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INCOMPRESSIBLE FINITE ELEMENTS VIA HYBRIDIZATION.

PART II: THE STOKES SYSTEM IN THREE SPACE DIMENSIONS

BERNARDO COCKBURN AND JAYADEEP GOPALAKRISHNAN

Abstract. We introduce a method that gives exactly incompressible velocity approxima-
tions to Stokes flow in three space dimensions. The method is designed by extending the
ideas in Part I of this series, where the Stokes system in two space dimensions was considered.
Thus we hybridize a vorticity-velocity formulation to obtain a new mixed method coupling
approximations of tangential velocity and pressure on mesh faces. Once this relatively small
tangential velocity–pressure system is solved, it is possible to recover a globally divergence-
free numerical approximation of the fluid velocity, an approximation of the vorticity whose
tangential component is continuous across inter-element boundaries, and a discontinuous nu-
merical approximation of the pressure. The main difference with the two dimensional case
treated in Part I is in the use of Nédélec elements, which necessitates development of new
hybridization techniques. We also generalize the method to allow for varying polynomial
degrees on different mesh elements and to incorporate certain non-standard but physically
relevant boundary conditions.

1. Introduction

This is a sequel to our paper [7] in which we introduced a new hybridized method for the
Stokes equations in two space dimensions. Here we generalize the ideas presented in [7] to
the Stokes system in three space dimensions. We also extend the method to allow variable
degrees of approximation on different mesh elements. As in [7], the three dimensional version
of our method simultaneously yields an exactly divergence free numerical approximation of
the fluid velocity and a continuous numerical approximation of the vorticity. A discontinu-
ous numerical approximation of the pressure can also be recovered separately. These three
approximations are obtained in an element by element fashion after one global system for
certain Lagrange multipliers arising from the hybridization is solved. This global system rep-
resents a new “tangential velocity–pressure” discretization of the Stokes system on the mesh
faces because the Lagrange multipliers are approximations to the pressure and tangential
fluid velocity on element interfaces.

We are hybridizing a mixed formulation that has previously appeared in the literature [9,
14] (cf. [1, 3]). However, the previous works resort to introduction of a stream function
variable to obtain exactly divergence free numerical velocities. This approach is beset with
significant difficulties in three dimensions: (i) While the stream function is a scalar function
in two dimensions, in three dimensions, it is a vector function, so its introduction into the
method, as in [14], leads to a significant increase in number of degrees of freedom. (ii) The
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2 BERNARDO COCKBURN AND JAYADEEP GOPALAKRISHNAN

stream function is not uniquely defined. While in two dimensions it is defined up to a
constant, in three dimensions, one has to impose a nontrivial “gauge condition”. (iii) The
definition of the stream function must take into account the topology of the three dimensional
domain. For domains that are not simply connected, one must find “cuts” and base the
definition of finite element spaces for the stream function on them – see [1]. Finding such
cuts in automatic computation is not easy. (iv) Formulations involving the stream function
alone leads to fourth order problems (see e.g. [1, 9]) and hence to badly conditioned matrices.
Notwithstanding these difficulties, the use of the stream function has hitherto been the only
successful approach in obtaining exactly incompressible approximations of all orders in three
dimensions. The search for exactly incompressible numerical approximations to Stokes flow
has a rich history. References to some previous attempts can be found in [4, 7, 11].

All the above mentioned difficulties disappear in our approach via hybridization. Because
we do not introduce the stream function, our method requires nothing special to be done
when the computational domain has nontrivial topology. For the same reason we never
encounter a fourth order operator – our matrices represent discretizations of operators of
second order only. Moreover, while the introduction of the stream function results in an
increase in degrees of freedom in some of the previous works, our approach using hybridization
actually results in a decrease in degrees of freedom, as we shall see in Section 3.

As we move from two to three space dimensions, the main difference we encounter is in
the treatment of vorticity. When considering finite element approximations to vorticity, we
now have to use the H(curl , Ω)-conforming Nédélec elements [13], while in two dimensions
we used the simpler H1(Ω)-conforming finite elements. However, the velocity approximation
is treated in exactly the same way as in the two dimensional case – it continues to be in
an H(div, Ω)-conforming subspace of exactly divergence free functions. Another important
similarity between the two and three dimensional case is in the structure of the method and
equations, so we are able to easily adapt the elimination procedure which we developed in [7]
to three dimensions. The result is a Lagrange multiplier system that is completely analogous
to the two dimensional case.

