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ABSTRACT

Helly’s theorem is an important result from Convex Geometry. It gives sufficient conditions

for a family of convex sets to have a nonempty intersection. A large variety of proofs as

well as applications are known. Helly’s theorem also has close connections to two other

well-known theorems from Convex Geometry: Radon’s theorem and Carathéodory’s theo-

rem. In this project we study Helly’s theorem and its relations to Radon’s theorem and

Carathéodory’s theorem by using tools of Convex Analysis and Optimization. More pre-

cisely, we will give a novel proof of Helly’s theorem, and in addition we show in a complete

way that these three famous theorems are equivalent in the sense that using one of them

allows us to derive the others.
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Introduction

In Convex Geometry, geometric properties of convex sets and functions are investigated.

The foundations of this field were developed by many accomplished mathematicians, such

as Hermann Brunn, Hermann Minkowski, Werner Fenchel, Constantin Carathéodory, and

Eduard Helly. At the beginning of the 1960’s, Convex Analysis was grown out of Convexity,

and this new field was systematically developed by the works of R. Tyrrell Rockafellar,

Jean-Jacques Moreau, and others. Convex Analysis is more concerned with the generalized

differentiation theory of convex functions and sets rather than only with their geometric

properties. The presence of the convexity makes it possible to develop calculus rules for

a generalized derivative concept called the subdifferential, which can be used to deal with

convex functions that are not necessarily differentiable. Convex Analysis then becomes

the mathematical foundation for Convex Optimization, a fast growing field with numerous

applications to Control Systems, Estimation and Signal Processing, Communications and

Networks, Electronic Circuit Design, Data Analysis and Modeling, Statistics, Economics

and Finance, etc.

In this project we use Convex Analysis and Optimization to study some basic results of

Convex Geometry. We mainly focus on a theorem introduced by Eduard Helly in 1913

which gives sufficient conditions for a family of convex sets to have a nonempty intersec-

tion. Using modern tools from convex analysis and optimization, we will study Helly’s
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theorem from both theoretical and numerical viewpoints. In particular, we will give a novel

proof, via Convex Analysis, of Helly’s theorem and its connections to Radon’s theorem and

Carathéodory’s theorem, which are also important results from Convex Geometry.

It has been mentioned in several references that the above-mentioned theorems of Helly,

Radon, and Carathéodory are equivalent in the sense that using one of them allows us to

derive the others. However, in [8, p. 47] P. M. Gruber says that “we were not able to locate in

the literature a complete proof in the context of Rn”; see also the excellent surveys [5] and [6],

as well as the monograph [3]. We will use the tools of Convex Analysis to provide a complete

treatment for the equivalence of these theorems. The analysis involves the use of generalized

differentiation properties of the class of distance functions associated with convex sets. This

class of functions, which reflects the connection between convex functions and sets, allows

us to give a simple, self-contained, complete proof of the described equivalence. Further on,

using the concept of distance function we are able to study effective numerical algorithms

for finding a point in the intersection of the given family of convex sets, whose existence is

guaranteed by Helly’s theorem.



Chapter 1

Elements of Convex Analysis and
Optimization

In this chapter we introduce some important concepts and results of Convex Analysis and

Optimization that will be used in the subsequent chapters. The materials presented here

can be found in many books on Convex Analysis and Optimization; see, e.g., [10, 11] and

the references therein.

Throughout the thesis we consider the Euclidean space Rn equipped with the Euclidean

norm of an element x = (x1, . . . , xn) given by

‖x‖ :=
√
x2

1 + . . .+ x2
n,

and the inner product of any two elements x = (x1, . . . , xn) and y = (y1, . . . , yn) given by

〈x, y〉 := x1y1 + · · ·+ xnyn.

It follows from the definition that ‖x‖2 = 〈x, x〉.
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A subset Ω of Rn is said to be convex if

λx+ (1− λ)y ∈ Ω

whenever x, y ∈ Ω and λ ∈ (0, 1). Geometrically, a subset Ω is convex if for any x, y ∈ Ω,

the line segment connecting x and y belongs to the set.

Figure 1.0.1: Convex set Ω1 and nonconvex set Ω2.

From the definition, it is obvious that if {Ωi}i∈I is a collection of convex sets in Rn, then

the intersection
⋂
i∈I Ωi is also convex. In particular, the intersection of any two convex

sets is also a convex set. This property motivates the definition of the convex hull of an

arbitrary subset of Rn. Given a subset Ω ⊂ Rn, define the convex hull of Ω by

co Ω :=
⋂
{C | C is convex and Ω ⊆ C}.

Equivalently, the convex hull of a set Ω is the smallest convex set containing Ω.

The following important result is a direct consequence of the definition.

