way in which instructlions are generaled on the PA-
RISC by the compiler, additional work and portable layer modificalions were required to implement
this fanctionality (See section 2.2.9 for details and functionality implementation).

Only those functions of the supervisor actor interface that needed additional implementation are
specified below. Note that svCopy[In/Out](), sv[Un]Mask[All]() have already been covered
under the Supervisor intlerface.

svAbortHandler(): Define an aborl handler for the Actor. This [unclion takes the lollowing
paramelers:

¢ Actor Capability, KnCap *actcap.

e Abort Handler, KnHdl routine.
T'his function is expected to be entirely implemented in the portable layers of the kernel.

svCallConnect(): FExactly the same function and parameters as SupCallConnect() (see sec-
tion 2.1.1). T'his function is expected to he entirely implemented in the portable layers of
the kernel.

svCheckUserSpace(): verify that an address is within the user address space. 'T'his function
takes lhe [ollowing paramelers:

¢ the address to be checked, char* addr.
T'his function is expected to be implemented during the port to the target architecture.

svExcHandler(): define an exception handler for the Actor. 'This function takes the following
parameters:

¢ Actor Capability, KnCap *actcap.

o [xcoption ITandler, KnHdl routine.

17



This function is expected to be entirely iinplemented in the portable layers of the kernel.

svItConnect(): Exactly the same [unction and parameters as SupItConnect() (see section
2.1.1). This function is expected to be entirely implemented in the portable layers of the
kernel.

svItapConnect(): Exaclly the same [unclion and parameters as SupTrapConnect() (see sec-
tion 2.1.1). This function is expected to be entirely implemented in the portable layers of
the kernel.

svlimeQOut(): sel a time oul and call the given routine when the time-out occurs. This [unction
takes the following parameters:

¢ 'I'he routine to be called by kernel on time out, XnTeHd1l routine.
¢ The parameter to be passed to routine, void param

¢ TimeOut period in milliseconds, unsigned int delay.

This function is expected to be entirely implemented in the portable layers of the kernel.

2.1.3 Event (Interrupt, Trap and Exception) Handling

The Supervisor is expeclted 1o save the register context on the siack, call the appropriate handlers
and restore register context when required. The functions in the Supervisor interface that fall
in this group are SupTrap[Dis]Connect(), SupIt[Dis]Connect(), SupCall[Dis|Connect(),
SupltLevel(), and sv[Un]Mask[AIl|(). The Supervisor implements the data structures and
code for hese [unclions and calls the appropriale connecled handlers. In Lhe case ol inlerrupls, the
Supervisor should execule the list of handlers in the decreasing order of priorily and acknowledges
the interrupt to the external device raising the interrupt. In all cases, up-calls should be made at
the precise points in execution as identilicd by the supervisor interface. The general algorithms
to be used for interrupt, trap, and exception handling are detailed in the Chorus implementation

guide [7].

2.1.4 Timer and Console Management

T'he Supervisor manages the timer and console devices. Tt programs the timer device so that it gen-
erates clock ticks at a frequency defined by the K_CHY constant defined in include/chorusConf.h.
Each time a timer interrupt is received, the supervisor calls the KnTimelIn() lunction (see section
2.1.1). The functions ol the Supervisor interface that fall under this group are SupPutChar(),
SupGetChar(), SupPollChar().

The Supervisor is responsible for connecting, at least, SupPutChar() and SupGetChar()
behind a trap. This trap is used in the implementation of library functions PutChar() and

GetChar().

2.1.5 Low-level Debugging facility

I'he Supervisor is responsible for implementing the kernel debugger. 'I'he function that implements
the debugger is SupDebugger() (see section 2.1.1).

The Supervisor is responsible for connecting the debugrer enlry poinl Lo a trap number. This
trap number will be used by the implementation of the eallDebug() library fuanction. The callDe-
bug() function is part of the Chorns kernel interface exported to Chorns Actors.
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The Supervisor should call KnDebugEnter() and KnDebugLeave() when entering or leav-
ing the debugger. T'his avoids context switches when in the debugger.

2.1.6 Kernel initialization

The Supervisor implements the function (usually called start()) thal performs the kernel initial-
ization. This function poerforms all the machine dependent and machine independent initialization
necessary for calling the portable layers of the kernel. The function start() forms the entry point of
the Chorus kernel image. ‘I'ransfer of control to this entry point is performed by the boot program
portion of the boot archive loaded by the resident hoot monitor. I'or more details on the boot
archive and Chorus booling procedures see the PA-Chorus booling document[12].

The kernel inilialization [unclion is responsible for:

o Initialization of processor specific data like interrupt vector, setting the process status word
[or appropriate execution mode, elc.

e Static constructors’ invacation. Chorus is written in C+4, an object oriented language and
the static constructors for the various static objects of the kernel must be called.

o Initialization of memory management, by calling VimInit().

o Initialization of various devices and connection of device handlers and trap handlers. This
function is embedded in the routine SupBoardInit().

e Calling KnInit(), a function that initializes the portable part of the kernel. This includes
scheduler data structure initialization, connection of systemn call handlers, and creation of the
first thread of the system. This first thread is the transformation of the kernel initialization
code being executed into a Chorus abstraction. KnInit() returns the new stack pointer to
he used by the execuling first Lhread.

o Switching to the new stack pointer and call knMain() which is the main routine of the
kernel. knMain() never returns.

2.2 Supervisor Implementation

The fundamental data structures KnThreadCtx and SupThreadDesc manipulated by the Supervisor
code are defined first in sections 2.2.1 and 2.2.2 respectively. This will establish the background to
detail the implementation of the Supcrvisor in the rest ol the sub-sections.

2.2.1 Thread Register Context

The thread register context is basically is the set of general registers and control registers of the
processor and any other information that is needed for monitoring, manipulating and resuming the
thread at a later stage. The thread register context is required to be typedefined as KnThreadCtx
and is declared for PA-RISC in include/PARISC/thread Ctx.h. The following are the elements
of the KnThreadCtx struclure:

¢ state flags, a sollware regisler used (o track current status ol the Lthread, ex: in-system-call,
in-lrap, elc.
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o General registers grl, .. ,gr31. PA-RISC has only 31 32-bit general registers. Gr0 is perma-
nently tied to 0.

¢ Control registers ¢r0,cr8, .. ,cr31l. Crl-cr? do not exist.

e Instruclion space queue tail pcsge(alias PCSQT), instruction offsel queue lail pcoge(alias
PCOQT). These lields contain the address (space and ollset) of the next mstruction to be
executed.

¢ Kernel stack pointer ksp, this lield is a software rogister. Tt is 0 when running on the kernel
stack and contains the stack pointer to the kernel stack when running on the user stack in
user mode.

& Space registers sr0. .srT7.
¢ Floaling poini registers £r0..fri5.

s Special functional unit status registers, mdhi, mdlo, mdov, keep track of the status of the
special [unctional units, emulated or actual hardware.

The floating point registers and special functional unit fields are ignored in the current imple-
mentation. This implies thai code having floaling point instruclions or special [unction instructlions
will currenily abort. The next version of the implementation will have floating point and special
function unit cmulation.

Discussion :

The delinition of the thread context follows from our design objective of reusing as much of the
Tut code as possible. 'I'he Tut project was done in two phases. ['irst the HP-UX virtual memory
system was replaced by Mach virtual memory system. In the second phase, HP-UX was modified
Lo provide the mach thread absiraction and interface. In the case of the Tut kernel with threads,
there are 3 different struclures used lo store the thread context depending on Lhe execulion mode
of the thread and the purpose of accessing the context.

The purpose of cach of the structures of the Tut kernel is given below:

¢ save_state structure is nsed when the thread enters the kernel mode through systemn calls,
traps and interrupts.

¢ PCB structure is used when the thread was executing in kernel mode.

¢ hppa_thread_state struclure is Lhe conlexl visible 1o Lhe user lor inlerrogation and modifi-
calion.

In the case of Chorus, the machine independent layers recognize only one structure for the
thread conlext, i.e., KEnThreadCtx. For the PA-Chorus portl, we defined KnThreadCtx siruclure as
the union of the Lhree siruclures. This enabled us Lo use Lhe same siruciure uniformly through out
the kernel and allowed us to use the low-level Tut code for the system-call interface, interrupt and
trap handling as our starting point and make the Chorus specilic modilications relatively casily.
I'urther, we saw no reason to have distinct structures as a single structure can be used to store
different levels and lypes of informaltion.
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typedef struct {
unsigned reserved; /* reserved for simple links */
long typeCtx; /* Superviscr or User Thread */
EnThreadCtx *currCtx; /* indirect pointer to saved context of
* thread */
KnThreadCtx *userCtx; /* indirect pointer to initial context
* of the thread */
} SupThreadDesc;

Figure 4: Machine dependent thread descriptor: SupThreadDesc

2.2.2 Machine Dependent Thread Descriptor

The machine dependent thread descriptor is typedefined as SupThreadDesc. As described in section
2.1, this descriptor is used to keep track of the thread® system stack, user stack and the thread’s
context. In the case of PA-RISC, SupThreadDesc is delined in include/PARISC /sv.h as in lig
4.

The fields of SupThreadDesc, except the link field, get initialized in SupCtxInit() (see section
2.2.3), and remain fixed during the life time of the thread.

2.2.3 SupCixInit{)

This function is implemented in kern/PARISC /sv.exx. 'l'he initialization of the new thread is
performed in Lhe following manner:

1. I the thread is the first thread of the kernel then exil [rom the [unction. The first thread
of the kernel is nolhing butl the kernel initialization code being made parl of the thread
abstraction and recognizable by the Chorus portable layers. This thread ultimately becomes
the idle thread of the system. Since this “thread”™ was already executing before it was created,
there is nothing to be done at this stage. '['he machine dependent initialization for the first
thread would have been already performed in start() in kern/PARISC/sv.exx during
kernel initialization.

2. Force the allocation of the system stack of the thread. At the point of calling SupCtxInit(),
the system stack of the new thread is mapped, but physical memory is not allocated, by
the virtual memory layers. Tt is necessary for the system stack to be actually allocated in
physical memory before slarting up Lhe new lhread since traps caused by the new thread
musl be handled on ils system stack and Lhis would cause recursive traps il Lhe system stack
is not physically allocated.

