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  My research program focuses on specialized computer architectures for 
performing complex inference in embedded applications 
  Massively parallel, based on sparse distributed data representations 

  There are a number of different components: 
  New PSU / UCSB NSF sponsored project “CDI Inference at the Nano-scale” 
  The DARPA SyNAPSE program 
  The Intel “non-Boolean” computing project 
  Collaboration with Jeff Hawkins at Numenta on hardware architectures for 

accelerating Numenta’s HTM 

  The goal of this talk is to describe the HTM algorithm and our work on it 
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Motivation 
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Computer Architecture 

  Computer Architecture is a stagnant field 
  “It is a solved problem, Intel solved it ...” 
  The current textbook is over 20 years old 
  It needs a new mission, radical new computational models, 

something … 
  This work represents one attempt to breath some life into it 
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  Embedded is the future of computing 
  Computers are becoming more ubiquitous and integrated into ever more everyday 

applications 

  Embedded applications generally involve inferring the state of the 
environment from sensed data 
  There are massive quantities of noisy, ambiguous data 
  Systems need to make decisions based on such data 

  Consequently, inference computing, making sense of these data, will 
become an ever increasingly important component 
  Intel’s context aware computing 

  I personally believe that some kind of Inference Engine will be the 
microprocessor of the 21st Century and will enable a wide range of 
embedded computing applications 
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A Prototypical Model of Intelligent Computing 
  Although an over-simplification, this diagram characterizes most intelligent computing 

implementations 
  The term Intelligent Signal Processing (ISP) has been used to describe algorithms 

and techniques that involve the creation, efficient representation, and effective 
inference over complex models of semantic and syntactic data 

Front End 
Signal 

Processing 

Feature 
Extraction Classification 

Contextual 
Semantic 
Inference 

Motor 
Control 

Motor 
Control 

Subprogram 

Motor 
Control 

Programs 

Decision 
Making 

The “Front End” - DSP The “Back End” - ISP 
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  The Front End 
  Well understood, it is the realm of traditional digital signal and image processing 
  Often consists of applying the same computation over large arrays of elements, computation 

is data parallel, and communication tends to be local 

  The Back End 
  No good solutions 
  In the early days of computing, “Artificial Intelligence” focused on the representation and use 

of contextual and semantic information 
  Knowledge was generally represented by a set of rules 
  However, these systems were “brittle,” exhibiting limited flexibility, generalization, and 

graceful degradation 
  And they were usually “hand” made and unable to adapt dynamically (i.e., learn) within the 

context of most real world applications 
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One Possibility Is Study How Cortex Does This 
From Big Brain by Gary Lynch and Rick Granger (Palgrave McMillan 2008): 

  “… the ‘front end’ circuits of the brain … specialize in their own particular visual and auditory 
inputs, the rest of the brain converts these to random-access encodings in association areas 
throughout cortex.  … these areas take initial sensory information and construct grammars 

  “These are not grammars of linguistic elements, they are grammatical organizations (nested, 
hierarchical, sequences of categories) of percepts – visual, auditory, … 

  “Processing proceeds by incrementally assembling these constructs … these grammars generate 
successively larger ‘proto-grammatical fragments,’ eventually constituting full grammars” 

  “They thus are not built in the manner of most hand-made grammars; they are statistically 
assembled, to come to exhibit rule-like behavior, of the kind expected for linguistic grammars 

5/13/11 8 
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General Characteristics of Cortex 

  Scales 
  Distributed Representation 

  Sparse Coding 

  Modular Structure 
  Remarkably uniform anatomical 6-

layer structure 
  Connectivity leads to a hierarchical 

functional structure 
  Most likely Bayesian/Probabilistic 

Inference in the hierarchy 

Lee and Mumford’s Visual cortex model 
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Sparse Distributed Representations 
  An very important, if not the most important characteristic we intend to exploit is to use sparse 

distributed data representations, where each coding unit participates in multiple distinct 
representations 

  A representation has a more “statistical” aspect to it by virtue of the ensemble of vectors in its representation 
  Fault tolerant, graceful degradation, incremental learning ... 
  Fast, parallel, local processing 