Proposition 1.0.1. For any convex subset Ω of Rn, its convex hull admits the representa-

tion

co Ω =
{ m∑
i=1

λiwi

∣∣∣ m∑
i=1

λi = 1, λi ≥ 0, wi ∈ Ω, m ∈ N
}
.
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A function f : Rn → R defined on a convex set Ω is called convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ Ω and λ ∈ (0, 1). If this inequality becomes strict for whenever x 6= y, x, y ∈ Ω,

we say that f is strictly convex on Ω.

Figure 1.0.2: A convex function f(x) and its epigraph, the shaded region above f(x).

A mapping B : Rn → Rm is called affine if there exist an m × n matrix A and an element

b ∈ Rm such that

B(x) = Ax+ b , for all x ∈ Rn.

Let us present in the proposition below some operations that preserve convexity of functions.

Proposition 1.0.2. (i) Let fi : Rn → R be convex functions for all i = 1, . . . ,m. Then the

following functions are convex as well:

- The multiplication by scalars λf for any λ > 0.

- The sum function
∑m

i=1 fi.

- The maximum function max1≤i≤m fi.

(ii) Let f : Rn → R be convex and let ϕ : R → R be nondecreasing. Then the composition

ϕ ◦ f is convex.

(iii) Let B : Rn → Rp be an affine mapping and let f : Rp → R be a convex function. Then
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the composition f ◦B is convex.

(iv) Let fi : Rn → R, for i ∈ I, be a collection of convex functions with a nonempty index

set I. Then the supremum function f(x) := supi∈I fi(x) is convex.

The class of distance functions presented in what follows plays a crucial role throughout

the thesis. Given a set Ω ⊂ Rn, the distance function associated with Ω is defined by

d(x; Ω) := inf
{
‖x− ω‖

∣∣ ω ∈ Ω
}
.

For each x ∈ Rn, the Euclidean projection from x to Ω is defined by

Π(x; Ω) :=
{
ω ∈ Ω

∣∣ ‖x− ω‖ = d(x; Ω)
}
.

A function f : Rn → R is called Lipschitz continuous on Rn if there exists a constant ` ≥ 0

such that

‖f(x)− f(y)‖ ≤ `‖x− y‖ for all x, y ∈ Rn.

From the definition, it is obvious that any Lipschitz continuous function is uniformly con-

tinuous on Rn. We will prove in the proposition below that the distance function associated

with a nonempty set is Lipschitz continuous on Rn.

Proposition 1.0.3. Given a nonempty set Ω, the distance function d(·; Ω) is Lipschitz

continuous on Rn with Lipschitz constant ` = 1.

Proof. We will show that

‖d(x; Ω)− d(y; Ω)‖ ≤ ‖x− y‖ for all x, y ∈ Rn.
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For any ω ∈ Ω, one has by the triangle inequality that

d(x; Ω) ≤ ‖x− ω‖ ≤ ‖x− y‖+ ‖y − ω‖.

This implies

d(x; Ω) ≤ ‖x− y‖+ inf{‖y − ω‖ | ω ∈ Ω} = ‖x− y‖+ d(y; Ω),

and hence d(x; Ω)− d(y; Ω) ≤ ‖x− y‖. Similarly, we have that

d(y; Ω)− d(x; Ω) ≤ ‖x− y‖.

Therefore, |d(y; Ω)− d(x; Ω)| ≤ ‖y − x‖. �

Proposition 1.0.4. If Ω is a convex set, then the distance function d(·; Ω) is a convex

function.

Proof. Take any x,y ∈ Rn and λ ∈ (0, 1). We will show that the distance function given

by f(x) := d(x; Ω) for x ∈ Rn satisfies the convex inequality:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1.0.1)

Fix any ε > 0. By the properties of the infimum, there exists u ∈ Ω such that

‖x− u‖ < d(x; Ω) +
ε

2
.

Similarly, there exists v ∈ Ω such that

‖y − v‖ < d(y; Ω) +
ε

2
.
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Since Ω is a convex set, λu+ (1− λ)v ∈ Ω. Then

d(λx+ (1− λ)y; Ω) ≤ ‖λx+ (1− λ)y − (λu+ (1− λ)v)‖

≤ ‖λ(x− u)‖+ ‖(1− λ)(y − v)‖

= λ‖x− u‖+ (1− λ)‖y − v‖

≤ λ
[
d(x; Ω) +

ε

2

]
+ (1− λ)

[
d(y; Ω) +

ε

2

]
= λd(x; Ω) + (1− λ)d(y; Ω) + ε.