3. Allocate two frames of type KnThreadCtx*: userFrame and switchFrame on the system stack
(see fig 5).

4. Initialize the userFrame as follows:

(a) If the thread is a user thread then initialize the stack pointer as follows:
userFrame—sp = threadParams—sp + FM _SIZLE.
FM_SIZI is the frame size needed to satisfy the PA-RISC procedure calling conventions.
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(b) If the thread is a supervisor thread then initialize the stack pointer as follows:
fr size = sizeol(KnThreadCtx) + M SIZE + FM FIXED ARG SIZE.
nserFrame—sp = stackbot + 2 * fr_size.
The FM* operands above are needed to satisly the PA-RISC procedure calling conven-
lions.

(¢) Initialize the thread’s Processor Status Word. As mentioned earlier, the thread frame
should be initialized as il the thread is relurning [rom exceplion. So the required infer-
ruption parameter registers are updated as follow:

userFrame—ipsw — Q + CC 4+ 1D 4+ 1,
userFrame—elem = Frable-all-interrupts

(d) Initialize the thread’s protection identity registers as follows:

userFrame—pidl = (),
userFrame—pid3 = (),
userFrame—pid4 = 0,
userFrame—pid2 = Protection Id of the Actor’s context.

() Tnitialize the thread’s space registers and the instruction address queues as follows:

userFrame—srd = spaceld of thread’ Actor,
userFrame—sr5 — spaceld of thread’s Actor,
userFrame—pcagh — spaceld of thread’s Actor,
userFrame—pceqt = spaceld of Lthread’s Aclor,
userFrame—sr6 = KernelSpacelD.
userFrame—sr7 = KernelSpacelD.
userFrame—pcogh = threadl’arams—pec,
userFrame—pcoqt = userFrame—pcogh + Instruction length (4 bytes).
(f) Tnitialization of the data pointer (dp) of the thread is performed as follows:
i. If the thread is a kernel thread Lhen sel dp as [ollows:
userFrame—dp = data_peinter (the kernel’s data pointer).
ii. If the thread helongs to a user Actor then set dp as follows:
userFrame—dp = 0x40000000 (the absolute virtual address of a nser Actor’s
data pointer).

iii. Tf the thread is not the first thread of the supervisor actor then initialize the dp
[rom the datapointer value in the saved contlext of the first Lthread of the supervisor
actor. This value can be [ound by looking at the thread list atlached to the thread’s
actor.

iv. if none of the above cases is true, then do nothing to initialize the dp. 'T'his is
(he case when the new thread is the firsl thread of Lthe supervisor aclor. Since Lhis
(hread is Lhe main thread of Lthe aclor, the start up sequence will be similar Lo a unix
process, 1.e., the execution starts at an entry point in a crt0.o equivalent and then
branches to main() after some initialization. The dp in this case would be set by the
code in crtl.o. The code for the crt0.o equivalent is in ktests/PARISC/kt_ass.s.

Tt is important for the dp to be set before any part of the main program gets excented
since instructions produced by the compiler are generated with respect to the dp.
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5. The variable switchFrame points to the frame that is equivalent to a context frame saved
by the scheduler during a context switch operation. The fields are initialized such that on a
context switch to the new thread, control is transflerred 1o the kernel procedure SupThread-
Start() which executles in privileged mode withoutl preempiion. SupThreadStart() is im-
plemented in kern/PARISC/supcix.s. This routine loads the values from the userFrame
portion of the system stack and performs a return from exception sequence to transfer control
to the new thread’s actual entry point. The return from exception sequence is described in
section 2.2.11. The frame pointed by switchFrame is initialized as follows:

(a) Imitialize the Processor status word as follows:

awitchFrame—ipaw = Q + C 4 1), Note that Interrupts are not enabled.
(b) Tnitialize the data pointer dp to the kernel’s data pointer:

switchFrame—dp = data pointer
(¢) Initialize the space registers:

switchFrame—sr4 = KernelSpaceld;

awitchFrame—ar5 — KernelSpaceld;

awitchFrame—ar6 — KernelSpaceld;
switchFrame—sr7 = KernelSpaceld;

(d) Initialize the instruction address queues:
switchFrame—pcsgh = KernelSpaceld;
awitchFrame—pcaqt = KernelSpaceld;
switchFrame—pcogh — SupThreadStart,
switchFrame—pcoqt = SupThreadStart + Insiruction lengih (1 bytes).

6. I'hread descriptor ptThreadDesc fields are initialized as follows:

(a) typeCtx = privilege value passed in LthreadParams.
(b) currCtx = stackbot + 2 * fr_size.

(¢) userCtx = stackbot + fr_size.
Discussion :

Note thatl 1o change a value in the switchFrame, we have Lo subtract fr_size byles [rom curr(ix
and then use the resultant address as KnThreadCtx#, The same argnmnent is true for the wserFrame.
The pointers eurrCtx and userCtx are lixed for the life time of the thread. There is an inelliciency
in space usage and time of access to the context by this definition. I'irst, 2¥fr_asize hytes are lost
in the system stack. l'o access a register in the current context, one has to first get the context
pointer [rom the context poinled o by currClix and then access the regisler. This would nol have
heen necessary il currCix was nol fixed bul pointed directly o Lhe current conlexl. The advantage
of the current approach is in debugging. Since the corrCtx is always available at a lixed position
relative to the bottom of the system stack, it offers an casy way of looking np the current context
of the thread during memory dumps.

The initialization of the dp is complicated by the fact that the dp is not always available to the
kernel al the time of performing the machine dependent initialization.

This is a consequence of the fact that we did not have a data pointer lield as part of the machine
dependent context mmuContext. IMaving a dp lield in the class mmuContext works [ine as long as
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there is ome executable image per virtual address space. In the case of Chorus all supervisor actors,
which are independent executable images, share the same context, i.e., KernelContext. In such
a case, it is no longer sufficient to have one dp field per mmuContext. One solution to simplifying
the initialization code for dp is Lo have a dp in the actor and have this field initialized during the
starlup sequence of Lthe main thread of Lthe aclor. Then for all the threads crealed Lhen onwards in
this actor, this licld can be used to initialize the dp in their startup thread context. Note that in
this casc, a thread of actor 4 cannot create any other thread other than the main thread of actor B
unless the main thread of actor B has already executed its startup sequence and initialized it’s actor
specific dp. The most elegant solution would be to do the dp initialization at the time of creating
an aclor. Bul there is no clear way ol initializing the dala pointer of an aclor in the portable layers.

2.2.4 SupCixSwitch()

SupCixSwitch(), the thread machine dependent context switch function, is implemented in
kern/PARISC/supctx.s. T'his function performs the switch in the following manner’.

1. Allocale a fr_size [rame on ihe sysiem stack ol the old thread [rom Lhe current stack poinlter.
Save general registers including the current sp and thread specilic control registers. The
return address of SupCtxSwitch() becomes the new point of resumption for the oldThread.
T'his implies that when a context switch loads back the old thread, it will be as though it has
relurned [rom SupCixSwilch(). To achieve this pcogh and pcoqt are set to RP and RP+4

“Note that oldThread is really the running thread and the pnrpose of SupCtxSwitch() is to save the register
conlexl of the running thread and swilch o the new thread
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respectively, Update the stack pointer value in the lixed switchFrame pointed to by carrCtx
8

2. Find the position of the save context frame from the stack pointer lield in the lixed context
frame pointed to by newThread—currCtx. Resfore general registers and some control regis-
ters. Perform a return from exception sequence (see step ( 3f) of trap handling) to set the
instruction gueune registers and Lhe process stalus word.

Discussion :

Doing a return [rom exceplion sequence is nol necessary Lo implement Lhe conlext switch., An
alternate way is to do a procedure call return into the context of the new thread (the thread to be
scheduled). This can be achieved by performing a branch to the value in the R of the context of
the new thread. 'I'he reason the return from exception sequence was chosen is to have more control
over the PSW biis during debugging. The PSW bits can be changed in the saved context of the
blocked thread and thus enable any debug iraps il required. The disadvantage is the inefficiency in
this method of implementation due to the greater number of operations that need to be performed.

2.2.5 SupGetUserCtx()
This function is implemented in kern/PARISC /sv.h.

2.2.6 SupCtxReset()

This [unclion is implemented in kern/PARISC/sv.cxx. The [unction blindly overwrites the
conlext [rame on the slack by the user conlext [rame porlion of the SupThreadDesc.

Discussion :

This function needs to be changed to perform some sanity and protection checks hefore modifying
the thread context.

2.2.7 SupCtxIsUserMod()

This fucntion is implemented in kern/PARISC/sv.h. The [unction returns {ruc il the sr4 of the
conlext is not Lthe same as Lhe kernel’s space id. Other wise it relurns [alse.

Discussion :

One of the experiments which we want to do is to take the supervisor actors from the same space
as the kernel and use the multiple privilege levels. One of the interesting aspects of the architecture
is the cheap mechanism for system calls and the multiple privilege levels. 'his function would
definitely break if such a separation is done.

8 Actually currCtx poinis Lo the top of the switchl'tame. Therefore, fr_size byles have o be subtracted from
currCtx before accessing a field in the KnThreadCtx structure portion of the switchFrame



2.2.8 The various connect and disconnect functions

This section details the implementation of SupCall[Dis]Connect(), SupIt[Dis]Connect() and
SupTrap[Dis]Connect(). These three pairs of [unctions are implemented in svConnect.cxx in
the directory kern/PARISC.