The introduction of Nédélec spaces necessitates development of new hybridization tech-
niques in three dimensions. Indeed, the Nédélec space has edge degrees of freedom and none
of the existing hybridization techniques handle them. To elaborate, consider the following
sequence of spaces:

H1(Ω)/R
grad
−−−→ H(curl , Ω)

curl
−−−→ H(div, Ω)

div
−−−→ L2(Ω).

As we traverse the sequence from right to left, the continuity conditions on the spaces
become more complex. Finite element subspaces of H(div, Ω) consist of functions whose
normal component is continuous across element interfaces. Hybridization techniques to relax
such continuity are well known and they are the basis for the hybridized Raviart-Thomas and
BDM-type methods [2, 5]. Such hybridizations relaxed continuity of finite element subspaces
across interior mesh faces using traces from (just) two elements sharing an interior mesh
face. However, once we move on to finite element subspaces of H(curl , Ω), the continuity
constraints are more complicated, as reflected by the fact that these spaces have edge degrees
of freedom which are connected to multiple elements. Moving further left to H1(Ω) we find
finite element subspaces having vertex degrees of freedom, adding another layer of complexity.
Since all previously known hybridization techniques relaxed continuity across mesh faces, we
find a widespread belief that methods using edge and vertex degrees of freedom are not
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amenable to hybridization. In this paper, we dispel this belief by hybridizing a method that
uses Nédélec spaces having edge degrees of freedom. It is also possible to hybridize methods
that use H1(Ω)-subspaces, as we demonstrated in [7].

We make two other extensions in this paper. The first extends to the Stokes system
what was done for second order elliptic equations in [6]. Thus, we exploit the ease of
construction of variable degree methods via hybridization to give a variable degree version of
the original mixed method. Our hybridized variable degree method does not require one to
implement transition elements. This is quite convenient considering that transitional Nédélec
elements are not trivial to implement. Second, we show how one can incorporate boundary
conditions involving the pressure and tangential vorticity into our method. Although such
boundary conditions are physically relevant, few methods are known that can incorporate
them naturally.

We have kept the organization of this paper very similar to Part I [7] to render the analo-
gies and differences with the two dimensional case transparent. We introduce the variable
degree method in Section 2. In Section 3, we briefly present the elimination strategy to
obtain a reduced Lagrange multiplier system. A computable basis for the space of Lagrange
multipliers of variable degree is given in Section 4 and full details of the lowest order case
are given in Section 5. Finally, in Section 6, we show how to incorporate other boundary
conditions.

2. The variable degree hybridized mixed method

The three dimensional Stokes problem is to find a fluid velocity field u and pressure p
satisfying

−∆u+ grad p = f , on Ω,(1)

divu = 0, on Ω,(2)

u = g, on ∂Ω.(3)

Here we assume that Ω is a bounded connected domain with polyhedral boundary ∂Ω such
that Ω lies only on one side of ∂Ω locally, the data f is in L2(Ω)3 and g ∈ H1/2(∂Ω)3. We
do not assume that Ω is simply connected. We also do not assume that ∂Ω is connected.
We require the data g to satisfy the compatibility condition

(gn, 1)∂Ω = 0,

where gn = g ·n and n is the outward unit normal on ∂Ω. Under this assumption, it is well
known that the Stokes problem has a unique solution.

Let us reformulate the Stokes problem by introducing vorticity ω = curlu. Using the
identity

−∆u = curl curlu− grad divu,

the Stokes system (1)–(3) can be rewritten as

ω − curlu = 0 on Ω,(4)

curlω + grad p = f on Ω,(5)

divu = 0, on Ω,(6)

u � = g � , on ∂Ω,(7)

u ·n = g · n, on ∂Ω,(8)
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where we have split equation (3) into two equations, one in the direction of the outward unit
normal n on ∂Ω, and the other in the tangent plane, i.e., g � := g − (g · n)n denotes the
tangential component of g.