Then we obtain (1.0.1) by letting ε→ 0. �

Let f : Rn → R be a convex function and let x̄ ∈ Rn. A vector v ∈ Rn is called a subgradient

of f at x̄ if

〈v, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ Rn.

The set of all subgradients of f at x̄ is called the subdifferential of the function at this point

and is denoted by ∂f(x̄).

Another important concept of Convex Analysis is called the normal cone to a nonempty

convex set Ω ⊂ Rn at a point x̄ ∈ Ω and defined by

N(x̄; Ω) := {v ∈ Rn | 〈v, x− x̄〉 ≤ 0 for all x ∈ Ω}.

In what follows we study subdifferential formulas for distance functions to convex sets. We

first pay attention to the case where the reference point belongs to the set.

Proposition 1.0.5. Suppose that x̄ ∈ Ω. Then

∂d(x̄; Ω) = N(x̄; Ω) ∩ B,

where B is the closed unit ball of Rn.
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Proof. Fix any v ∈ ∂d(x̄; Ω). Then

〈v, x− x̄〉 ≤ d(x; Ω)− d(x̄; Ω) = d(x; Ω) for all x ∈ Rn. (1.0.2)

Since the distance function d(·; Ω) satisfies a Lipschitz condition with the Lipschitz constant

` = 1, one has

〈v, x− x̄〉 ≤ ‖x− x̄‖ for all x ∈ Rn.

This implies ‖v‖ ≤ 1 or v ∈ B. It also follows from (1.0.2) that

〈v, x− x̄〉 ≤ 0 for all x ∈ Ω.

Thus v ∈ N(x̄; Ω). Therefore, v ∈ N(x̄; Ω) ∩ B.

Let us now prove the opposite inclusion. Fix any v ∈ N(x̄; Ω) ∩ B. Then ‖v‖ ≤ 1 and

〈v, w − x̄〉 ≤ 0 for all w ∈ Ω.

Thus for any x ∈ Rn and for any w ∈ Ω, one has

〈v, x− x̄〉 = 〈v, x− w + w − x̄〉

= 〈v, x− w〉+ 〈v, w − x̄〉

≤ 〈v, x− w〉 ≤ ‖v‖‖x− w‖ ≤ ‖x− w‖.

This implies

〈v, x− x̄〉 ≤ d(x; Ω) = d(x; Ω)− d(x̄; Ω),

and hence v ∈ ∂d(x̄; Ω). �

Now we pay attention to the case where the reference point does not belong to the set.



10

Proposition 1.0.6. Let Ω be a nonempty closed convex set and let x̄ /∈ Ω. Then

∂d(x̄; Ω) =
{ x̄−Π(x̄; Ω)

d(x̄; Ω)

}
.

Proof. Fix z̄ := Π(x̄; Ω) ∈ Ω and fix any v ∈ ∂d(x̄; Ω). By the definition of subdifferential,

〈v, x− x̄〉 ≤ d(x; Ω)− d(x̄; Ω) = d(x; Ω)− ‖x̄− z̄‖

≤ ‖x− z̄‖ − ‖x̄− z̄‖ for all x ∈ Rn.

Denoting p(x) := ‖x− z̄‖, we have

〈v, x− x̄〉 ≤ p(x)− p(x̄) for all x ∈ Rn,

which implies that v ∈ ∂p(x̄) =
{ x̄− z̄
‖x̄− z̄‖

}
. Let us show that v =

x̄− z̄
‖x̄− z̄‖

is a subgradient

of d(·; Ω) at x̄. Indeed, for any x ∈ Rn, denote px := Π(x; Ω) and get

〈v, x− x̄〉 = 〈v, x− z̄〉+ 〈v, z̄ − x̄〉 = 〈v, x− z̄〉 − ‖x̄− z̄‖

= 〈v, x− px〉+ 〈v, px − z̄〉 − ‖x̄− z̄‖.

Since z̄ = Π(x̄; Ω), it follows that 〈x̄− z̄, px − z̄〉 ≤ 0, and so we have 〈v, px − z̄〉 ≤ 0. Using

the fact that ‖v‖ = 1 and the Cauchy-Schwarz inequality gives us

〈v, x− x̄〉 = 〈v, x− px〉+ 〈v, px − z̄〉 − ‖x̄− z̄‖

≤ ‖v‖ · ‖x− px‖ − ‖x̄− z̄‖ = ‖x− px‖ − ‖x̄− z̄‖

= d(x; Ω)− d(x̄; Ω) for all x ∈ Rn.

Thus we arrive at v ∈ ∂d(x̄; Ω). �

In what follows we present some useful subdifferential rules for convex functions.
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Proposition 1.0.7. (i) Let f : Rn → R be a convex function and let x̄ ∈ Rn. Then the

following holds for any α > 0:

∂(αf)(x̄) = α∂f(x̄).