  “What is the goal of sensory coding?”  David Field, Unsupervised Learning, eds G. Hinton, T. 
Sejnowski, MIT Press 1999, discussed sparse distributed codes 

  In a sparse distributed code, all cells in the code have an equal response probability across all 
representations 

  But a low response probability for any single representation 
  The dimensionality of the space spanned by the input vectors is not necessarily reduced 

  In fact, “Sparsification” is not the same as reducing dimension: 
  “Compact coding” represents data with a minimum number of units 
  “Sparse distributed coding” represents data with a minimum number of active units 
  “Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1?”, Olshausen BA, Field DJ 

(1997).  Vision Research, 37: 3311-3325 
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  Associative Memories approximate Bayesian Inference and are particularly effective 
when using sparse distributed representations – Perhaps the single most important 
contribution of biological systems 

  They are highly parallel, and have minimal precision requirements 
  They do well with both low precision digital or analog implementations, so straight 

forward implementation is possible in analog CMOS 
  Preliminary analysis indicates that reasonably robust implementations are possible at 

the nanoscale, e.g., memristor, CMOL (Likharev), time-varying components 
“memcapacitor” 

  However, they do have scaling limits  
  This is another motivation for a modular structure – where modular, hetero-

associative (BAM-like) structures enable scaling 

  The latest version of HTM embodies these characteristics … 

5/13/11 11 
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The HTM Algorithm 
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Jeff Hawkins / Numenta 
  Jeff founded the Redwood Neuroscience Institute, 

http://redwood.berkeley.edu 
  From which has emerged a synthesis of a number of existing and new ideas 

of cortical operation 
  The models work well enough that he has now spun out a company, 

Numenta, Inc., www.numenta.com 
  The George / Hawkins model starts with a fairly general Bayesian module, 

very similar to the AM presented earlier 
  “A Hierarchical Bayesian Model of Invariant Pattern Recognition in the Visual 

Cortex,” D. George and J. Hawkins, Proceedings of the ICJNN 2005 

  These modules then are combined into a hierarchy to form the Numenta 
Hierarchical Temporal Memory (HTM) 

  Their latest work, “Hierarchical Temporal Memory including the HTM 
Cortical Learning Algorithm,” Version 0.1, November 2010, Numenta – a 
newer version that makes greater use of sparse distributed representations 
  This presentation will focus on the information in this paper, including quotes and 

figures 
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  It is an algorithm that embodies the good things we seek for our hardware 
architectures: 
  Hierarchy 
  Low precision 
  Sparse distributed data representations 
  Associative memory 
  Does inference through space and time 

  Very biological in nature – Jeff is 
 constantly referring back to 
 how neurons do things for 
 inspiration 

5/13/11 15 



Maseeh College of Engineering 
and Computer Science Hammerstrom 

Description 

  Discussion is of one region for one level of processing 
  Assume a 2D square input field 
  Inputs are binary 
  The input feeds a layer of “columns,” assume 1 per input data point 
  Each column has some number of cells, let’s assume 4, but it can be from 1 

to any reasonable number (hundreds …) 
  There are two major phases: 

  Spatial Pooling, where each column looks at a receptive field under it, assume the 
receptive field is square and is centered under the column 

  Temporal Pooling, each cell looks at the other cells around it (again within in 
some local neighborhood) 

5/13/11 16 
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Spatial Pooling (SP) 

  The operation is similar to image convolution, but each column’s spatial field 
mask is unique (they start out random, but are modified by learning) 

  The weight mask is also binary, but there are some other fields associated 
with each synapse 
  Connect bit, potential synapse bit, permanence (multi-bit field) 

  There are two phases: 
  Each column computes an activation value by convolving the mask and the 

matching underlying input data field (Large Neighborhood Convolution, LNC) 
  A localized k-WTA is done to ensure that only a small number of nodes are 

actually on – this leads to a sparse representation 

5/13/11 17 
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Temporal Pooling (TP) 

  The next phase is temporal pooling and involves the individual cells in each 
of the columns 

  Each cell in a column has a set of “dendritic segments” (DS) 
  Each DS has a weight mask, as with spatial pooling, the masks are initially 

random, but change and adapt through learning 
  If a column is active after the Spatial Pooling phase and if any cells are 

active (“predictive”) from the previous data presentation, they remain active 
– this means that they were predictive of this spatial pooling operation 