There is a well known weak problem based on this reformulation. Define W = H(curl , Ω)
and

V(b) = {v ∈ H(div, Ω) : div v = 0 and v · n|∂Ω = b}.

for any b ∈ H−1/2(∂Ω). Then (ω,u) is the only element of W × V(gn) satisfying

(ω, τ )Ω − (u, curl τ )Ω = (g � , τ )∂Ω for all τ ∈ W,(9)

(v, curlω)Ω = (f , v)Ω for all v ∈ V(0).(10)

Here (·, ·)Ω denotes the L2(Ω) (or L2(Ω)3) innerproduct. Note that the pressure has disap-
peared in this mixed formulation.

One way to develop a hybridized mixed method that discretizes (9)–(10) is to first approx-
imate the weak formulation by a conforming mixed method and then relax the continuity
constraints of the discrete spaces. Here, we motivate the construction of our variable de-
gree hybridized mixed method (9)–(10) by another equivalent approach using the differential
problem (4)–(8). Suppose the domain Ω is meshed by a tetrahedral mesh T (satisfying the
usual finite element assumptions). To each tetrahedron K, we associate a degree k(K) and
the following pair of spaces:

W (K) = Pk(K)(K)3 ⊕ Sk(K)+1(K),

V (K) = {v ∈ Pk(K)(K)3 : div v = 0},

where P`(K)3 denotes the set of vector functions whose (three) components are polynomials
of degree at most ` and S`(K) is the set of all vector functions p`(x) whose components are
homogeneous polynomials of degree ` satisfying p`(x) · x = 0. Define the variable degree
Nédélec space with no continuity conditions by

Wh = {w : w|K ∈ W (K) for all K ∈ T}.

While the vorticity is approximated in Wh, the velocity is approximated in

Vh = {v : v|K ∈ V (K) for all K ∈ T}.

The numerical method is motivated by requiring that the equations (4) and (5) be satisfied
weakly on each element K: Multiplying (4) and (5) by test functions τ ∈ W (K) and
v ∈ V (K), and integrating by parts,

(ω, τ )K−(u, curl τ )K − (u � ,n× τ )∂K = 0,

(v, curlω)K + (v · n, p)∂K = (f , v)K,

where u � denotes the tangential component of u on ∂K. Therefore we require that the
discrete approximations to vorticity and velocity, namely ωh and uh, respectively, satisfy

(ωh, τ )K−(uh, curl τ )K − (λh,n× τ )∂K = 0,

(v, curlωh)K + (v ·n, ph)∂K = (f , v)K,

where we have introduced two additional approximations λh ≈ u � and ph ≈ p, which we shall
call Lagrange multiplier approximations of the tangential velocity and pressure, respectively.

The description of the method is completed by adding appropriate continuity conditions
for ωh and uh at the element interfaces. Since ωh and uh are to approximate ω and u
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in (9)–(10), the functional setting of (9)–(10) clarifies the continuity constraints to be put
on ωh and uh. To make this precise, let us introduce some more notation: Let F denote
the set of all faces of the triangulation T. On every interior face in F ∈ F shared by two
tetrahedra K+

F and K−
F we define

[[v ·n]]F = v+
F · n+

F + v−F ·n−
F ,

[[n× v]]F = n+
F × v+

F + n−
F × v−F .

where n+
F and n−

F denote the outward unit normals on the boundaries of K+
F and K−

F ,
respectively, and v±

F (x) = limε↓0 v(x− εn±
F ). On faces e ⊂ ∂Ω, we set

[[v · n]]F = v|∂Ω · n and [[n× v]]F = 0.