(ii) Let fi : Rn → R be convex functions for i = 1, 2 and let x̄ ∈ Rn. Then

∂(f1 + f2)(x̄) = ∂f1(x̄) + ∂f2(x̄).

(iii) Let B : Rn → Rm be an affine mapping given by B(x) = Ax+ b, where A is an m× n

matrix. Consider a convex function f : Rm → R. Let x̄ ∈ Rn and let ȳ = B(x̄). Then

∂(f ◦B)(x̄) = AT (∂f(ȳ)) = {AT (v) | v ∈ ∂f(ȳ)}. (1.0.3)

Given convex functions fi : Rn → R for i = 1, . . . ,m, define

f(x) := max{fi(x) | i = 1, . . . ,m}.

The proposition below gives a formula for computing the subdifferential of the maximum

function.

Theorem 1.0.8. Suppose that fi : Rn → R for i = 1, . . . ,m are convex functions. Then

∂f(x̄) = co
⋃

i∈I(x̄)

∂fi(x̄), ,

where I(x̄) := {i = 1, . . . ,m | fi(x̄) = f(x̄)}.



Chapter 2

The Theorems of Carathédory,
Radon, and Helly: Their
Statements and Proofs

In this chapter we give a survey of the statements and proofs of the theorems of Carathédory,

Radon, and Helly; see, e.g., [10].

2.1 Carathédory Theorem

Given a set Ω, the convex cone generated by Ω, denoted by KΩ, is the smallest convex cone

containing Ω.

Lemma 2.1.1. Consider a nonempty set Ω ⊂ Rn. The convex cone generated by Ω has the

following representation:

KΩ =

{ m∑
i=1

λiai

∣∣∣ λi ≥ 0, ai ∈ Ω, m ∈ N
}
.

12
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When Ω is convex, KΩ = R+Ω.

Proof. Denote by C the set on the right-hand side of the equality above. Since C is clearly

a convex cone containing Ω, C ⊃ KΩ. It remains to prove the opposite inclusion. Consider

an element of C given by x =
∑m

i=1 λiai, where λi ≥ 0, ai ∈ Ω, and m ∈ N. If λi = 0 for all

i, then x = 0 ∈ KΩ. If λi > 0 for some i, define λ :=
∑m

i=1 λi > 0. Thus

x = λ(

m∑
i=1

λi
λ
ai) ∈ KΩ.

Hence C ⊂ KΩ. We have proved that C = KΩ. �

Lemma 2.1.2. Consider a set Ω ⊂ Rn,Ω 6= ∅, and any element x ∈ KΩ\{∅}. The following

holds:

x =

k∑
i=1

λiai, λi > 0, ai ∈ Ω and k ≤ n.

Proof. For an element x ∈ KΩ\{∅}, we have, by 2.1.1, the representation x =
∑m

i=1 µiai,

with µi > 0, ai ∈ Ω and m ∈ N. If the elements a1, . . . , am are linearly dependent, then

there exist γi ∈ R for i = 1, . . . ,m, not all zeros, such that

m∑
i=1

γiai = 0.

Define the nonempty set I := {i = 1, . . . ,m | γi > 0}. For any ε > 0 we have

x =

m∑
i=1

µiai =

m∑
i=1

µiai − ε(
m∑
i=1

γiai) =

m∑
i=1

(µi − εγi)ai.

Choose ε := min{µiγi | i ∈ I} =
µi0
γi0

, with i0 ∈ I, and define βi := µi − εγi for i = 1, . . . ,m.

We now have the following definition for an element x ∈ KΩ\{∅}:

x =

m∑
i=1

βiai.
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Then βi0 = 0, and βi ≥ 0, for i = 1, . . . ,m. Continuing this process, we can represent x

with a positive linear combination of the linearly independent elements {aj | j ∈ J}, with

J ⊂ {1, . . . ,m}. Linear independence in an n-dimensional space requires that |J | ≤ n. �

Theorem 2.1.3. (Carathéodory’s Theorem) For Ω ⊂ Rn,Ω 6= ∅, any element x ∈ co Ω

may be expressed as a combination of, at most, n+1 elements of Ω.

Proof. Define B := {1} × Ω ∈ Rn+1. We observe that coB = {1} × co Ω, and that

coB ∈ KB. Consider any x ∈ co Ω. Take an element (1, x) ∈ coB; there exist λi ≥ 0 and

(1, ai) ∈ B, i = 0, . . . ,m with m ≤ n so that

(1, x) =

m∑
i=0

λi(1, ai).