These functions are provided by Chorus so that the portable layers of the Chorns kernel can
attach handlers to traps, interrupts, system calls in a machine independent manner. The chorus
kernel maps the Connect() system calls provided to supervisor actors to the corresponding Con-
nect() calls of the Supervisor interlace. We found thal we needed 1o have more information than
the specilied parameters for the Connect() calls to satisfy the system call mterface for supervisor
actors. This problem is discussed in detail in section 2.2.9. In this section, we will discuss the
different semantics that apply to some of the parameters to these *Counnect() calls on PA-RISC
in contrast to what Chorus originally envisaged. T'he semantic differences are as follows:

e The Chorus interface expects the lirst parameter to SupCallConnect() and SupTrapCon-
nect() to be a trap number. SupCallConnect() is used in the Chorus kernel to connect
a veclor of handlers behind a trap. In the case of implementing UNIX as a collection of
aclors ( sub-systcm), a SupCallConnect() is made [rom the sub-sysicm actor called the
PM to connect a vector of system call routines behind a specilied trap number to handle
UNIX system calls. In the case of PA-RISC. it is not necessary to cause a trap to perform a
system call. "T'here is an efficient gateway mechanism (see section 4) by which a controlled
transfer hetween privilege levels can he achieved. T'his method is the proper mechanism for
making system calls on this architecture (IIP-UX and MPE use the same approach) and
has been used in the implementation of sysiem calls for PA-Chorus. The consequence is
that calling the [irst parameter to SupCallConnect() as traplib is not quite correct. Since
the purpose of having SupCallConnect() and SupTrapConnect() is to build sub-systems
(including Chorus as the base case), this number is distingushed in the Supervisor layer as
a real hardware trap number or a sub-system number Lo which a vector of handlers (Sup-
CallConnect()) or a single handler (SupTrapConnect()) should be connected. Hence an
appropriate name for the [irst parameter would he subSysOrTrapNb. Additional constants
were added in include/PARISC /syscall.h to map symbolic constants for sub-systems to
numbers. l'or example:CHORUS_SUBSYS is defined to be 31. 'T'he range of hardware trap
numbers does not overlap with the range of sub-system numbers possible. This makes differ-
entialion belween a sub-system number and a trap number simple.

o 'I'he Chorus interface expects the first parameter to SupItConnect() to be a hardware in-
terrupt number. Tn the case of PA-RISC, all the external devices including the clock raise the
same interrupt #41 (External Interrupl). We found il more elegant Lo pass the number of the
external device as a parameler Lo SupltConnect() rather than the interrupl number. For ex-
ample:To connect clock and disk handlers, two calls SupltConnect{ CLOCK, clocklIldl, clock-
prio), SupltConnect(DISKO01, disklldl, disk01prio) are required. The interface is not changed,
only the meaning of the first parameter is slightly different. However, it is possible to connect
all Lthe device handlers Lo Lthe exlernal inlerrupi #4. Hence an appropriate name for the first
parameter would be DeviceOrIntrNb. An include file include/PARISC /extern_intr.h was
created to map symbolic constants for devices to mapped to integers. The numbers possible
for hardware interrupts do not overlap with that of the devices. This makes dillorentiation
between a device number and a interrupt number simple.

The hasic data structures that have been used for the implementation are presented in ligure 6.
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typedef struct {
unsigned leng  funclNb; /* No of functions in the array being connected #*/
KnCallEntry* calls; /* address of the array */

} vector_desc;

typedef struct {

unsigned int connectType; /* Array or function connected */
union {
vector_desc vactor;
KnHd1 hdl;
F;
VmAddr dataPointer; /* The $global$ of the Supervisor Actor */

¥ supCallTbl;

/* MAX_SYS_NUM = 25 from include/PARISC/syscall.h; the maximum number *

* of sub-systems that can simultaneously run on top of Chorus */
gupCallTbl userTrapVect [MAX_SYS_NUM]; /* For User Actor System Calls %/
supCallTbl kernTrapVect [MAX_SYS_NUM]; /# For Sup Actor System Calls */

Figure 6i: Data struclures for System Call Handling

e 'l'he structures userTrapVect and kernTrapVect are used by SupCallConnect(), Sup-
TrapConnect().SupCallHandler() finds and executes the routine attached by the Con-
nect() calls during system call execution.

e vect, DeviceVect are updated by SupItConnect() and SupTrapConnect(). 'I'he rou-
tines attached to the various interrupts and traps by the Connect() calls are executed by
SupltHandler(),SuplItSelector() or SupTrapHandler() on the occurrence of the those
treferruptions . The data structures for  inferruplron handling are presented in ligure 7.
In addition to the 25 PA-RISC interruptions, there are 3 psuedo-interruptions generated by
the low-level event handling layers. Therefore, we maintain an TNTRMAX element array
(25+3 elements) and allow handlers to be attached to one single vector vect. Currently the
psuedo-interruptlions are handled in the kernel itsell.

PA-RISC has one exiernal interrupt flor all external devices including the ITMR. This implies
that all handlers [or different external devices would have 1o be connected o the same position
in vect. Toavoid this, DeviceVect is introduced to keep the interrupt handlers device-specilic
rather than connecting all the device handlers to one position in the vect array.

The implementation of the various Connect() calls is now presented:

SupItConnect(itNum, hdl} : calls SupItConnectParisc() with kernel’s $global$ as addi-
tional parametler. SupItConnectParisc() allocales a itLink siructure [rom the itPool,
stores Lhe paramelers ol lhe funclion in the slructure and altaches il Lo vect or DeviceVect
depending on the actual interrupt nnmber parameter (itNum) being a PA-RISC interrupt
number or a symbolic device name. Two or more handlers for the same interrupt or device
are linked in descending order of priority.
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typedef struct {
itLink#* 1nk;
KnHdl routine;
unsigned long priority;
VmAddr dataPointer;

} itLink;

typedef struct
KnHdl routine;
VmAddr dataPointer;
} KnHdlEntry;

typedef union {
itLink#* 1lnk;
KnHdlEntry hdlEnt;
} VectEntry;

VectEntry vect [INTRMAX];
VectEntry DeviceVect[NumOfExternalDevices]

Figure 7: Data Structures for frderruption handling

T'he advantage of having a separate table for external devices is for efficiency of search during
interrupt handling.

SupTrapConnect(trapOrSubSysNum, hdl) : calls SupTrapConnectParisc() with the ker-
nel’s $global$ as an additional parameter. SupItConnectParisc() does the lollowing:

¢ I[ trap0rSubSysNumis a PA-RISC trap, then store the dalaPoinler and hdl at
vect [trap0rSubSysNum].

¢ If trap0rSubSysNum is sub-system number, then this implies a single routine interface
for system calls in contrast to a vector of handlers connected by SupCallConnect().
Update both userTrapVect and kernTrapVect by the same parameters and update

connectType Lo be FUNC_TYPE.

¢ [ neither of the above condition holds, then return illegal value status.

As explained in (he bepinning of (his seclion, il is nol necessary Lo cause a lrap lo perform a
system call on this archilecture. If a sub-syslem manager requires a single routine Lo handle
all the system calls instead of a vector of handlers, there are now two ways of doing it:

¢ SupTrapConnect() with subsystem number instead of trap number as [irst parameter
and the handler as second parameter. I'his is the interface used by the UNTX sub-system
implementation to provide UNTX system call services to the actors of the sub-system.

¢ SupCallConnect() with size of the array equal to one. Tn this case the stub li-
brary should always have Lhe system call number equal to 1, and Lhe single handler
in vector0fHandlers responsible for distingushing various system calls of the actors
running on that sub-system.



SupCallConnect(no, vectorOfHandlers, NoHdl, privilege) : calls SupCallConnectParisc()
with the kernel’s §global$ as an additional parameter. SupCallConnectParise() connects
the vectorOfHandlers o userTrapVect[nol if privilage is {/ser or o kernTrapVect [nol
il privilage is Supcrvisor. The connectType is sel 1o VECTOR TYPE.

DisConnect functions : All the disconneclt [unctions are straighl forward and basically reset
the corresponding locations to NULL or deallocate the allocated structure as in the case of
interrupts.

2.2.9 Supervisor Actor Interface Tmplementation

In the case of PA-RISC, the compiler generates instructions thal access data relalive Lo general
register 27 (DP or DataPointer). During the startup of a thread this register is set to $global$
(of the address space) before the actnal code gets executed. The $global$ refoers to the starting
address of the the SDATAS scction of a typical UNIX process. Chorns requires the kernel and
supervisor actor to live in the kernel address space. Chorus assumes that it is possible to make
a simple procedure call 1o a procedure in the the supervisor actor [rom the kernel as the aclors
are in the same address space, l.e., the kernel address space, even though the two aclors are
two separate executable images. During the port, this requirement that the supervisor actors
should live in the same context as the kernel has been satislied by laying out the supervisor actors
including the kernel in distinct regions in the 30-bit virtual address space corresponding to the
same spaceld=KernelSpaceld. Because of this, the Sglobal$ address is different for each of the
supervisor actors and the kernel. The consequence of this design decision is that il is no more a
simple procedure call [rom the kernel inlo the supervisor aciors. I[ a procedure p, ol a supervisor
actor s has to be called in the interrupt handling sequence, then the procedure pg can be called
only after the DD register has been updated to that of the supervisor actor. In addition the
kernel’s dp should be restored when returning from p,. We considered the following implementation
approaches:

e )P of the supervizor actor should be known by the kernel at the time of calling the interrupt

handler.

¢ 'I'he routine should know that it should set the DP to its $global$ and restore the kernel’s
$global$ al the end of the rouline.

¢ The routine should know that it should the set the DP Lo its $global$ and the kernel should
restore ils own DP alter relurning [rom the call.

The second approach was rejecied because, even il submerged, the setling and restoring of DP
using stalic variables in the system call stub at the time of the Connect(), it is notl a robust
mechanisim and can be broken by a misbehaving supervisor actor. Of course, as supervisor actors
are trusted, there are other ways in which a mishehaving supervisor can crash the kernel but we
did not want add more ways.

T"he third approach required modification in the kernel interface and the stubs. Tt was rejected
hecause using slalic variables in syslem call stubs did nol appear lo be eleganil and il required
kernel modification.

We examined two alternatives of obtaining supervisor actor’s DI at time of calling the handler:

¢ Modily the Supervisor Aclor interface and the Supervisor inlerface Lo pass lhe datapoinler
ag an additional parametoer to all those functions that required a rontine in the supervisor
actor to be called.
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¢ Tass the DI* as a hidden parameter during the system call and keep the machine dependency
in the the machine dependent layers as much as possible.

The lirst approach was rejected hecause it would modify the machine independent interface of
the Chorus Kernel and would require modilications in the supervisor actors already written.

In the current implementation, the DP of the supervisor actor is passed as a hidden parame-
ter during the system call. I'or all the calls given in the section 2.1.2, the following scheme has
heen adopled. I[ the syslem call name is scf then this would call a PA-RISC specific [unclion
sefParise which takes the DP of the actor as an additional argument. The stub will be gener-
ated for sefParise rather than for sef. For example: svTimeQut(routine, param, delay) calls
svTimeQOutParisc(routine, param, delay, get_dp()). get_dp() returns the DP of the actor.
The system call stub is generated for svTimeOutParisc() rather than for svTimeOut().