By [[v ·n]] (without subscripts) we mean the function that is defined on the union of all the
faces and equals [[v · n]]F on each face e ∈ F. The function [[n × v]] is similarly defined.
Then here are our spaces of Lagrange multipliers:

Ph = {p : p = [[v · n]] for some v ∈ Vh},(11)

Mh = {µ : µ = [[n× v]] for some v ∈ Wh}.(12)

They are ideal for imposing the natural continuity conditions of the Sobolev spaces W and
V on the discrete approximations ωh and vh, e.g.,

∑

F∈ �

(µ, [[n× ωh]])F = 0, for all µ ∈ Mh,

implies that that ωh ∈ H(curl ).
Thus we have motivated the following definition of our variable degree hybridized mixed

method: Find (ωh,uh,λh, ph) ∈ Wh × Vh × Mh × Ph satisfying

(ωh, τ h)Ω−(uh, curl τ h)Ω −
∑

F∈ �

(λh, [[n× τ h]])F = (g � ,n× τ h)∂Ω,(13)

(vh, curlωh)Ω +
∑

F∈ �

(ph, [[vh ·n]])F = (f , vh)Ω,(14)

∑

F∈ �

(qh, [[uh ·n]])F = (gn, qh)∂Ω,(15)

∑

F∈ �

(µh, [[n× ωh]])F = 0,(16)

for all τ h ∈ Wh, vh ∈ Vh, qh ∈ Ph,µh ∈ Mh.

Proposition 2.1. There is a unique solution for the system (13)–(16).

Proof. Since the system is square, we only need to verify that when f and g are zero, all
solution components vanish. Zero data implies that ωh and uh lie in the following two spaces
respectively:

Wh = Wh ∩W, Vh(0) = Vh ∩V(0).

Therefore we find from (13) and (14) that

(ωh, τ h)Ω − (uh, curl τ h)Ω = 0, for all τ h ∈ Wh(17)

(vh, curlωh)Ω = 0, for all vh ∈ Vh(0).(18)
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Setting vh = uh in (18) and adding these equations, one immediately finds that (ωh, τ h)Ω = 0
for all τ h ∈ Wh, so ωh = 0. Now that ωh vanishes from (17), we have

(19) (uh, curl τ h)Ω = 0 for all τ h ∈ Wh.

By a well known property of the Nédélec space, we have that on each element curl W (K) =
V (K). Moreover, [[n · curlw]]F = 0 whenever [[n×w]]F = 0 for every interior mesh face F .
Hence, it is easy to see that for the variable degree spaces Wh and Vh(0) we have (cf. [9,
Lemma III.5.1])

Vh(0) ⊂ curl Wh.

Therefore, in (19) we can choose τ h such that curl τ h = uh, so uh vanishes. Finally, since
ωh and uh vanishes from (13) and (14) we find that the Lagrange multipliers λh and ph must
vanish as well. �

In the uniform degree case, our hybridized mixed method is equivalent to the mixed
method considered in [14] in the following sense: Our ωh and uh coincide with vorticity and
velocity approximations discussed there. Therefore, the error estimates proven there apply
to our solution components ωh and uh. Note that for the mixed method to make sense, the
space Vh(0) must be non-empty (e.g., in (18)). We tacitly assume that it is. It may appear
at this point that our method has too many unknowns. But as we shall see in the next
section, it is possible to eliminate all but the Lagrange multiplier variables from (13)–(16),
thus making our formulation more attractive.

Before proceeding to the above mentioned elimination, let us note one advantage that
results from hybridization: Since hybridization provides an approximation to the pressure
on the mesh faces through the Lagrange multiplier ph, we can compute an approximation
to the pressure inside mesh elements in a completely local (element by element) fashion.
Borrowing an idea from [4], we define the pressure πh on the triangle K as the element
of Pk(K)(K) such that

(20) −(πh, div v)K = (f , v)K − (curlωh, v)K − (v · n, ph)∂K ,

for all v in Pk(K)(K)3+xPk(K)(K), where n denotes the outward unit normal to K. That (20)
uniquely defines πh follows from two facts: (i) div : Pk(K)(K)3 + xPk(K)(K) 7→ Pk(K)(K) is
a surjection, and (ii) if div v = 0 for a v in Pk(K)(K)3 + xPk(K)(K), then v ∈ Pk(K)(K)3

and the right hand side of (20) is zero by the definition of the hybridized method. Thus our
method can simultaneously provide approximations to the velocity, vorticity, and pressure.