  If a column is active, but none of the cells are in the predictive state from the 
previous operation, then they are all activated 

  If the column is not active, then any cells that were in the predictive state 
from the previous presentation are turned off 

5/13/11 18 



Maseeh College of Engineering 
and Computer Science Hammerstrom 5/13/11 19 



Maseeh College of Engineering 
and Computer Science Hammerstrom 

From The Paper: 

  Each column in an HTM region consists of multiple cells 
  Each cell in a column can be active or not active 
  By selecting different active cells in each active column, we can represent 

the exact same input differently in different contexts. 
  Putting this all together, we make the following hypothesis 

  The neocortex has to do both first order and variable order inference and 
prediction 

  There are four or five layers of cells in each region of the neocortex 
  The layers differ in several ways but they all have shared columnar response 

properties and large horizontal connectivity within the layer 
  We speculate that each layer of cells in neocortex is performing a variation 

of the HTM inference and learning rules described in the paper 

5/13/11 20 
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  Now the DSs, for every cell in every column, perform their LNC operation, 
convolving their weight mask with the active cells in their local neighborhood 
that they are connected to 

  Though no k-WTA is done, there is a fixed threshold that is applied to each 
DS, if any DS for a cell is above threshold, the cell is considered active for 
TP 

  A cell with an active DS is put in the “predictive” state (whether in an active 
column or not) 

  When a cell becomes predictive, it forms connections to a subset of the 
cells nearby that were active in a prior time step 

  The cells in a column, as well as the SP value for the column constitute the 
output of the level and are the input to the next level 

  The result is a sparse distributed data representation for both feed-forward 
(“spatial pooling”) and time sequence (“temporal pooling”) operations 

5/13/11 21 
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  In summary, when a new input arrives, it leads to a sparse set of active columns 
  One or more of the cells in each column become active, these in turn cause other 

cells to enter a predictive state through learned connections between cells in the 
region 

  The cells activated by connections within the region constitute a prediction of what is 
likely to happen next 

  When the next feed-forward input arrives, it selects another sparse set of active 
columns 

  If a newly active column is unexpected, meaning it was not predicted by any cells, it 
will activate all the cells in the columns 

  If a newly active column has one or more predicted cells, only those cells will become 
active 

  The output of a region is the activity of all cells in the region, including the cells active 
because of feed-forward input and the cells active in the predictive state 

  Predictions are not just for the next time step; predictions in an HTM region can be for 
several time steps into the future  
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  Learning is too complex to go into detail here 
  But it is Hebbian, where synapses are made (“connected”) if there is 

concurrent input and output activity, that is, the synapse is predictive 
  This is effected by the use of the “permanence field,” which is incremented 

on coincident activity, it gets decremented by virtue of permanence 
normalization in the weight mask 

  There is a thresholding of the permanence fields 

  Temporal pooler learning adds some complexity that is more detail than I 
have time to go into right now 

5/13/11 24 
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Large Neighborhood Convolution – The Compute Intensive Inner Loop 

  Convolve neighborhood input region with weight matrix 
  Neighborhoods are large (a radius of 20 is typical), very sparse, and binary 

5/13/11 25 

0  1  0  1  0  1  0  1  0  1 
0  1  0  1  0  0  0  1  1  1 
0  0  0  0  0  1  1  0  1  0 
0  1  0  1  0  1  1  0  0  0 
0  1  0  0  1  0  1  1  1  1 
1  1  1  0  0  0  1  0  1  0 
0  1  0  1  0  1  0  1  0  1 
0  0  0  1  1  1  0  0  1  1 
0  0  1  0  0  0  0  1  1  1 
1  1  1  1  0  0  1  0  1  0 

1  0  0  1  0  1  0  1  0  1 
0  1  0  1  0  0  0  1  1  1 
1  1  0  0  0  1  1  0  1  0 
0  1  0  1  0  1  1  0  0  0 
1  0  1  0  0  1  0  1  1  1 
0  1  1  0  0  0  1  0  1  0 
0  1  0  1  0  1  0  1  0  1 
0  0  0  1  1  1  0  0  1  1 
1  0  1  0  0  0  0  1  1  1 
1  1  1  1  0  0  1  0  1  0 