In the kernel, kern/scSystem.cxx is modified. All the kernel roulines which now require the
knowledge of the DP of the requesting supervisor aclor are replaced by [unclions that have the
same name with Parisc sullix. For example: KnTimeOut() is replaced KnTimeOutParisc()
and the number of arguments lield is incremented by 1.

The following is a list of the changes at the supervisor stub library level:

¢ svAbortHandler{actcap, routine) calls svAbortHandlerParisc(actcap, routine, get_dp()).
A stub is generated for svAbortHandlerParisc().

¢ svExcHandler(actcap, routine) calls svExcHandlerParisc(actcap, routine, get_dp()).
A stub is generated for svExeHandlerParisce().

e svCallConnect{trapNo, hdlVect, NoHdl) calls svCallConnect(trapNo, hdlVect,
NoHdl, get_dp()). A stub is generated for svCallConnectParisc( ).

¢ svItConnect{trapNo, hdlVect, NoHdl) calls svItConnect(trapNo, hdlVect, NoHdl,
get_dp()). A stub is generaled for svItConnectParisc().

e svItapConnect(trapNo, hdlVect, NoHdl) calls svTrapConnect(trapNo, hdlVect,
NoHdl, get_dp()). A slub is generated [or svItapConnectParisc().

» svTimeQut(routine, param, delay) calls svTimeOutParisc(routine, param, delay,
get dp()). A stub is generaled for svTimeOutParisc().

The following is a list of changes in kern/seSystem.cxx: All the modifications are done under

compilation flag PARISC.

e Replace seSvAbortHandler() taking 2 paramecters by seSvAbortHandler() that takes
an additional paramoter DP.
T'he call workActor —setAbortHdl(f) is changed to workActor—aetAbortHdl(f, dataPointer).

e Replace seSvExcHandler() taking 2 parameters by seSvExcHandler() that takes an ad-
ditional DP parameter.
I'he call workActor—setExcHdl (f) is changed to workActor—setExcHd1(f, dataPointer).

e Replace SupCallConnect() taking 2 parameters by SupCallConnectParisc() that takes
an additional DT parameter.
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e Replace SupIltConnect() taking 2 paramecters by SupltConnectParisc() that takes an
additional DP parameter.

e Replace SupTrapConnect() taking 2 parameters hy SupTrapConnectParisc() that takes
an additional NP parameter.

e Replace KnTimeQut() taking 2 parameters by KnTimeOutParisc() that takes an addi-
tional DP parameter.

The following is a list of changes in kern/knMk.hxx: All the modifications are done under
compilation (lag PARISC.

¢ Add (wo fields acPariscExcDp, acPariscAboDp [or recording the DPs of Lthe supervisor aclors
that have performed svExcHandler(), svAbortHandler() respectively.

o lixtend the parameter list of setExcHdI(), set AboHdI() to take DP as a parameter. Add
an additional assignment ol the DP to acPariscExcDp and acPariscAboDp respectively.

o Modify execExcHdI()/execAboHdl() to call SupTrapStub() with exception context,
exceplion number, exception/abort handler to be called and the DP of the exception/abort
handler rouline as paramelers.

The following is a list of changes in kern/knMk.exx. All the modifications are done under
compilation flag PARISC.

e The timeOutItem structure has an additional [icld: DataPointer that gives the $global$
of the supervisor actor to which the routine belongs.

e KnTimeOut() calls KnTimeOutParisc() which has an additional parameter D, The DP
is the $global$ of the kernel.

e KnTimeOutParisc() is cxactly the same as KnTimeOut({) but takes an additional pa-
rameter and performs the data pointer assignment into the timeOutTtem structure.

¢ KnProcessTimeOuts() has been modified at the point of calling the timeOutl routine.
SupTrapStub() is called to take care of switching to the data pointer of the timeOut routine
hefore execnting the routine and then restoring the data pointer of the kernel when returning
to the kernel.

SupTrapStub(} is implemented in kern/PARISC /SupTrapStub.s. It allows the kernel to
call the supervisor actor routines that have instroctions generated with a dillerent $global$ . Tt
takes the following parameters:

e DPointer to the thread’s context, KnThreadCtx* ctx
¢ Inlerruplion number, int no
¢ Routine address, int (*fnPtr) ();

¢ $global$ of the actor to which the routine belongs, VmAddr global.
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ligure &: Chorus Event Handling Sequence

2.2.10 Interrupt masking and monitoring functions

The section details the implementation of SupItLevel(), svMask[All]() and svUnMask[AL](). SupItLevel()
is implemented in kern/PARISC/sv.h and the functions sv[Un]Mask[All]() are implemented in

lib /HP800/svMask.s The mask/unmasking [unctions are implemented by calling the appropriate
spl() routlines of Tul code implemented in lib/PARISC /asm_utl.s.

2.2.11 Event Handling

The event handling sequence has been implemented in 3 layers and is shown in lig 8.

The IVA control register is first initialized with the code addr $ivaaddr in kern/PARISC/locore.s
during the kernel Initialization phase. This address is page-aligned and is therefore 1024-hyte
aligned as required by the PA-RISC interrupt architecture. This will be referred Lo as the inter-
rupt vector table in the following discussion.

PA-RISC interruptions are classilied in the following manner:

¢ PA-RISC Interruptions #1, #2, #41 and #5 have been classified as interruplts.

e ‘I'he remaining PA-RTISC Tnterruptions are handled as traps. Of these traps, #6, #£7, and #15
to #21 pertain to memory management. HP 9000/831 (the target archilecture) has software
TLB handling. So the inlerruplions #6, #£15, #16, #17 are aclually TLB misses bul may
result in page fanlts if the page is not in the PDIR (see section 1.3.3).

Recall thal on an inlerruplion, hardware branches o the code address given by the [ollowing
relation:

code address = IVA + 8F 4 inlerruption number.

Depending on the interruption, the interruption parameter registers are updated by hardware. T'he
processor is in physical mode. Interruptls are lturned off. The PSW_Q bit in the PSW is disabled.

All the interruptl and trap handling code resides in the directory kern/PARISC. An overview
of the interrupt and trap handling is as follows:
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ITardware branches to the ellective address in the interrupt vector table as detailed above.
At this level a few registers are saved in control registers to obtain some working registers.
A branch is performed to ithandler() for handling interrupis or to thandler() for handling
{raps”.

ihandler() and thandler() save the context of the executing thread. thandler() always
stores Lhe conlext on the system stack ol the current thread and execules on the same. ithan-
dler() uses the sysiem stack of the current thread for storing the context and for execution il
interrupt nesting level is zero. Otherwise, the function uses the interrupt control stack (ICS).
In the general case thandler() calls trap() and ithandler() calls interrupt().

interrupt() exccutes the interrupt routines attached by {Sup, sv}TtConnect() by calling
SupltHandler(). trap() dirccts all the memory management traps to VmHandler() and
non-memory management traps to SupTrapHandler().

ithandler(), after returning from the call to interrupt(), checks if rescheduling or ahorting
the thread is necessary, and by default, restores the context of the current thread. Depending
on whether ithandler() was running on the TCS or on the system stack of the current thread,
it has 1o perform a differeni restore sequence to return to normal execution. The reason [or
the difference is thal threads® system stacks are nol equivalently mapped, whereas the ICS
is equivalently mapped, i.c., virtual and physical addresses are the same. Srestore_ss is the
linal restore sequence used on the ICS and $restore_ss_trap is the [inal restore sequence
used on the system stack. Srestore_ss_trap and Srestore_ss are text addresses in locore.s.
A branch is taken to this code to cause a potential ‘I'T.B refill and then the code gets executed.
This branch is necessary because code updatling the interruplion instruction queues and IPSW
should nol cause TLB misses as the PSW_Q) bil is turned off.

thandler() aller returning from the call Lo trap() restores the contexi not connected wilh
instruction queues and PSW ete, and performs the [inal restore sequence to restart excenting
the code of the current thread by branching to restore_ss_trap.

This completes the overview of the implementation of trap and interrupt handling.

A detailed description of the control low of interrupt handling is now presented. The variable
istackptr contains the pointer to the bottom of the ICS if the code is not executing on the TCS.
istackptr is set to zero whenever the code is running on the TCS. T'he variable nbit indicates
the current interrupt nesting level.

The detlailed flow of control [or inlerrupt handling is given below.

1. Hardware branches Lo one of Lhe first level inlerrupl handlers in locore.s. The processor is
in physical mode. Interrupls and the PSW_Q bil are disabled.

2. 'I'he first-level handler saves registers ARGO, 5P, 'I'l which will be used as seratch and branches
to thandler(itype) in asm_rv.s

3. ihandler() performs the following operations:

"PA-RISC inlcrruplions #6, #£15, 416, #17 are are treated slightly differently. All TLI3 misses arc first handled
in kern/PARISC/locore.s. If the page is found in the PDIR then the tlb is refilled and control is returned to
the executing thread. If the page is not found in the PDIR (see Inouve [11]), then thandler(} is called with the
approptiate page fanlt type (Tnstruction [non-access] page fault or Nata [hon-access] page lault) as the case may be.
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() Increment nbit. If nbit equals two, then switch to the ICS.

(b) If nbit is grealer than {wo, conlinue using the currenl SP as we will be definitely on
the ICS.

(c) Il nbit equals one, then check for which one of the lollowing cases is true and execute
the corresponding code:

i

Already on TCS. This case was possible as interrupts were turned on during booting.
This case can arise only il inlerrupls are enabled during booting. The interrupls are
not enabled during booting in the normal execution. In any case, if interrnpts are
re-cnabled during hooting, the current ST 1s used.

. Check if we are running on the user stack or system stack of the thread. The state

hag 1o be saved on Lhe syslem slack in this case. This requires saving Lhe interruptlion
parameler registers in Lhe equivalently mapped tmp_save_state struclure, lurning
on virtnal memory and checking CurThread’s ksp. If ksp equals zero, the thread
was executing on its systemn stack and so keep the ST unchanged. If ksp is not equal
to zero, the thread was executing on its user stack and ksp contains the pointer o
its system stack. Sel SP equal to ksp and set ksp to (.

(d) Make sure there is enough space on the selected stacks. Tf executing on the system

stack and system stack overflow is detected, switch to TCS and change interrupt number
Lo kernel stack overflow pseudo-interruptl. Il executling on the ICS and ICS overflow

is detected, change the protections of the overflow page available just after the ICS.
Change the interruption numbhber to ICS overflow psucdo-interrupt. Doth these events

are currently unrecoverable. interrupt() passes them to trap{) which gives a panic
message and crashes.