We thus conclude that x =
∑m

i=0 λiai,
∑m

i=0 λi = 1 with λi ≥ 0 and m ≤ n. �

2.2 Radon Theorem

Next we shall prove a lemma, Radon’s and then Helly’s theorem.

Lemma 2.2.1. For a set of vectors in Rn, Υ = {υ1, . . . , υm}, if |Υ| ≥ n + 2, then the

vectors are affine dependent.

Proof. Consider the set Υ′ = {υ2 − υ1, . . . , υm − υ1}. Since |Υ′| ≥ n+ 1, those vectors are

linearly dependent, and it follows that the vectors {υ1, . . . , υm} are affine dependent. �

Theorem 2.2.2. (Radon’s Theorem)

Define the set Ω := {ω1, . . . , ωm}, with |Ω| ≥ n + 2, in Rn. There exist two nonempty,

disjoint subsets Ω1 ⊂ Ω and Ω2 ⊂ Ω so that

Ω1 ∪ Ω2 = Ω and co Ω1 ∩ co Ω2 6= ∅.
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Proof. Since we have that |Ω| = m ≥ n+ 2, the vectors {ω1, . . . , ωm} are affine dependent

by 2.2.1. So there exist real numbers λ1, . . . , λm, some of which are positive, so that

m∑
i=1

λiωi = 0,
m∑
i=1

λi = 0.

We may define the index sets I1 := {1, . . . ,m | λi ≥ 0} and I2 := {1, . . . ,m | λi < 0}.

Furthermore, I1, I2 6= ∅ and
∑

i∈I1 λi = −
∑

i∈I2 λi. Define λ :=
∑

i∈I1 λi, so we have

∑
i∈I1

λiωi = −
∑
i∈I2

λiωi and
∑
i∈I1

λi
λ
ωi = −

∑
i∈I2

λi
λ
ωi.

Define sets Ω1 := {ωi | i ∈ I1} and Ω2 := {ωi | i ∈ I2}. These sets are nonempty and

disjoint subsets of Ω with Ω1 ∪ Ω2 = Ω and co Ω1 ∩ co Ω2 6= ∅. Thus we have

∑
i∈I1

λi
λ
ωi = −

∑
i∈I2

λi
λ
ωi ∈ co Ω1 ∩ co Ω2.

The proof is now complete. �

2.3 Helly Theorem

In this section we present Helly’s theorem and its proof. The proof presented below is based

on induction and Radon’s theorem.

Theorem 2.3.1. (Helly’s Theorem) Consider O := {Ω1, . . . ,Ωm}, a collection of convex

sets in Rn, with |O| ≥ n+ 1. If the intersection of any n+1 of these sets is nonempty, then

all the sets in the collection O have a nonempty intersection; more formally
⋂m
i=1 Ωi 6= ∅.

Proof. We shall prove the theorem by induction on |O|. For m = n + 1, the result of the

theorem is trivial. For the induction step, suppose that the theorem holds for |O| = m ≥

n + 1. Consider a collection of convex sets in Rn, {Ω1, . . . ,Ωm,Ωm+1}, with the property
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that any n + 1 of the sets have a nonempty intersection. For i = 1, . . . ,m + 1, define the

following:

Θi :=
m+1⋂

j=1,j 6=i
Ωj ,

which has the property that Θi ⊂ Ωj whenever j 6= i and i, j ∈ {1, . . . ,m + 1}. By

hypothesis, Θi 6= ∅, so there exists an element ωi ∈ Θi for each i ∈ {1, . . . ,m + 1}. Define

the set W := {ω1, . . . , ωm+1}. Applying Radon’s theorem on the set W, we may find two

nonempty, disjoint subsets W1 := {ωi | i ∈ I1}, and W2 := {ωi | i ∈ I2}. These subsets

have the following properties: W1 ∪W2 = W , and coW1 ∩ coW2 6= ∅. We may select an

element w ∈ coW1 ∩ coW2, and show that w ∈
⋂m+1
i=1 Ωi 6= ∅. In order to do this, we first

note that i 6= j for i ∈ I1 and j ∈ I2, which implies that θi ⊂ Ωj when i ∈ I1 and j ∈ I2.

For a particular i ∈ {1, . . . ,m+ 1} and i ∈ I1, ωi ∈ Θi ⊂ Ωj for any j ∈ I2. Because Ωi is

convex, ω ∈ coW2 = co {ωj | j ∈ I2} ⊂ Ωi. Thus we have that ω ∈ Ωi for any i ∈ I1. We

may, by a similar argument, show that ω ∈ Ωi for every i ∈ I2. �



Chapter 3

The Theorems of Carathédory,
Radon, and Helly: Their
Equivalence

3.1 Carathéodory’s and Helly’s Theorem

In this section we study the equivalence of the theorems of Carathéodory and Helly based

on subdifferential properties of distance functions. Let us start with two useful lemmas.