Neighborhood region 
In input array 

Mask / weight matrix 
For a single dendritic 
segment 
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Hardware Acceleration 
Short Term 
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Outline of Multi-core Project – Ryan Price 

The first phase: 
  Implement a single process version of the full HTM CLA in C++. 
  Verify proper functioning of implementation using Numenta provided 

data. 
  Design a pattern recognition task suitable for analysis of the single-

process and parallel implementations. 
  Benchmark the single process implementation on the pattern 

recognition task using Intel's VTune. 
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Outline of Multi-core Project 

The second phase consists of: 
  Identify key hotspots for parallelization effort. 
  Implement a parallel version of the code using multi-threading, Open 

MP. 
  Analyze the parallel version running on multiple cores using VTune. 
  Compare the multi-core runs and the benchmark. 

The PC used for analyzing the parallel version will have a 6-core 
processor with 12GB RAM. 
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Digit Sequences Task 

Digit sequences made up from digits from the MNIST 
Handwritten Character Dataset 

10 different sequences of digits 0-9 

Each digit is a unique example taken from MNIST 
dataset 

Some of the sequences have shared subsequences 
 7 0 8 9 5 4 2 6 1 3 
 6 4 7 2 3 8 9 5 0 1 
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Data Set 

Analysis done using data sets of three sizes: 
  200 training sequences, 50 test sequences 
  500 train, 100 test 
  1000 train, 150 test 

10 digits per sequence... 
Total of 2,500, 6,000, and 11,500 iterations per respective data set 
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Single Process Baseline 



Identifying Hotspots 
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Experience with the network suggests parameter selection may strongly 
influence execution time – particularly Temporal Pooling parameters 

Baseline measurement suggests that the algorithms scale poorly with larger 
datasets – even with a multi-core implementation 

Acceleration is needed 

Profiling results show that 2 functions account for ~90%-98% of the total 
execution time 

Parallelization effort focuses on these 2 hotspots 



Preliminary Results 

Note: parallel scalability is the ratio of serial version elapsed time and elapsed time on P processors 
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Preliminary Results 

Results suggest that modest speed-up is readily achieved on multi-core 
systems 

Multi-core speedup can make HTM more feasible for moderate sized 
data sets 

Significantly larger data sets may remain prohibitive without further 
acceleration or modifications to the algorithm 
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GPU and FPGA 
  The algorithm is massively parallel with few dependencies, but it is very 

storage intensive 
  The biggest inner loop is the Large Neighborhood Convolution (LNC) used 

in both spatial and temporal pooling 
  Each weight is unique and is only used once, caching and on-chip memory 

won’t help, though caching prefetch may help a little 
  GPU: 

  Has the advantage of huge memory bandwidth, 144 GB/sec (with up to 6 GB on-
board RAM) for the latest Tesla 2070, 1.3 Tflops/sec 

  Bit level operations mean that most compute hardware sits idle 
  FPGA: 

  Fine grained parallel hardware 
  For external I/O the pins are there, but most current board implementations do not 

leverage the I/O for off chip memory access 
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  We are now working on both GPU and FPGA implementations of HTM 

  We do not have enough data to assess potential speed up 

  Implications for computer architecture 
  No caching, large sequential array access 
  Bit level computation, ultra low precision 
  Asynchrony 
  Error tolerance 
  Functional differentiation due to network weight profiles 
  Large, sparse connectivity 

  Our goal is small scale, ultra-low power, portable applications 
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Hardware Acceleration 
Long Term 
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From molecules to ISP … 
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Intelligent Signal Processing 

Hierarchical Modular Networks 

Associative Memory 

CMOS / Nano-grids 

  One can then use associative memory 
structures, inspired by cortical circuits, to 
implement HTM 

  Significant research into nanogrid structures 
(such as CMOL), which have the potential 
for implementing very dense associative 
data structures 

  Now we are exploring the use of more 
radical devices to implement associative 
memory 

  NSF CDI “Inference at the Nano-scale” 
  Intel Non-Boolean Computing Project 
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Our Goal – A Field Adaptable Bayesian Array (FABA) 