(¢) Allocate the context frame of size fr_size(sce section 2.2.3) on the selected stack.

([) save context on the stack, set DP to $global% of the kernel and call interrupt() in
chorus_trap.cxx wilth arguments conlexl poinler and inlerrupl number,

i

ii.

There are two ways interrupt() could be called: If a trap occurs on the ICS or a
genuine interrupt has occurred. In the first case, redirect the parameters to trap().
Tn the latter case, call SupItHandler().

SupItHandler() calls routines attached by the ItConnect() calls. The various
interrupts are handled as follows:

o futernal Interrupt #4: the attached routine is SupItSelector(). T'his routine
is attached in SupBoardImt() in svBoard.c during kernel initialization. The
clock handlers connected in SupBoardInit() get execuied by SupItSelector()
every time interrupt #4 occurs and the FIRR 0 bit is set. These handlers are
part of the kernel and are necessary to satisfy the implementation specification.

o Power failure interrupt #2, Low-priorily machine check #5: These inlerrupls
do nol have a real handler in the current implementation.

o [ligh priority Meachine check #£1: This interrupt is handled at the lirst lovel itself
in locore.s and is unchanged from the Tut implementation.

(g) Disable inlerrupts. Decrement nbit. Il nbit equals one, then restore istackptr Lo ICS
stack bottom. This is because Lhe interruptl handling al nesting level () is performed on
the system stack of the carrent thread.
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(h)

(i)
(3)

Ifnbit equals zero then check for execution mode of the interrupted thread. if the thread
was executing supervisor mode then call KnRetSup() and go to step (3]. Otherwise
call KnRetUser().

If KnRetUser() returns non-zero, call KnAbortHandler().

Restore saved conlexl by loading all the conlexl excepl those relaled wilh PC queues,
SP, I'SW, and interruption parameter registers. If executing on the interrupt stack, then
hranch to $restore_ss in locore.s. Otherwise, branch to $restore_ss_trap in locore.s.

4. Tn $restore_ss interruption instruction queues and parameter registers are going to be written

into and since the Q-bit will be disabled, thore can not be any TLD misses. Disable intorrupts.
Turn off VM and @ bit and Protection bits. Restore the remainder of the state from the
previous inferrupt after calculating the new psw. Restore SP and perform »fi instruction.
The new psw is given by the following relalion:

New psw = ( GLOBAT._VAR_MASK && ipsw) || global_psw

The operations at $restore_ss_trap will be described in the trap handling description.

Once Lhe restore sequence is done, the normal mode of execution is resumed. A delailed flow
of exeention for trap handling is now presented:

1. Hardware branches lo one of the first level (rap handlers in locore.s.

2. I'he first-level handler saves registers ARGO, SP, 'I'l which will be used as scratch registers
and branches to thandler{itype) in asm_rv.s

3. thandler() performs the following operations:

()

(b)

(d)
(e)

If currently excenting on the ICS, then allocate a context frame on the stack, store the
interruption parameter registers and branch to step ( 3f) in thandler(). Tncrement nbit
to ensure compatibility with interrupt handler code to execute correctly.

If not executing on the ICS, then the context has to be saved on the system stack of
the thread. Find stack on which the thread was executing. This requires the VM to be
enabled. Before turning on VM, store the registers that might get trampled by turning
on VM due 1o tlb misses into the equivalenily mapped tmp_save_state siructure. If
curreni thread’s ksp equals zero, the thread is execuling on system stack. Otherwise,
ksp contains the system stack pointer of the thread. Obtain the stack pointer if ksp is
non-zera and set the ST register to ksp. Otherwise, do nothing.

If sufficient space is unavailable on kernel stack, switch to the ICS and change interrup-
tion number to the psuedo interruption kernel-stack-overflow (ILKS_OVIL) and allow
the interruption number to loat up to the next layer just as in ithandler().

Allocate space on the selected stack, store the context onto the stack. Set DP to
$global$ of kernel and call trap().

trap() passes all the memory management traps to VmHandler(). The traps Break,
High Privilege Transfer, Low Privilege Transfer, Taken Branch are passed Lo Sup-
TrapHandler(). The traps Assist Proulation and Assist Feception are not currently
supported. The default hehavior for un-supported or irrecoverable orrors is to panic
with a message.



SupTrapHandler() calls the connected handler if a handler to the trap is connected.
Otherwise, it calls KnHandler(). SupBrkHandler() is connected to the Hreak trap.
This checks the parameter of the break instruction available in the contexi and calls the
Kernel debugger il the condition succeeds otherwise, it calls KnHandler().
VmHandler() checks the type of trap and the space (user or system) in which the trap
has occurred. l'or some of combinations that are unrecoverable (for example:Instruction
page [aull in the syslem space), the [unclion panics. For the various trap and space pairs
for which the portable layers can make a decision, VmHandler() calls fault_handle()
which calls execPageFault(). The Chorns page fault interface requires execPage-
Fauli{) to be implemented by the machine dependent layer (see section 3). The han-
dling of various memory management traps is outlined helow:

TLB miss faults : Belore performing any other aclion, lhe Chorus memory manage-
ment data structures need to be consulied. fault handle() calls execPageFauli()
to determine whether the page has been mapped in the portable structures but not
vet allocated by the machine-dependent layor.

Non-access TLB miss faults : For non-access TLB misses, PDIR. search [ailure [or
LPA and PROBE instructions does nol resuli in a page being brought into memory.
Therefore, fault handling for these cases also ends in stage one. For LIPA, we may
have to modify the base register (if specilied in the faulting instruction). PROBD
and I.PA handling ends by setting the N bit which nullifies the next instruction.

Memory Protection Faults : Prolection and alienment [aults are handled exclu-
sively in stage three. Alignment faults result when a cither a store or a load in-
struction access an address which is not aligned as per the requirements of the
specific instruction. Alignment faults are exclusively due to bad code and their han-
dling ends in stage Lhree by sending an error message Lo Lhe user process. Proleclion
[aulls may occur due Lo illegal accesses Lo pages or due Lo copy-on-wrile violations.
The latter necessitates a call to execPageFault().

(f) Begin the return from exception sequence. Restore most of the context from the context
frame except those pertaining to interruption address queues, paw and working registers.
Branch to restore_ss_trap.

4. $restore_ss_trap is more complicated than restore_ss since we are dealing with non-equivalently
mapped syslem stacks. We need 1o first copy the context Lo be resiored in Lo the equiva-
lently mapped tmp_save_state siructure belore we can turn off VM. Operations similar 1o
restore_ss are performed. In addition, if the thread is returning to user mode, the ksp of
the thread is updated. This check can be done by checking the nesting level of the traps on
the system stack.

Discussion :

We rcused most of the first and second level handling code from the Tut project and this greatly
simplilied the implementation. The lirst level of interruption handling in locore.s is unchanged
from T'ut. I'he second level of 'I'rap handling code asm_rv.s remained basically the same except for
a few modifications related to the accessing the current thread and its descriptor. The offsets had
Lo be modified (o access Lhe appropriale fields in the KnThreadCtx siruclure. Inlerrupl handling
code required extensive changes. Chorus requires that on the lirst interrupt (nest level 0), the
context of the current thread is saved on the system stack and not on the ICS ag in the case of
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Tut . This mecans all the problems of non-cquivalently mapped stacks that arise in trap handling
also find their way into interrupt handling. Chorus requires the current interrupt nesting level to
be mainiained by the machine dependent layers. This was one ol ithe additions. The third level of
handling is more operaling system specific and had (o be written [or Chorus, although some pieces
of Tut code woere rensed.

2.2.12 Timer and Console Management

Timer management is implemented in kern/PARISC /svBoard.c.

The function SupBoardInit() connects clock handler clock() and clock_ack() to the clock
interrupt in descending order of priorily. clock() calls the portable kernel exported f[unction Kn-
TuneIn() and returns. clock_ack() acknowledges Lhe interrrupt by reselting the clock interrupt
bit in ETRR and reschedules the interrupt by writing { currentTime + rescheduling interval) into
the TI'MR register.

SupPreciseTime() is trivially implemented in the same file by returning the value in the
ITMR register.

SupPutChar(), SupGetChar(), SupPollChar() are also implemented in
kern/PARISC/svBoard.c. For details on their implementation, see [14].

The Supercisor is responsible for connecting at least SupPutChar{) and SupGetChar()
behind a trap so that library functions can be implemented. Tn the case of PA-RISC, three system
calls PutChar(), GetChar(), PollChar() are implemented using the system call interface and
can he called [rom user or supervisor aclors.

2.2.13 Debugger

The debugger function SupDebugger() is implemented in kern/PARISC/debug.c. Most of
the code to implement the debugger has been ported from Chorus 3.3 sources for the compag3=6.
T'he debugger is minimal and can perform the following functions:

o Show what commands are available and syntax (help facility).

¢ Recover from a break instruction. The debugger does not have the capability of setting a
break point. Currently the debugging is done by having an explicit breck instruction in the
source code.

¢ Modify data

¢ Hex dump ol memory

¢ Show interruption context if the debugger is called during the interruption handling phase.
¢ Change debug trace level

¢ Toggle the more option in during traces. Setting this option would cause traces to panse for
imput after every 24 lines.

¢ Show the conlext swilch history of whole syslem or thatl ol a particular thread. The history
displays the following information about the switch:

— Is the swilch volunlary or caused by preemplion

— cause of preemption
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— The thread descriptor of the thread which is the destination thread of the context switch.
The history is maintained in a circular buller.

e Show the history of the interrupts and traps. The histories of traps and interrupts are
mainlained in separale circular buffers.

¢ Visunalize the scheduler, aclor, Lthread, message and porl dala structures. This [unclionality
is provided by the portable layers of the kernel (kern/knPrint.cxx, kern/knMk.cxx) and
the appropriate fauctions were called from SupDebugger()

The debugger has been connected behind the PA-RISC break Trap (#9) . The instruction
break causes a break Trap. The break inslruclion lakes lwo paramelers Lhal can be used in re-
solving the break instruction processing. The instruction break BII_DEBUG,0 causes the pro-
gram to enter the debugger. ‘To achieve this, a generic break handler function SupBrkHan-
dler() is first connected to the Breek trap using SupTrapConnect(). See SupBoardInit()
in kern/PARISC/svBoard.c. This handler is invoked by the event handling code(see section
2.2.11). SupBrkHandler() calls SupDebugger() il the first parameter of the break instruction
is BI1_DEBTG.