Lemma 3.1.1. Let Ωi, i = 1, . . . ,m, be nonempty closed, convex sets. If at least one of the

sets Ωi is bounded, then the maximum function

f(x) := max{d(x; Ωi) | i = 1, . . . ,m}, x ∈ Rn , (3.1.1)

has an absolute minimum on Rn.

Proof. Let γ := inf{f(x) | x ∈ Rn}. Since f(x) ≥ 0 for all x ∈ Rn, it is obvious that γ is a

real number. Let {xk} be a sequence in Rn such that limk→∞ f(xk) = γ. Without loss of

17
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generality, assume that Ω1 is bounded. By the definition of limit, one finds k0 ∈ IN such

that

0 ≤ d(xk; Ω1) ≤ f(xk) < γ + 1 for all k ≥ k0.

Choosing wk ∈ Ω1 with ‖xk − wk‖ = d(xk; Ω), we get ‖xk − wk‖ ≤ γ + 1, and hence

‖xk‖ ≤ ‖wk‖ + 1 for all k ≥ k0. Since Ω1 is bounded, the sequence {xk} is bounded as

well, and so we can assume that it has a subsequence {xk`} that converges to x̄. By the

continuity of f ,

γ = lim
`→∞

f(xk`) = f(x̄) ≤ f(x) for all x ∈ Rn.

Therefore, f has an absolute minimum at x̄. �

Given any u ∈ Rn, define the active index set at u, associated with the function f given in

(3.1.1), by

I(u) := {i = 1, . . . ,m | d(u; Ωi) = f(u)}.

Lemma 3.1.2. Let Ωi, i = 1, . . . ,m, be nonempty closed, convex sets with
⋂m
i=1 Ωi = ∅.

Consider the function f defined in (3.1.1). Then f has an absolute minimum at x̄ if and

only if

x̄ ∈ co {wi | i ∈ I(x̄)} ,

where wi := Π(x̄; Ωi).

Proof. The assumption
⋂m
i=1 Ωi = ∅ implies that f(x) = max{d(x; Ωi) | i = 1, . . . ,m} > 0

for all x ∈ Rn and x /∈ Ωi for every i ∈ I(x). It follows from Theorem 1.0.8 that the function

f has an absolute minimum at x̄ if and only if

0 ∈ ∂f(x̄) = co{∂d(x̄; Ωi) | i ∈ I(x̄)} = co
{ x̄− wi
d(x̄; Ωi)

| i ∈ I(x̄)
}
.

Since f(x̄) = d(x̄; Ωi) > 0 for all i ∈ I(x̄), we can denote this common value by r. By
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Proposition 1.0.1, there exist λi ≥ 0 for i ∈ I(x̄) with
∑

i∈I(x̄) λi = 1 such that

0 =
∑
i∈I(x̄)

λi
x̄− wi
r

,

which is equivalent to x̄ ∈ co {wi | i ∈ I(x̄)}. �

Now we are ready to prove the main theorem of this section, namely showing that Carathéodory’s

theorem and Helly’s theorem are equivalent in the described sense.

Theorem 3.1.3. Consider the following statements:

(i) Carathéodory’s theorem: For a nonempty convex set Ω ⊂ Rn with x̄ ∈ coA there exist

λi ≥ 0 and wi ∈ Ω for i = 1, . . . , n+ 1 such that

x̄ =
n+1∑
i=1

λiωi .

(ii) Helly’s theorem: For any collection of nonempty closed, convex sets {Ω1, . . . ,Ωm},

m ≥ n + 2, in Rn with the property that the intersection of any n + 1 sets from this

collection is nonempty, one has
m⋂
i=1

Ωi 6= ∅ .

Then statement (i) implies statement (ii), and vice versa.

Proof. Let us first prove (ii) assuming that (i) holds. Consider the case where Ωi, for

i = 1, . . . ,m, are nonempty closed, convex sets such that at least one of them is bounded.

The assumption implies that the intersection of any collection of k sets from the whole

collection, where k ≤ n+ 1, is nonempty. Suppose that
⋂m
i=1 Ωi = ∅. Consider the function

f defined by (3.1.1) and let x̄ be a point in Rn at which f has an absolute minimum. Note

that this point exists by Lemma 3.1.1. From Lemma 3.1.2 one has

x̄ ∈ co {wi | i ∈ I(x̄)} ,
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where wi := Π(x̄; Ωi). Applying Carathéodory’s theorem, we get J ⊂ I, |J | ≤ n + 1, such

that

x̄ =
∑
j∈J

λjwi.

