
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

5-1997

Predictable File Access Latency for Multimedia Predictable File Access Latency for Multimedia

Dan Revel
Oregon Graduate Institute of Science & Technology

Crispin Cowan
Oregon Graduate Institute of Science & Technology

Dylan McNamee
Oregon Graduate Institute of Science & Technology

Calton Pu
Oregon Graduate Institute of Science & Technology

Jonathan Walpole
Oregon Graduate Institute of Science & Technology

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer Engineering Commons, and the Systems Architecture Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Revel, D., Cowan, C., McNamee, D., Pu, C., & Walpole, J. (1997, March). Predictable file access latency for
multimedia. In Proc. 5th International Workshop on Quality of Service (IWQOS’97), Columbia University,
New York, USA (pp. 401-404).

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in
Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please
contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/63
mailto:pdxscholar@pdx.edu

This research is partially supported by DARPA grant N00014-94-1-0845, DARPA contract F19628-
95-C-0193, NSF grant CCR-9224375, and grants from Hewlett-Packard, Intel and Tektronix.

Predictable File Access Latency for
Multimedia
D. Revel, C. Cowan, D. McNamee, C. Pu, and J. Walpole
Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
20000 N.W. Walker Rd., P.O. Box 91000
Portland, OR 97291-1000
(503) 690-1121
(503) 6901553 fax
{revel,crispin,dylan,calton,walpole}@cse.ogi.edu

Abstract

Multimedia applications are sensitive to I/O latency and jitter when accessing
data in secondary storage. Transparent adaptive prefetching (TAP) uses software
feedback to provide multimedia applications with file system quality of service
(QoS) guarantees. We are investigating how QoS requirements can be com-
municated and how they can be met by adaptive resource management. A pre-
liminary test of adaptive prefetching is presented.

Keywords

QoS, adaptive, multimedia, prefetching

1 INTRODUCTION
Multimedia applications need to handle continuous media data in real-time. Be-
cause of its high volume this data must be streamed into memory from local or
remote file systems on secondary storage devices. Real-time constraints make
good multimedia performance dependent on prefetching data so that it will be
available in memory in a timely and predictable manner.

Effective prefetching decisions depend on two inputs: 1) application behavior
and quality of service requirements, and 2) system resource availability and per-
formance characteristics. For distributed multimedia applications both of these
inputs may vary dynamically.

On one hand, complex multimedia content and interactive user controls can
cause fluctuations in the demands placed on the system by a particular applica-
tion. On the other hand, distributed multimedia applications operate in shared en-
vironments where they may compete with other application for system resources,
such as network and disk bandwidth, memory, and processor time.

This paper describes transparent adaptive prefetching (TAP). TAP is one as-
pect of our on-going research into 1) how to specify QoS requirements and com-
municate them among system components and layers, and 2) how to manage re-
sources such that QoS requirements are met.

In the next section we describe the limitations of current multimedia prefetch-
ing. Section 3 describes our design of an adaptive prefetching service that pro-
vides constrained latency file system access. Section 4 presents the results of a
preliminary test of adaptive prefetching. Section 5 summarizes our results and
discusses our current work.

2 MOTIVATION
Prefetching hides storage access latency by fetching data into memory before it

is demanded by an application. The timely delivery of data is critical to multime-
dia presentations. Data which arrives too late will either cause a gap or a delay in
the presentation. Data which arrives too early will displace other data from the
file system buffer cache. The ideal is to have prefetched data streaming into
memory so that it is available just in time as it is needed by the application
(Maier 1993).

Many file systems recognize when a file is being read sequentially and do heu-
ristic prefetching (McKusick 1984). Prefetch depth, how far in advance data is
requested, can be adjusted to match the rate at which data is being read. This ap-
proach takes advantage of an access pattern that can be easily inferred to provide
the latency hiding benefits of prefetching. The problem with relying on heuristic
prefetching for multimedia is that it is reactive. There is inevitably a delay be-
tween the time when an application starts accessing data (or changes the rate of
access) and when the system adjusts to the new behavior. Further, when data is
accessed in a non-sequential pattern, for example an MTV-style series of short
video clips drawn from different source files, then no prefetching happens at all.

Faced with inadequate system support for prefetching multimedia applications
must address the associated problems of latency, synchronization, and resource
allocation on an ad hoc basis. By handling prefetching explicitly an application
can take advantage of its specific knowledge of what data is likely to be needed
in the future and when it needs to be available.

We see two problems with direct application management of prefetching.
First, application management eliminates the device independence provided by

utilizing operating system abstractions of resources. Instead applications are left
to manually control the timing of prefetch requests. As a result, developers must
tune current high performance multimedia applications for specific storage de-
vices (Aref 1997). Without device-specific information applications may use ex-
cessive amount of memory due to overly aggressive prefetching, or they may suf-
fer from poor performance due to under-prefetching and dynamic system behav-
ior. Another possibility is that applications may become overly complex trying to
track and adapt to current system load.