The library function callDebug() is implemented m lib/PARISC /utDbg.s and basically

contains the break instruction with BTI_DEBUG as it’s first parameter.

2.2.14 Kernel Initialization

The [unction start() is implemented in kern/PARISC/sv.cxx bul is not the enlry point of
the kernel image. In most olher Chorus implementatlions, virlual memory initialization is done
entircly in the hoot program portion of the boot archive and the kernel has to perform only its
own initialization. Tn the case of PA-RISC, because of the rense of Tut code, it was easier having
the kernel do all the initialization in one, mostly unchanged, procedure than try to break up and
modularize the low-level code. For more details on booling, see [12].

Conltrol is translerred to the kernel entry point rdb_bootstrap in kern/PARISC/locore.s
from the boot program part of the boot archive. At this point interrupts are disabled and the
processor 1s in physical mode. DP, FIRR, IVA, SP, space registers and some global variables are
initialized followed by a call to realmain() in kern/PARISC/vm_machdep.c. realmain()
maps the kernel and returns the next available physical page. Then virtual memory is turned on
in kern/PARISC /locore.s and control transflers to start().

start() performs all the functions specified in section 2.1.6 in addition to disabling the scheduler
and initializing the CurThread variable that points to the current executing thread. The initializa-
tion of CurThread is necessary so that trap and interrupt handling code that refer to CurThread see
a legal value even though the thread has not actually been created. start() calls KnInit() which
makes Lhe execuling kernel inilialization code the first thread of ihe operating system. KnInit()
relurns the syslem stack pointer Lo be used by the firsl thread. Al this point, the first thread’s
deseriptor gets manually built, in & manner similar to that by SupCtxInit(). This is necessary
bocanse the thread is already running. It is like bootstrapping the thread abstraction. Then a
stack switch from the interrupt control stack (ICS) to the allocated system stack is done followed
by a branch to KnMain(). This function never returns.
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Iigure 9: Chorus Page I'ault Interface

3 Chorus Page Fault Interface

As there is little documentation on porting the Chorus virtual memory unit, most of this information
was gathered through word-of-mouth and assumptions made from reading Chorus source code.

3.1 Requirements

Figure 9 shows the procedural interface botween the machine-dependent code and the machine-
independent code. 'I'he routine execPageFault() should be called by all the low-level trap handlers
requesling access Lo Lhe porlahle layers. This procedure represenls the machine specific end of the
bridge between the machine dependent (MMT) and the machine independent (VM) layers. The
routine VmFtHandler() represents the VM end. The [ile kern/vm/pvim/pvm.hxx contains a
fault descriptor structure (gmiPulllnArgs) (shown in Figure 10) that is used to pass imformation
between these two layers and is the only parameter passed to VimFtHandler(). The descriptor is
created in execPageFault(). T'he machine-dependent layer is responsible for filling in the fields for
ftAddr, ftAccess, nonAccess and prContext. The field flAddr contains the address which caused the
[aull. The type ol access i.e., read or wrile, is specified in the field fiAcecss. A pointer Lo Lhe [aulting
context is inserted into prContert. Non-access page fanlts are indicated when the nondccess llag
is non-zere. The nonAccess [lag indicates that the portable layers are only being consulted about
page protections and that the faulting page should not be swapped back into memory.

If the page [aull is resolved by the upper layers then VinFtHandler() returns K OK. The
prPage field should now conlain a refererence Lo the mmuPage descriptor thatl represenis the desired
page. The prProt licld represents the protections that should be assigned to the page. It is then
the responsibility of the machine-dependent section to load the page into the proper context.

3.2 Implementation

The routine VmHandler(KnThreadCtx* ssp, int type) implements the memory manage-
ment trap handlers. All the handlers in stage three which need access to execPageFault() call
fault_handle() , which performs additional checks on the space T1) and performs certain recovery
actions as described helow.

execPageFault() is implemented in kern/PARISC/mmu.cxx. This rouline sels up the
[aull descriplor and calls the poriable layer.

The Chorus portable layer, specilically VmFtHandler(), is called by execPageFault() and
is passed a pointer to a fault descriptor. Should the page fail to be found, then the kernel exception

39



struct gmiFaultArgs {

};

struct gmiPulllnArgs :

gmidddr ftAddr; /{ Set in MMU layer
gmiFlags fthccess; // Set in MMU layer
gmibDffset ftiffset;
gmiCachex* ftCache;
gmiFlags ftFlags;

gmiFaultirgs {

int noniccess; // Set in MMU layer
gmiContext* prlontext; // Set in MMU layer
vmPage* prPage; // Returned to MMU layer
gmiFlags prProt; // BReturned to MMU layer
gmilffset prOffset;

gmiSize prSize;

operationDesc* prOper;

gmiCache* prCache;

int mapWaslut;

gmiFlags mpRequeredAccess;

gmibDffset mpAccesslffset;

gmiSize mpDataSize;

gmiCachex* mpTransitSegment;

gmilffset mpTransit0ffset;

gmiFlags mpGrantediccess;

Iligure 10: 1'ault Descriptor

handler, KnHandler(), must be called. In the M88K sources, this is not done in execPage-
Fault() but hy cither codefault() or dataFault(). This is probably done in this manner because
KnHandler() locks the kernel, but execPageFault() runs with the kernel locked.

The routine execPageFault() is responsible for determining the faulting context, faulting
address, and the faulting page and loading this information in a fault descriptor.

The laull address is passed to this routline by the low-level trap handlers i.e., VimHandler().
The page address can he [ound by masking off Lhe lower page offsel bils [rom Lhe [aulling address.
The faulting context can be determined by examining the address space in which the fanlt ocenrred.
If the address space is STDO, then the KernelContext is responsible for generating the fault.

Discussion :

T'here are loopholes that still need to be plugged.

One serious problem iz the PROBE instruction. This instruction presents a problem in the
presence of copy-on-wrile pages. The non-access TLB miss roulines can relurn the correct values il
they are called, but if a page is in memory and marked copy-on-write then the PROBL instruction
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that checks for write access will fail. The way the Tut group solved this problem was to track
down all the accurences of PROBE instructions in the kernel and add another procedure call
when PROBE fails. This call would check with the Mach portable layers and is similar to our
execPagel'ault() routine when the nonAccess flag is set. Unflortunately, user programs which use
the PRODBL instruction are on their own. This issue is not addressed in the current port. Tt might
be wise for future PA-RISC implementations to implement the PRODBE instruction as a software
trap which would allow user programs to receive the correct treatment of the instruction.

T'he presence of non-access 'I'l.B miss faults requires that certain additions be made to the page
[aull handler in the portable layers. Non-access TLB miss [aulls are nol supposed Lo cause the
faulling page 1o be brought into memory. Since Lhe poriable layer is called 1o resolve access rights
in the case of non-access faults caused by PA-RISC probe instructions, it was necessary to make a
few changes to the interface so that the faulting page was not swapped back into memory.

Rather than change the number of arguments passed to each procedure in the fault handling
sequence, a field, nondccess, was added 1o the fault descriptlor, i.e.,the siructure gmiPullIndrgs.
This modification resulls in nol having o change the lormal of any procedure call in the portable
layer. When the nonAccess lield is non-zero, it indicates that the current faunlt should be handled
as a non-access fault and the swapper should not be called.

4 System Call Interface

T'he system call interface deals with the code and control flow that occurs during the execution of
a system call. T'he purpose of a system call is to gain higher privilege so that a user can execute
privileged operations in a conirolled fashion.

The usual method of making a syslem call on many archileclures is o execule a lrap instructlion.
Some amount of state gets stored, at which point the operating systemn recognizes the trap as a
request for a system call. Then the user parameters get copled into kernel space and the system
call routine is performed in privileged mode. The return values are then copied to user space and
registers are appropriately set. I'inally, a return to user mode occurs as with an exception.

The Chorus system call inlerface requirements and system call stub generation environment is
detailed in seclion 4.1 and the implementation on PA-RISC is detailed in seclion 1.2,

4.1 Requirements

Chorus supports two types of actors: supervisor actors and user actors. Supervisor actors are
privileged and live in the kernel space. Although Chorus can conceptually use the same system
call interface for user and supervisor aclors, il is expecled that different system call interface
is implemented for cach type of actor. The rationale is that supervisor actors do not require
the protection checks and the copying that is needed for user actors and thus can have a more
streamlined interface. Tt is important to note that this is only an implementation decision and that
the same interface can be nsed for both user and supervisor actors if so desired. Our goal was to
implement bolh lypes of interfaces.

Chorus provides a general [rame work for wriling Lhe slubs for supervisor and user syslem
calls. The stubs are expected to be generated by the utilities mk[s]lib(). The [ile lib/mklib.e
is expected to produce the exeentable mkslib for generating snpervisor system call stubs when
compiled with -DSUP_CATLS flag, or produce the executable mklib by default for generating user
system call stubs. "I"he executables mklib and mkslib have the following command line syntax.

mk[s]lib system-call-name systern-call-number
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The standard output for mk[s]lib is stdout.

ATl the compiled stubs for the supervisor actors are expected to be in lib/chorusSv.a and
those lor user actors in lib/chorus.a.

The kernel attaches Lthe sysiem call routines [or user and supervisor aciors by executing scSys-
temTInit() and scUserInit() which, in turn, call SupCallConnect() with appropriate parame-
ters. Tt is the responsibility of the Supereisor and the system call interface implementation to call
the correct system call routine inside the kernel with the parameters for the system call given by
the user or supervisor thread.

4.2 Tmplementation

In the case of PA-RISC, there are two mechanisms that can be used for implementing a system call
interface for a user.

¢ By causing a irap in the system call stub. This method is similar to thal described in the
introduction of system call interface (section 4. An example lor PA-RISC is to have a break
instruction with an appropriate parameter value as the last instruction in the stub.

e By using the gateway mechanism. PA-RISC provides a ATE instruction [10] to perform
a controlled transition from a lower privilege level to a higher privilege level. Pages can
be mapped with special access control information and are called gateway pages. A gate
instruction execuled in Lhese pages promoles Lhe privilege level of Lhe code Lhal is execuling,
The privilege level obtained depends on the aceess control information for that page.