Defining the function

g(x) := max{d(x; Ωj) | j ∈ J},

by the given assumption,
⋂
j∈J Ωj 6= ∅, there exists a point u in this intersection with

g(u) = 0. Since d(x̄; Ωj) = r > 0 for all j ∈ J , where r := f(x̄) = g(x̄) > 0, the active

index set at x̄ associated with the function g is J . By Lemma 3.1.2, one has that g has an

absolute minimum at x̄, and hence 0 < r = g(x̄) ≤ g(u) = 0. This contradiction implies the

statement (ii).

In the case where we do not assume that at least one of the sets is bounded, we choose

an element in each intersection of n + 1 sets. Let t > 0 be sufficiently large such that the

closed ball B(0; t) covers all such points. Then we only need to apply the previous case for

the collection {Θi | i = 1, . . . ,m}, where Θi := Ωi ∩ B(0; t).

Now we show how to derive (i) from (ii). Fix any element ȳ ∈ co Ω. If ȳ ∈ Ω, then it is

obviously a convex combination of itself, so the conclusion is obvious. Suppose that ȳ /∈ Ω.

We follow and simplify significantly the proof in [7], pp. 40-41. In particular, we do not

assume that Ω ∈ Rn is closed and bounded as in [7], pp. 40-41. For each point x̄ ∈ Ω, denote

by L1(x̄) and L2(x̄) the closed half-spaces with bounding hyperplane passing through x̄ and

being perpendicular to the line connecting x̄ and ȳ, where L2(x̄) contains ȳ, i.e.,

L1(x̄) := {w ∈ Rn | 〈x̄− ȳ, w − x̄〉 ≥ 0},

L2(x̄) := {w ∈ Rn | 〈x̄− ȳ, w − x̄〉 ≤ 0}.
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Let us now show that ⋂
x̄∈Ω

L1(x̄) = ∅.

Indeed, suppose that this set is nonempty. Then there exists z̄ ∈
⋂
x̄∈Ω L1(x̄), implying that

〈x− ȳ, z̄ − x〉 ≥ 0 for all x ∈ Ω .

It follows that

〈z̄ − ȳ, ȳ − x〉 = 〈z̄ − x+ x− ȳ, ȳ − x〉 = 〈z̄ − x, ȳ − x〉+ 〈x− ȳ, ȳ − x〉

= 〈z̄ − x, ȳ − x〉 − ‖x− ȳ‖2 < 0

for all x ∈ Ω (note that ‖x− ȳ‖2 > 0, since ȳ /∈ Ω). Since ȳ ∈ co Ω, there exist xi ∈ Ω and

λi ≥ 0 for i = 1, . . . ,m such that

ȳ =

m∑
i=1

λixi and

m∑
i=1

λi = 1.

Then

0 = 〈z̄ − ȳ, ȳ − ȳ〉 = 〈z̄ − ȳ, ȳ −
m∑
i=1

λixi〉 =
m∑
i=1

λi〈z̄ − ȳ, ȳ − xi〉 < 0 .

This contradiction shows that ⋂
x̄∈Ω

L1(x̄) = ∅.

Since L1(x) is a nonempty closed, convex set for every x, by (ii) there exist x1, . . . , xn+1 ∈ Ω

such that
n+1⋂
i=1

L1(xi) = ∅.

However, this implies ȳ ∈ co {x1, . . . , xn+1}. Let us prove this by contradiction. Assuming

that this is not the case, there exist a, b ∈ Rn such that

〈a, ȳ〉 > b and 〈a, xi〉 ≤ b for all i = 1, . . . , n+ 1.
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Define

` := {ȳ − ta | t ≥ 0}.

Then

〈xi − ȳ, ȳ − ta− xi〉 = 〈xi − ȳ, ȳ − xi〉 − t〈a, xi − ȳ〉 .

Thus we can find a value t0 such that this expression is positive for all t > t0 and for all i,

but this implies
⋂n+1
i=1 L1(xi) 6= ∅. This contradiction shows that ȳ ∈ co {x1, . . . , xn+1}. �

3.2 Carathéodory’s and Radon’s Theorem

In this section we study the equivalence of the theorems of Carathéodory and Radon, thus

establishing the equivalence of all three theorems.

Theorem 3.2.1. Consider the following statements:

(i) Carathéodory’s theorem: For a nonempty convex set A ⊂ Rn, with x̄ ∈ coA, there exist

λi ≥ 0 with
∑n+1

i=1 λi = 1 and wi ∈ A for i = 1, . . . , n+ 1 such that

x̄ =
n+1∑
i=1

λiwi .