3. A characterization of the Lagrange multipliers

3.1. The Lagrange multiplier equation. We now show how one can eliminate the vortic-
ity as well as the velocity variables from our hybridized mixed method (13)–(16) and arrive
at a system of equations involving the Lagrange multipliers alone. Our arguments here are
a straightforward generalization of the arguments in [7].

We define lifting maps that map functions defined on element interfaces into functions
on Ω: Define (w(λ),u(λ)) ∈ Wh × Vh and ( � (p), u(p)) ∈ Wh × Vh element by element as
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follows:

(w(λ), τ )K − (u(λ), curl τ )K = (λ,n× τ )∂K, for all τ ∈ W (K),(21)

(v, curl w(λ))K = 0, for all v ∈ V (K),(22)

( � (p), τ )K − (u(p), curl τ )K = 0, for all τ ∈ W (K),(23)

(v, curl � (p))K = −(p, v · n)∂K, for all v ∈ V (K).(24)

In addition, define (w(f), u(f)) and (w(g � ),u(g � )) in Wh × Vh by

(w(f), τ )K − (u(f), curl τ )K = 0, for all τ ∈ W (K),(25)

(v, curl w(f))K = (f , v)K, for all v ∈ V (K),(26)

(w(g � ), τ )K − (u(g � ), curl τ )K = (g � ,n× τ )∂K∩∂Ω, for all τ ∈ W (K),(27)

(v, curl w(g � ))K = 0, for all v ∈ V (K).(28)

Note that all of the above local problems are uniquely solvable. Hence, these local maps are
well defined.

The main result of this section characterizes the Lagrange multipliers as the unique solution
of a variational equation involving the bilinear forms,

a(λ,µ) = (w(λ),w(µ))Ω,

c(p, q) = ( � (p), � (q))Ω,

b(µ, p) = −
∑

K∈ �

(u(µ), curl � (p))K,

and the functionals

`1(µ) = (f ,u(µ))Ω − (g � ,w(µ))∂Ω(29)

`2(q) = (f , u(q))Ω + (gn, q)∂Ω − (g � , � (q))∂Ω.(30)

Theorem 3.1. The Lagrange multiplier (λh, ph) ∈ Mh×Ph of the hybridized mixed method (13)–
(16) is the unique solution of

a(λh,µ) + b(µ, ph) = `1(µ), for all µ ∈ Mh and(31)

b(λh, q) − c(ph, q) = `2(q), for all q ∈ Ph.(32)

Moreover, the solution components ωh and uh of the hybridized mixed method (13)–(16) can

be determined locally as follows:

ωh = w(λh) + � (ph) +w(gt) + w(f),(33)

uh = u(λh) + u(ph) + u(gt) + u(f).(34)

The proof of this theorem proceeds exactly along the lines of the proof of the analogous
theorem in [7].
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4. Local bases for Lagrange multipliers

It is clear from Section 3 that one should, in practice, implement our hybridized mixed
method not in its direct form (13)–(16), but rather in the reduced form (31)–(32). This
requires a computable basis for the Lagrange multiplier spaces Mh and Ph. Local bases
for Wh and Vh are obvious as they do not have continuity constraints across mesh faces.
But bases for the Lagrange multiplier spaces are not immediate from their definition, so we
develop local bases for Ph and Mh in this section. Note that the construction of the basis
for the space of tangential velocities in three space dimensions has important differences
compared to the two dimensional case.

4.1. The space of interface pressures. We begin with a characterization of the space of
pressure Lagrange multipliers arising from the first hybridization. To state it, define

(35) k(F ) = max{k(K) : K ∈ T and K has F as a face},

for every F ∈ F, and set P (F ) equal to the space of polynomials of degree at most k(F ) on
the face F .

Proposition 4.1. The space Ph defined in (11) is characterized by

Ph =

{
p : p|F ∈ P (F ) for all F ∈ F and

∑

F∈ �

(p, 1)F = 0

}
.

Note that the use of variable degree spaces requires the pressure Lagrange multiplier to
have the maximum of the degrees from adjacent elements.