Second, application management can produce poor resource allocation and
scheduling decisions in a shared environment. Applications do not have the sys-
tem level information or control needed to make or enforce useful decisions. For
example, an application may try to buffer prefetched frames in virtual memory
expecting them to remain available for low-latency access only to have them
paged out by the virtual memory system. One alternative would be to allow ap-
plications to pin virtual memory pages so they could not be paged out. In this
case, however, resource sharing would be defeated.

3 TRANSPARENT ADAPTIVE PREFETCHING
The goal of transparent adaptive prefetching is to provide multimedia applica-

tions with low-latency access to data on secondary storage devices. To achieve
adaptive prefetching we use a software feedback mechanism.

Our prefetcher monitors the time it takes to service file system I/O requests and
the number of prefetch requests completed but not yet read by the client applica-
tion. These two pieces of information are used to dynamically adjust the prefetch
depth. Between adjustments a constant prefetch depth is maintained by issuing
prefetch requests at the same rate that data is read by the client.

We select a prefetch depth using a hybrid algorithm to avoid late arrival of
prefetched data An eager criteria decides to increase the prefetch depth, and a
more cautious measure is used to decrease the prefetch depth.

The prefetcher maintains a small amount of work-ahead. This is data that has
been fetched, but has not yet been read by the client. This work-ahead provides a
cushion of ready data which is consumed when prefetch requests are delayed by a
burst of competing I/O requests. When the level of work-ahead drops below a
safety threshold we increase the prefetch depth.

A ratio between the current prefetch depth and the worst-case latency observed
over the past 32 file system I/O’s is used to decide when to decrease the prefetch
depth. Lulls in activity between I/O bursts could be misinterpreted as a cue to re-
duce the prefetch depth. Using the worst-case latency introduces a damping func-
tion that keeps the prefetcher from reducing the prefetch depth prematurely.

4 EXPERIMENTAL RESULTS
To demonstrate adaptive prefetching through software feedback we conducted

an experiment. Our experiment consisted reading one thousand 4 kB ’frames’ of
data from a file at a rate of 50 frames-per-second. Linux’s built-in file read-ahead
mechanism was replaced with our adaptive prefetcher for that file. Non-blocking
reads were used to simulate a multimedia application that would discard late data
rather than wait for it to arrive. After allowing the reading process to run for five
seconds a competing process was started. This process read five hundred 4 kB
’frames’ at a rate of 50 frames-per-second, but it used Linux’s built-in read-ahead
instead of our prefetcher.

Our experiment ran on a Toshiba laptop with a 75 MHz Intel Pentium proces-
sor, 40 MB of main memory, a Toshiba MK1301MAV 1.3 GB IDE disk drive
with a 128 kB cache, and version of the Linux version 2.0.18 operating system.

With the exception of the first four frames of each run, which were missed due
to start-up latency, 99% of the non-blocking read calls made by the prefetching
application returned with data.

Figure 1 is a sample execution of our experiment demonstrating the behavior
of our prefetching algorithm. Prefetch depth is the controlled variable which is
adjusted dynamically. Work-ahead and worst latency are the input variables for
our algorithm as described earlier. Examination of the graphs shows that our hy-
brid algorithm was able to track a change in I/O workload and to adapt the
prefetch depth accordingly.

0 5 10 15 20

seconds

0

5

10

15

20

pag
es

work-ahead

0 5 10 15 20

seconds

0

5

10

15

20

pag
es

prefetch depth

0 5 10 15 20

seconds

0

50

100

150

mil
lise

con
ds worst latency

Figure 1: Adaptive prefetching with competition

5 SUMMARY AND CURRENT WORK
Our initial results show that adaptive prefetching can be used to provide multi-

media applications with predictable low-latency access to data on secondary
storage.

We are currently working on a QoS interface for TAP. This interface will build
on Patterson’s transparent informed prefetching (Patterson 1995) allowing ap-
plications to express their needs in a vocabulary that is meaningful to them. We
will then modify OGI’s multimedia player (Koster 1996) to use TAP.

6 REFERENCES
Aref, W.G., Kamel, I., Niranjan, T.N. and Ghandeharizadeh, S. (1997). Disk

Sceduling for Displaying and Recording Video in Non-Linear News Editing
Systems. Proceedings of Multimedia Computing and Networking 1997. SPIE
Proceedings Vol. 3020, San Jose, February 1997.

Koster, R. (1996). Design of a Mulitmedia Player with Advanced QoS Control.
Master’s thesis, Oregon Graduate Institute of Science and Technology, Port-
land, Oregon, 1996.

Maier, D., Walpole, J. and Staehli, R. (1993) Storage System Architectures for
Continuous Media Data. In FODO ’93 Proceedings, LNCS, v. 730, Springer-
Verlag, pp. 1-18, 1993.

McKusick, M.K., Joy, W.N., Leffler, S.J., and Fabry, R.S. (1984) A Fast File
System for UNIX. ACM Transactions on Computer Systems, 2(3):181-197, Au-
gust 1984.

Patterson, R.H., Gibson, G.A., Ginting. E., Stodolsky., D., and Zelenka, J. (1995).
Informed Prefetching and Caching. Proceedings of the Fifteeth ACM Sympo-
sium on Operating System Principles, pages 79-95, December 1995.

	Predictable File Access Latency for Multimedia
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1391105770.pdf.TfEkK