The galeway mechanisin was chosen in PA-RISC [or implemenling the system call interface for
user actors. The advantage of this mechanism over trap-based system calls is elliciency because no
saving and restoring of full user state is necessary (as for any trap or interrupt) before it is realized
that the trap is a deliberate mechanism to enter the kernel to perform privileged operations. Tut
code uses Lhe same mechanism lor implementing syslem calls. The stub inlerface lor user aclors is
detailed in section 4.2.1.

For most Chorus implementations, the supervisor actor system call stubs make a procedure call
to the required system routine m the kernel. The address of the system routine was calculated
from the starting address of the kernel’s vector of system routines for supervisor actor system calls.
This address is made available in the ffoot structure for all the supervisor actors and is set by the
kernel during kernel initialization. We decided to adopt the same approach. The implementation
of this interface turned oul to be more complicaled than most chorus implementations on other
architectures and is detailed in section 4.2.2.

In our port, code executes at privilege level 0 (the highest privilege) or at privilege level 3
(lowest privilege). Tevels 1 and 2 are not used. Code in supervisor actors and kernel executes at
privilege level () and thal of user aclors ai privilege level 3.

4.2.1 System call interface for user actors

The system call interface for user actors is implemented in lib /mklib.c, kern/PARISC /locore.s.
kern/PARISC/asm scall.s, and kern/PARISC /svConnect.cxx.

T'he gateway pages are mapped during the kernel initialization phase and are set up such that
promolion Lo privilege level () occurs al Lhe Largel address of the gate instruclion.

A new gateway page has been delined exclusively for chorns system calls that mimics the HP-UX
gateway page. It is physically contiguous with the IIP-UX page but is mapped at virtnal address

12



33335353 begining of stub ;555555555555
.code
.export threadCreate,code
threadCreate
1dil LY¥0xc0006004,r1
1di 31,r21 ; Sub System No
ble RA0xc0OQ06004(sr7,rl)
1di 30,r22 ; Call No for threadCreate
bv,n r0{rp)
nop
53333335 end of stub ;555555555555

Figure 11: User Aclor System call stub example

CHORUS_SSYSCALLCGATE defined in include/ PARISC /syscall.h. 'T'his virtual address is six
4K pages greater than SYSCALLGATE, the virtual address of the HP-UX gateway page. 'The
address assignment is based on the [ollowing constrainis:

¢ T'he new gateway page address should not clash or overlap with HP-UX gateway pages.

¢ There should be sullicient room for growth in the virtual address space for more II-UX
gateway pages.

e The address should be in the fourth quadrant.

lib /mklib.c has been modified to produce the user and supervisor siubs for various system
calls. The assembly language stub for the system call thread Create is shown in fignre 11 as an
cxample.

The stubs for the user actor system calls are similar to the system call stubs for HP-UX except
that one more temporary register has a dedicated use. In HP-UX | the system call number is loaded
into gr22 (relerred o as CN). In Chorus, HP-UX or unix-like operaling syslems are expecled lo
be implemented as sub-sysiems on Lop of the micro-kernel. Therelore, the system call stub should
specify the sub-system which should handle the system call. Ilence, in PA-Chorus, the sub-system
number is also passed (In register gr2l) to the kernel. The IIP-TUX gateway page has been retained
for the long term goal of maintaining HP-UX hinary compatibility. The idea is that when a binary
image makes a system call using a standard HP-UX stub and branches to the HP-UX galeway page,
we jusl branch o the Chorus gateway page with Lhe hpux subsystem number sel. The system call
can then he handled im the same way for all systom calls, whether from Chorus or from other
subsystems.

The control flow during a system call is as follows:

e A user actor makes a system call by executing the corresponding labeled stub in lib /chorus.a.

¢ The sysiem call siub loads the sub-system number in gr21, the system call number in gr22, and
performs an inter-space branch and link (/) to the virtual address CIIORUS_ SYSCALLGATL.
The user arguments to the system call are in grs 23-26 and/or on the user stack. The Chorns
gateway page is implemented in kern/PARISC/locore.s.
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¢ The code in the Chorus gateway page raises the privilege level to 0 and performs a vectored
branch to a potentially different label hased on the sub-system number. Tn the current im-
plementation, a single label (chorus syscallinit) is used for system call handling for all sub-
system numbers. This is a hook in case system call handling needs to be perlormed differently
based on the sub-system number. chorus_syscallinit is in kern/PARISC/asm _scall.s.

e At chorus_syscallinit, the following operations are performed:

— Switch to the current thread’s kernel stack to perform the system call. 'l'o achieve the
switch, the system stack pointeris read from the ksp field of the current thread’s currCtx
struclure.

— Allocale a conlext [rame on the kernel slack by incremenling ihe system slack poinler
by fr_size. Mark thal we are on the kernel stack by zeroing the ksp field in the context
frame. The begining of context frame would be referred to as ssp.

— Save thread specilic registers SP, DD, GR31 (contains user stub return address), RP,
SR4, in the and mark that this is the first frame on the system stack.
— Mark that we are performing a system call:
ssp—state_flags = T'CHBINSYSCALL,
— Pass the system call number in the context by setting a temporary register in ssp:
ssp—T'CB_RE'T1 = CN
This system call number is used by SupCallHandler().

— Copy argO-arg3 into the context [rame. These argumentis are passed lo the system rou-
tine by SupCallHandler(). Call SupCallHandler() (kern/PARISC/svConnect.cxx)

with the pointer to saved context (ssp) and sub-system number.

e SupCallHandler(} performs the following operations:

(et system call number from zap:
SysCallNo = asp—"TCB_RET].
— Check the userTrapVect table. Check if a handler is present.

— Tfa handler is present then check if the number of arguments to the system call is greater
than four. I irue, then copy the exira arguments from the user stack using svCopyIn().
Otherwise do nothing. Call the handler with all the parameters. The decision 1o copy
the extra user arguments into a temporary space before calling the handler is make
use of the compiler in creating the stack frame to call the handler routine. Copying of
parameters that are passed by reference from user space to kernel space is left to the
individual system calls.

— Il a handler is not present, then call KnHandler().

o Check il system call needs Lo perlorm a complete restore sequence. This check was needed in
ITP-UX to handling signals, Tt was retained since it conld be a nseful facility for sub-system
managers. This check is done by checking state_flags licld of ssp for the TCB_DORFI
bit. If the hit is set, then perform a full restore sequence that is very similar to return-
ing from an exception. Otherwise, the thread specific registers that have been stored at
chorus_syscallinit are reslored, Lhe ksp field in the thread’s currCtx is updaled, and an
external branch is performed to the nser actor’s return address, simultancously lowering the
privilege level to 3.

11



This completes the outline of User actor system call interface,
Discussion :

This implementiation is another instance where Tut code was reused. The main file of reuse is
asm_scall.s. We started [rom this file and modified to suil Chorus calling convenlions and thread
aCCesEs.

4.2.2 System call interface for supervisor actors

In the case of system call interface for supervisor actors, the system call stub is similar to a
procedure call in most. Chorus implementalions. This was possible as the requirement of Chorus
thal supervisor aclors live in lhe kernel conlex( was sufficient Lo perform this oplimizalion.

In the case of PA-RISC, this was not quite the case. This is becanse of the same data pointer
($global$ ) problem mentioned in section  2.2.9. Since cach image in the kernel space has its
own datapointer ($global$ ), calling a routine directly in another executable is not possible even
though all the supervisor actors share the same space id. To execute a procedure of the kernel
[rom a supervisor actor, the processor’s DI register should be sel o that of the kernel’s $zlobal$
beflore calling the kernel’s procedure and restore Lthe supervisor actor’s $global$ on return [rom the
kernel procedure. This is exactly what the supervisor stub performs. An example of a supervisor
system call stub generated by lib/mkslib is given in figure 12. The stub is for the system call
threadCreate().

The slub performs the lollowing aclions:

¢ Save the current DP and RP in the frame marker allocated by the calling conventions,

o Tuitialize the DI register by the Kernel’s DI available in the Root Structure [12] which is
mapped, privilege level 0 read-write, into quadrant 4.

o (Goet the address of the Supervisor system call table from the Root Structure and calculate the
ollset of the system call routine associated with the system call number.

¢ invoke Lhe syslem rouline

¢ Restore the supervisor actor’s DP and RP [rom the [rame marker and return 1o the supervisor
acior code.

By branching directly to the system routine, the parameters to the system call can be directly
reused by the system rouline Lthus avoiding the copying of parameters on the system stack.

Discussion :

The syslem call table is an array of siruclures. The siruclure has 2 elemenis: a [unclion
pointer and the number of arguments. TABL FLMT _SIZE and FUNC_OQFIFSET deline the size of
the structure and offset to the function pointer respectively. ‘I'hese definitions are fragile and must
be automatically generated from the structure definitions.



13335353 begining of stub ;3535555535333
.code
.export threadCreate,code

threadCreate

#define TABL_ELMT_SIZE 8

#define FUNC_OFFSET 4
atw dp,-32(sp) ; fm_edp posn in the frame
8tw rp,-24(sp) ; fm_erp posn in the frame
1dil L}0xd0000448,dp
1ldw R%0xd0000448(dp) ,dp
1dil L¥%0xd0000024,r1
ldw R¥0xd0000024(rl) ,rl
ldw 30 * TABL_ELMT_SIZE + FUNC_OFFSET(r1),rl
blr r0,rp
bv ro(ri)
nop
ldw -32(sp),dp ; fm_edp posn in the frame
ldw -24(sp),rp ; fm_erp posn in the frame
bv rO(rp)
nop

#undef TABL_ELMT_SIZE

#undef FUNC_OFFSET

33333355 end of stub ;555555555553

Figure 12: Supervisor Actor System call stub example

5 Mutex Interface

In Chorus, Semaphores and Mulexes are dala struclures that are defined by an actor in il’s address
space. The kernel is invoked for all semaphore operations. For mulex operations, the kernel is
invoked only only when the threads have to be blocked behind a mutex or unblocked. In the
ideal case, where the threads never attempt to enter a critical region while another thread is in its
critical region, the kernel will never have to be invoked. Thus, mutexes provide an efficient means
of synchronization al the cost of lairness. Semaphores, in contrasi, guarantee lairness al Lhe cost
of efficiency.

In the case of supervisor actor, the semaphore or mutex data structure is directly accessed,
whereas in the case of user actor, the semaphore or mutex data structure is copied into the kernel
space (as in any user system call).