The proof of this proposition is quite similar to that of the two dimensional case considered
in [7]. The two main steps of the proof are as follows. In the first, one constructs a local
extension ṽh of any given p ∈ Ph into the Raviart-Thomas space

Rh = {r : r|K = xp(x) + q for some p ∈ Pk(K)(K) and q ∈ Pk(K)(K)3}

such that [[ṽh ·n]] = p. In the second, one uses a global correction zh ∈ Rh∩H0(div, Ω) such
that vh = ṽh − zh is in Vh and satisfies [[vh · n]] = p. This is possible by the surjectivity of
the divergence map

div : Rh ∩ H0(div, Ω) 7→ Sh,

where Sh = {v : v|K ∈ Pk(K)(K) and average of v on Ω is zero }. While this surjectivity is
a well known property for uniform degree spaces, for the variable degree Raviart-Thomas
space, it follows from our results in [6]. The remaining details of the proof of Proposition 4.1
are identical to its two dimensional analogue in [7], so we omit them.

By Proposition 4.1, the Lagrange multiplier space Ph can be identified with P̃h/R where

P̃h = {p : p|F ∈ Pk(F ) for all F ∈ F}.

Obviously, we can construct a basis for P̃h by taking the union of local bases for Pk(F ),
say Legendre polynomials, on every edge F ∈ F. It is enough to construct such a basis in
computations.
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Ò

F 1
`

F 2
`

F 3
`

F 4
`

F 5
`

`

Figure 1. Construction of basis functions supported near a mesh edge `

4.2. The lowest order tangential velocity space. Now, we begin the construction of a
local basis for the space Mh of tangential velocity Lagrange multipliers. In this subsection,
we study the lowest order case which is easier to describe. In the next subsection, we consider
the general case.

In order to explicitly give a local basis for Mh, we introduce some more notation. Let K
be a tetrahedron in T and ` be one of its edges. We denote by Λ`,K the union of the two
faces of K that share the edge `. Define the collection of such wedges by

Λ̂h = {Λ`,K : ` is an edge of T and K ∈ T}.

For all Λ ∈ Λ̂h, we denote by KΛ the (unique) tetrahedron K ∈ T such that Λ ⊆ ∂K.
The edge of a wedge Λ is the common edge of the two faces that form Λ. This edge is
denoted by `Λ. Let βi and βj be the barycentric coordinate functions (with respect to the
tetrahedron KΛ) associated with the two endpoints of `Λ . Set

φΛ =

{
βi ∇ βj − βj ∇ βi, on KΛ,

0, on all other K ∈ T.

We define a basis for Mh using the functions

ψΛ = [[n× φΛ]].

Since φΛ ∈ Wh, the functions ψΛ are in Mh by definition. But not all of ψΛ, Λ ∈ Λ̂h are
linearly independent, e.g., the functions ψΛ for all Λ connected to one edge are linked by
one equation. Therefore, for every mesh edge ` (including edges ` ⊂ ∂Ω), we arbitrarily pick

one wedge Λ ∈ Λ̂h with edge `Λ = `, denote it by Ò (see Fig. 1), and “omit” it: Define

Λh = Λ̂h \ {Ò : for all mesh edges `}.

Proposition 4.2. The set B0 = {ψΛ : Λ ∈ Λh} is a basis for Mh whenever k(K) = 0 for

all K ∈ T.
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Proof. Since the span of B0 is contained in Mh, it suffices to prove that

card B0 = dim Mh, and(36)

B0 is a linearly independent set.(37)

To prove (36), let us first count the dimension of Mh. Defining Th : Wh 7→ Mh by

Thτ = [[n× τ ]],

we note that Mh is the range of Th. Since the null space of Th is Wh, by the rank-nullity
theorem, we find that

(38) dim(Mh) = rank(Th) = dim(Wh) − dim(Wh).