(ii) Radon’s theorem: Given a set Ω := {ω1, . . . , ωm}, m ≥ n + 2, in Rn, there exist two

nonempty, disjoint subsets Ω1 ⊂ Ω and Ω2 ⊂ Ω such that

Ω1 ∪ Ω2 = Ω and co Ω1 ∩ co Ω2 6= ∅ .

The statements (i) and (ii) are equivalent.
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Proof. (i)=⇒ (ii): Consider the set Ω ⊂ Rn defined by Ω = {w1, . . . , wm} with m ≥ n+2.

Then

w1 + · · ·+ wm
m

∈ co {w1, . . . , wm} .

By Carathéodory’s theorem, we have the representation

w1 + · · ·+ wm
m

=
n+1∑
i=1

λiwi,

with λi ≥ 0 and
∑n+1

i=1 λi = 1. It follows that

m∑
i=1

βiwi =

m∑
i=1

λiwi ,

where βi = 1
m , i = 1, . . . ,m, λi ≥ 0,

∑n+1
i=1 λi = 1, and λi = 0 for all i = n+ 2, . . . ,m. So

m∑
i=1

(βi − λi)wi = 0 .

We rewrite the above as
m∑
i=1

γiwi = 0 ,

with γi = βi − λi,
∑m

i=1 γi = 0, where not all γ′is are zeros. Then

∑
i∈I

γixi +
∑
j∈J

γjxj = 0 ,

where I := {i ∈ {1, . . . ,m} | γi > 0} and J := {i ∈ {1, . . . ,m} | γi ≤ 0}. Observe that I

and J are both nonempty. Define γ :=
∑

i∈I γi, Ω1 := {wi | i ∈ I}, and Ω2 := {wj | j ∈ J}.

Then γ = −
∑

j∈J γj and

1

γ

∑
i∈I

γiwi = −1

γ

∑
j∈J

γjwj ∈ co Ω1 ∩ co Ω2.



24

At this point, we can see that Ω1 and Ω2 satisfy the requirements of Radon’s theorem.

To prove that Carathéodory’s theorem follows from Radon’s theorem, we complete the

approach to [8, Theorem 3.2].

(ii) =⇒ (i): Fix any x̄ ∈ coA. Then there exist λi > 0 for i = 1, . . . ,m, with
∑m

i=1 λi = 1

and

x̄ =
m∑
i=1

λiwi ,

where wi ∈ A for all i = 1, . . . ,m and the representation is chosen such that m is minimal.

We will show that m ≤ n+1. Assume the contrary, i.e., that m > n+1. By Radon’s theorem

applied to the set Ω := {w1, . . . , wm} we can assume that, without loss of generality,

k∑
i=1

γiwi =

m∑
i=k+1

γiwi ,

where γi ≥ 0 for i = 1, . . . ,m and
∑k

i=1 γi =
∑m

i=k+1 γi = 1, 1 ≤ k < m. Then we have the

representation
m∑
i=1

βiwi = 0 ,

where βi := γi for i = 1, . . . , k, and βi = −γi for i = k+1, . . . ,m. Observe that
∑m

i=1 βi = 0.

Choose an index i0 ∈ {1, . . . , k} such that

ε :=
λi0
βi0

= min{λi
βi
| i = 1, . . . , kwith βi > 0} .

Define αi := λi − εβi for i = 1, . . . ,m. Then αi ≥ 0 for i = 1, . . . ,m, αi0 = 0,
∑m

i=1 αi = 1,

and

x̄ =
m∑
i=1

αiwi .

This contradicts the minimal property of m. The proof is now complete. �

Remark 3.2.2. (i) Note that the closedness property assumed in Radon’s theorem pre-



25

sented in Theorem 3.1.3(ii) can be relaxed, i.e., the statements in Theorem 3.1.3 and The-

orem 3.2.1 are equivalent to the following statement:

For any collection of nonempty convex sets {Ω1, . . . ,Ωm}, m ≥ n+2, in Rn with the property

that the intersection of any n+ 1 sets from this collection is nonempty, one has

m⋂
i=1

Ωi 6= ∅ .

Indeed, this statement obviously implies Theorem 3.1.3(ii), and it follows from Theorem

3.2.1(ii); see, e.g., [10, Theorem 3.13].

(ii) As a next step, it would be natural to extend the present investigations to generalized

convexity notions, like for example H-convexity (see, e.g., [1] and [2]) or d-convexity (cf. [3,

Chapter II]).

Summarizing chapters 3 and 4,we have demonstrated the equivalence of Carathéodory’s,

Radon’s and Helly’s theorem in convex geometry by demonstrating the following implica-

tions:

Figure 3.2.1: C=Carathéodory’s theorem R=Radon’s Theorem H=Helly’s Theorem
Diagram summarizing the equavalence of the three main theorems.
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