5.1 Requirements

The mutex interface consists of the following functions.  All the functions take the address of
mutex (KnMutex *mutex) as parametfer. 'he specification is taken from the Cthorus Programmer’s
manual[5].

mutexInit() : The mutex is initialized to free.
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mutexTry() : Acquirec a mutex. If mutex is free, then mutex is locked, returns value 1 and
execution proceeds normally. Tf mutex is locked, then the call returns 0.

mutexGet() : Acquire a mulex. I[ mulex is [ree, then mutex is locked, returns value 1 and
execution proceeds normally. IT mulex is locked, hlock the thread uniil the mutex hecames
free.

mutexRel() : Release a mutex. If threads are blocked on the mutex, one of them is awakened.

5.2 Implementation

The following atomic read-modify-write instructions are available on PA-RISC. These are basically
load and clear instructions:

o [dewr: Load and Clear Word Indexed

o (dews: Load and Clear Word Short; Short refers to using a short displacement parameter
rather than a short word.

Both instructions clear the location at the ellective address and the previous contents of the memory
location are loaded into the destination register. l'or details on the instructions, see the PA-RISC
architecture manual[10]. Any one of the instructions can be used for mutex implementation. The
ldewz instruction was chosen for PA-Chorus.

The factors to be resolved in implementing mutexes were:

1. PA-RISC Ioad and clear ins(ructions require ihe effective address of the memory localion lo
be aligned on a 16-hyte boundary.

2. Since mutexes are declared in an actor’s address space, there is no kernel control over what
the alignment will be.

3. T'he mutex structure is a black box to the user or supervisor actor and all operations are
perlormed (hrough kernel exporled [unciions.

4. There should nol be any change in the sysltem call interface.

o

. The portable layers of the kernel involved in implementing the kernel part of the mutex
operations assume that a value of 1 indicates locked and 0 indicates unlocked. In the case
of PA-RISC it is not possible to have a value 1 for locked as the instructions provided are
load and clear instructions.

I"he first alternative was to enter the kernel for every mutex system call. In the kernel, the system
call routine would disable interrupts, perform the read and write operations in separate steps, re-
enahle interrupts and return. This allernalive was rejecled since il decreased the performance of
mulex operalions ereaily. Il made them as costly as semaphore operations which delealed the
purpose of nsing mutexes.

The following alternative was adopted. The Mutex structure definition given in the chorus
public interface file include/chorus.h has been modified. 'T'he structure prior to modification is
given in figure 13.

The alomic operalions for mulexes need (o be perlormed on lhe lock field of the KnMu-
tex/KnSem structure. The other members come into play only when the mutex is not free or there
arce threads to he released.
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typedef struct {

int lock; /* used by the mutex operations only */
SemQueuea* threads; /* peinter to blocked thread queus * [
int count; /* Semaphore Count value */
unsigned key; /* Semaphore key */

} KnSem;

typedef KnSem KnMutex;

Figure 13: KnSem strocture deflinition before madilication

typedef struct {

int lock[4]; /* ARBAY used by the mutex cperations only */
SemQueue*  threads; /* pointer to blocked thread queue */
int count; /* Semaphore Count value *f
unsigned kay; /* Semaphore key */
} KnSem;

typedef KnSem KnMutex;

Figure 11: KnSem structure definilion alter the modificalion

To guarantee a 16-byte aligned lock field, the knMutex structure definition was modified as
shown in figure 14.

Since lock is now 1 words or 16 byles long, there will be one word thal is 16-bytle aligned among
the 1 words allocaled for lock.

The implementation of the various mutex functions is given below.

mutexInit() : The stub is generated by /lib/mk[s]lib. The corresponding system call routines
ScUsMutexInit() and ScMutexInit() in kern/scUser.cxx and kern/scSystem.cxx
have been modified to handle the changed data type of lock and the lock staius values.

mutexTry() : This function is implemented in lib/PARISC/mutex.c. This function performs
the following operations:

¢ l'ind the address of the aligned word in the lock array. 'I'his is done by the macro
alignLock,

¢ Pass this address to Lthe assembly routine low_mutexTry() in lib/PARISC/chorusSync.s
and return the return value.

This function is entirely an user level library function. No kernel invocation is needed.

mutexGet() : T'his function implemented in terms of mutexTry() in lib/PARISC/mutex.c.
If the mutex is available, then call returns immediately. Otherwise, kernel is invoked to block
the thread. The blocking call relurns when the mulex becomes [ree and Lhe procedure is
repeated again until the mutex becomes available. The call returns to the user only when the
mutex is obtained by the stub.



mutexRel() : This function is implemented in lib/PARISC/mutex.c. This function writes
MUTEX_UNT.OCKED into the 16-byte aligned word of the Lock array. Tf threads are waiting
on this mutex, then the system call k mutexRel() is invoked to release the threads. The
function then returns to user.

The stubs for k_mutexCet and k_mutexRel are generated from lib/mk[s|lib. Maodifications
were made 1o kern/scSystem.cxx and kern/scUser.cxx (o deal with the change of lock [rom
an int Lo an int array and (o address the 16-byle alipned word of the lock array. Nole thal
in the case of the kernel rontines to handler user-actor system calls there is an added factor to
be considered. Since the user data structure is copied into a corresponding temporary kernel data
structure, finding the aligned word in the kernel copy of the mutex may not be the same as that of
the user mutex. Addilional code was required lo lake care of the polenlial difference in alignment.

6 Modifications to the Chorus Portable Layers

Several small modilications were made to the "portable” layers of Chorus to carry out our port to
PA-RISC. This section sumnmarizes these modilications and outlines the reasons for making them:

¢ Calling the handlers attached by supervisor actors: Chorus requires the kernel and supervisor
actors to share the system address space. The initial design that all supervisor actors and the
kernel have the same space identity meant that cach one of them had a separate $global$
. T'his complicated the calling of attached handlers as Chorus assumed in its portable layers
that these rontines can be called directly { (*fn)(...) ) as the supervisor actors are in the same
system space. This cannot be done on PA-RISC (see section 2.2.9). This accounted for most,
of our modifications Lo Lhe portable layers. See the Supervisor actor interface implementation
section for a full list of the modilications and additional functions implemented.

Of course, even if the kernel and supervisor actors were put in dillerent spaces with dillerent
space Ids but with the same valne for $global$ (For example: all user actors on Chorus have
their $global$ equal to 0x40000000), we will have to deal with other problems of inter space
linkages similar o a syslem call. In either case il entails some modificalion in the kernel
and/or the Chorus interface.

o Stack direction: The portable layers of Chorus assume that stacks grows towards lower ad-
dresses. For example, the system slack botlom is laken as the end of the stack area, whereas
on PA-RISC it is the begining ol the stack area. This is actually a problem in the Chorus in-
terface delinition for thread Create which takes stack bottom as parameter. The stack hottom
wonld be dillerent if the stack divection is dillerent. A better delinition would be to specify
two parameters:

— Address of the buller allocated for the stack.

— Size of the buffer

On PA-RISC, the second parameter could be ignored. On architectures on which the stack
esrows lowards lower addresses Lhe size parameler could he used o locale lhe hotlom of the
stack.

¢ Stlack initialization: In addition to finding the stack bollom, a frame must be allocaled on
the stack for PA-RISC in accordance with procedure calling conventions of the architecture.
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For example, for user thread stack initialization, it is 48 bytes. There is one instance in
knMain.exx where Chorus does not submerge this function in the machine dependent layers.

¢ Slack allocation: The system siack has Lo be physically allocated during the thread initial-
ization. There is one instance where the portable layers of Chorus assume that the size of
the system stack is one physical page. In our port it was 4 logical pages. T'his could have
been done in a portable manner by using the symbolic constants exported by the included
machine dependent header files.

o 16-byte alignment constraint on addresses for atomic load and clear instructions: This re-
quired a modification in the mutex data structure definition in the Cthorus public interface
file. This was the only modification necessary to guarantee a 16-byte aligned address for
mutexes. The user {reals the mulex siruclure as a black box and this [eature aided in main-
taining exaclly the same inlerface Lo Lhe user, wilh very lillle degradalion in space ulilizalion
and performance.

e Values for mutex unlocked and locked status: This is far more serious than the earlier
problem. The code in the kernel implementing 1he mulex operations assumes Lhat lock
= 1 implies a locked mulex and lock=0 implied an unlocked mutex. With load and clear
mstructions, this assignment will not gnarantee synchronization. A hetter approach wounld
have heen to import a machine dependent mutex header lile and use the values exported by
this header file in checking for mutex status. The list of modifications is specified in section

5.

o Non-access TLD miss faults: These faults do not require a page to be brought into memory.
The portable layers need to know that they need not have to bring in the page. This resulted
in some modification. See section 3.

The modiflications that involved stack direction, allocation and mitialization are as follows. All
have heen done under the compilation (lag PARTSC:

e KnlInit() in kern/knMain.exx. Corrected for stack direction and allocation.
e ActorInit() in kern/knMain.cxx. Correcled for stack inilializalion and direction.

e Member function init() of class mThread. Corrected for stack direction.

A qualitative evaluation of Chorus on HP PA-RISC is presented in[18].

7 Future Work

T'he first item that will receive the highest priority is the floating point and coprocessor emulation.
Right now, any thread performing those instruclions is aborted. This has Lo be reciified.

The next step is to enable the [loating point coprocessor and handle the varions exceptions.
The Tut code should be useful in reaching these two short-term goals.

Some of the more interesting experiments we would like to do are:

e l'aster context switches hased on recognizing the thread’s type and status. l'or example: A
system thread uses no floating point coprocessor. 'I'his characteristic can be used in making
a lasler conlexl swilch. More generally, we would like lo recognize the characlerislics ol
the thread that can be utilized to provide ellicient context switches. Using the compiler
information about the thread is also an interesting possibility.



¢ Taking the supervisor actors out of the same space as the kernel and put them in separate
spaces. Multiple privilege levels and protection ids can be used to control the access of these
acitors. Inter space calls are very cheap on PA-RISC. System call costs are marginally higher
bul approximately 3 orders of magnitude belier than using a irap Lo implement system calls
om PA-RISC. PA-RISC seems to be suitable for deconpling of functions hecanse of the global
virtual memory, multiple privilege levels, orthogonal protections, ete. Tt would be interesting
to get some experimental results with various configurations and interfaces.

¢ Lvaluate the use of 64 bit addresses and to determine where the operating system inter-
faces need to be broadened in the interests of glohally addressable memory, efficiency and
identification.
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