Now, W (K) in the lowest order case is a space of dimension six. Since the number of degrees
of freedom of the conforming lowest order Nédélec space Wh equals the number of edges nE

in the mesh, we find that
dim(Mh) = 6nK − nE,

where nK is the number of tetrahedra in the mesh T. Thus

card B0 = card Λh = card Λ̂h − nE = 6nK − nE,

which coincides with dim Mh.
Now, let us prove (37). We want to show that if

(39) µ =
∑

Λ∈Λh

cΛψΛ

vanishes, then all the coefficients cΛ are zero. Notice that the function µ, in general, is not
well defined at the edge `, as the limits of µ from various faces sharing the edge ` can differ.
In order to examine these limits, we introduce the following notation. Enumerate all Λ ∈ Λh

with edge ` as Λ1
` , Λ

2
` , . . . , Λ

N`

` and all faces in F sharing the edge ` as F 1
` , F 2

` , . . . F N`+1
` (see

Fig. 1) in such a way that the two faces of Λj
` are F j

` and F j+1
` and the two faces of Ò are

F 1
` and F N`+1

` . Let tF be the unit tangent vector along ∂F fixed by arbitrarily choosing one
of the two possible orientations. Let nF be a unit vector normal to F chosen by the right
hand rule and

(40) νF = tF × nF .

Note that both the choices of orientation for tF yield the same νF , which represents the
outward unit normal of F relative to the plane containing F .

Our proof proceeds by examining the following functions on the edge `:

µi
` :=

(
µ|F i

`

)
· νF i

`

∣∣∣∣
`

=
∑

Λ∈Λh

cΛ

(
ψΛ|F i

`
· νF i

`

)∣∣∣∣
`

.

Now, there are at most five Λ ∈ Λh such that ψΛ is nonzero on the face F 1
` . Moreover, only

one of them has nonzero normal trace ψΛ · νF i
`

on `, namely ψΛ1
`
. Hence

µ1
` = cΛ1

`

(
ψΛ1

`
|F i

`
· νF 1

`

)∣∣∣∣
`

.

It then follows that

|µ1
` | =

∣∣∣∣νF 1
`
· (cΛ1

`
ψΛ1

`
)
∣∣
`

∣∣∣∣ =

∣∣∣∣cΛ1
`

(νF 1
`
× nF 1

`
) ·φΛ1

`

∣∣
`

∣∣∣∣ =

∣∣∣∣cΛ1
`

(tF 1
`
· φΛ1

`
)
∣∣
`

∣∣∣∣ =
1

h`

∣∣cΛ1
`

∣∣,
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where h` denotes the length of the edge `. Similarly, we also find that |µN`+1
` | = |cN`+1

Λ | and

|µj
`| =

1

h`
|cΛj

x
− cΛj−1

x
| for all j = 2, . . . , N`.

If µ vanishes everywhere, then for any mesh edge `, the function µj
` defined above must

vanish on the edge `. Hence

|cΛ1
`
| = |c

Λ
N`+1

`

| = 0, and

|cΛj
`
− cΛj+1

`
| = 0, for all j = 2, . . . , N`.

Hence cΛj
`
= 0 for all j. This argument applies to every mesh edge, so all the coefficients cΛ

in (39) are zero. Hence (37) follows. �

4.3. The higher order space of tangential velocities. In this subsection we show how
to construct a local basis for the Lagrange multiplier space Mh in the general case of the
higher order spaces and the variable degree method. Here there is one important difference
with the two dimensional case. In the two dimensional case [7], we were able to obtain
a basis for the higher order space by augmenting the lowest order basis with some edge
basis functions. In the three dimensional case however, we cannot expect to get a basis
for the higher order space by just augmenting B0 with some face basis functions. This is
because while in two dimensions, a vertex represents at most one degree of freedom, in three
dimensions, an edge can have more than one degree of freedom associated to it. Thus we
must add to B0 functions that represent face degrees of freedom as well as functions that
represent the additional edge degrees of freedom.

In order to give a basis explicitly, as well as to understand the nature of our space of
tangential velocities, it is convenient to recall a basis for the Nédélec space given in [10]. For
any integer k ≥ 0 and any N -simplex D (N = 2 or 3 for our purposes), the Nédélec space is

Wk(D) = Pk(D)N ⊕ Sk+1(D).