Analog 
Associative 

Memory 

Analog 
Associative 

Memory 

Analog 
Associative 

Memory 

Analog 
Associative 

Memory 

Each Square is a single Bayesian Memory Node 

- Digitally multiplexed interconnect provides sparse inter-module connectivity, I/O, signal 
amplification 
- Associative memory implementation in analog CMOS 
- Can also be implemented in CMOL with memristor parameters in future versions for very 
high density computation 

Thousands of 
of nodes 

Nanoscale 
Circuits 
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HTM Applications 
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HTM and Intelligent Signal Processing – Danny Voils 

  Using Hierarchical Temporal Memory to do scale invariant object 
recognition using real world streaming images. 

  Real time Images are captured using an open source, WIFI enabled robot.  
  Image preprocessing is performed using a biologically inspired intelligent 

signal processing component. 
  Relevant image features are extracted and presented to an HTM network 

where they are statistically analyzed for spatial and temporal patterns. 
  The top layer of the HTM hierarchy combines pattern information to perform 

object classification. 
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A Hierarchical Processing Network   

  Processing nodes are arranged in a 
hierarchy with parent nodes in higher 
layers connected to child nodes in 
lower layers. 

  Input data in the form of image 
features are presented to the bottom 
layer. 

  Child outputs are concatenated 
together and sent up the the 
hierarchy. 

  The top node performs the final 
classification step. 
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Processing Node Architecture 

  Within each processing node, spatial and 
temporal poolers are used for learning and 
pattern analysis. 

  After training, each input data maps directly to 
a quantization center using some distance 
metric - the index of the closest match is sent 
to the temporal pooler. 

  The temporal pooler creates groups of 
temporally adjacent inputs from the spatial 
pooler. 

  After training, inputs are mapped to a group 
and the group index is sent to higher layers of 
the hierarchy. 
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SRV1 Robot 

  This robotic vision testbed is used to evaluate  biologically inspired 
computing models.  

   It streams video images in real time to a PC for processing. 
   Movement commands are sent back to the robot for execution. 
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Using ISP for Image Feature Extraction 
  Rather than expose the HTM network 

to the input image directly, it is first 
passed through pre-processing filters. 

  These filters are patterned after 
structures thought to exist in visual 
cortex. 

  The first layer performs localized 
Gabor wavelet transformations. 

  Higher layers perform a  localized 
maximum of inputs from lower layers. 

  Features are combined in the highest 
layers forming an abstract 
representation of the input image. 

  The HTM network can take input from 
any of these layers, but which one is 
best? 
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HTM in power systems analysis and control: 

“Self-Learning” Power Analytics System Approved In Factory Acceptance Test for 
Offshore Oil Platform 

  SAN DIEGO, Calif. – April 20, 2010 – EDSA (www.edsa.com), the leading developer of power 
analytics solutions for the design, testing, and management of complex electrical power systems, 
today announced the successful completion of the Factory Acceptance Test for a groundbreaking 
new electrical power analytics, supervision and diagnostic system, scheduled to be deployed in a 
40,700 barrel-per-day oil field in the North Sea. When deployed, it will be the first facility to deploy 
an autonomous power network using EDSA’s Paladin Live software in conjunction with 
Hierarchical Temporal Memory (HTM) from Numenta Inc. 

  “The combination of EDSA’s power analytics and Numenta’s HTM technologies is the first of the 
coming generation of automated, self-learning systems for managing complex, enterprise-wide 
infrastructure… something so complex and so dynamic, that humans simply could not do it,” said 
Kevin Meagher, Chief Technology Officer of EDSA. “These technologies together offer 
unprecedented benefits for every organization with mission-critical power needs. We are 
extremely pleased with the synergies that have melded EDSA and Numenta into a strong and 
innovative partnership. 
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A Smart Grid Appliance: The Electric Vehicle 

  Embedded computing 
  Motor control, power electronics 
  Battery management / smart power usage 
  Hybrid systems 
  Other vehicle systems 
  It’s not just about communicating data! 
  It’s also about analyzing the data and controlling systems 
  Safety / Autonomous systems 
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  Investigating the application of HTM to Intel’s Home Energy Management 
Systems 

  Intel lead is Annabelle Pratt, Intel Energy Systems Research Lab 
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