Let β1, . . . , βN+1 denote the N +1 barycentric coordinate functions of the N -simplex D. Let
Ilm(N, k) denote the set of all multi-indices α := (α1, . . . , αN) (where αi are non-negative
integers) such that αi = 0 for all i not equal to l or m and αl + αm = k. Similarly,
Ilmn(N, k) is the set of multi-indices α with αi = 0 for all i not equal to l, m, or n, and
αl + αm + αn = k. Using powers of barycentric coordinates (for α = (α1, . . . , αN+1), we
define β

�

:= βα1

1 . . . β
αN+1

N+1 ) we introduce the following sets of functions:

B
(D)
lm =

⋃

� ∈Ilm(N+1,k)

{
β

�

(βl ∇ βm − βm ∇ βl)

}
,(41)

B
(D)
lmn =

⋃

� ∈Ilmn(N+1,k−1)

{
β

�

(βlβm ∇ βn − βmβn ∇ βl), β
�

(βmβn ∇ βl − βnβl ∇ βm)

}
.(42)

From the results of [10], it now follows that if D is a triangle, then the union of the sets

B
(D)
12 , B

(D)
23 , B

(D)
31 and B

(D)
123 , form a basis for the Nédélec space Wk(D). If D is a tetrahedron

instead, then a basis for Wk(D) is

B
(D)
12 ∪ B

(D)
13 ∪ B

(D)
14 ∪ B

(D)
23 ∪ B

(D)
24 ∪ B

(D)
34 ∪ B

(D)
123 ∪ B

(D)
124 ∪ B

(D)
134 ∪ B

(D)
234 ∪ B

(D)
1234,
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where

B
(D)
1234 :=

⋃
{β

�

(β1β2β3 ∇ β4 − β2β3β4 ∇ β1),β
�

(β2β3β4 ∇ β1 − β3β4β1 ∇ β2),

β
�

(β3β4β1 ∇ β2 − β4β3β2 ∇ β1) : α ∈ I1234(N + 1, k − 2)}.

Note that the basis functions in (41) are “edge” basis functions, those in (42) are “face”

basis functions and the ones in B
(D)
1234 are “interior” basis functions, in the sense explained

in [10].
Since the Lagrange multiplier space Mh is obtained using the tangential traces of functions

in Wh, it is instructive to study the space of tangential traces of the Nédélec space on one
tetrahedron K. Let a1,a2,a3 and a4 be the vertices of K, Flmn be the face formed by al,am

and an, and eij be the edge formed by ai and aj. We denote by n × Wk(K) the space of
functions on ∂K of the form n×w for some w ∈ Wk(K). Recall that for any N -dimensional
domain D, the Raviart-Thomas space of polynomials is Rk(D) = xPk(D) + Pk(D)N where
x is the coordinate vector on D. Define the Raviart-Thomas space on the manifold ∂K by

Rk(∂K) = {r : r|Fijl
∈ Rk(Fijl) and (r|Fijl

)·νFijl
+(r|Fijm

)·νFijm
= 0 on eij, for all i, j, l, m},

where we have used the notation in (40). Then we have the following result:

Proposition 4.3. The space of tangential traces of the Nédélec space n × Wk(K) is the

Raviart-Thomas space Rk(∂K).

Proof. We begin by proving that n × Wk(K) ⊆ Rk(∂K). Let the tangential component of
w ∈ Wk(K) on ∂K be denoted by w � . We first prove that w � on face Flmn is in Rk(Flmn).

It is easy to see from the structure of the basis functions in (41) that if w ∈ B
(K)
ij then

w � |Flmn
is zero if i or j does not belong to {l, m, n}. If both i and j are in {l, m, n} then

w � |Flmn
∈ B

(Flmn)
ij . Therefore, we find that w � |Flmn

is in the Nédélec space Wk(Flmn).
In two dimensions, the Nédélec space is the “rotated” Raviart-Thomas space. Indeed, if

D is a triangle in the x-y plane then

Wk(D) = Pk(K)2 ⊕ Sk+1(K) = Pk(K)2 ⊕

(
−y
x

)
Pk(K).

Since n×w|Flmn
is w � |Flmn

rotated (by an angle of π/2), it follows that the tangential trace
n×w on Flmn is in the Raviart-Thomas space Rk(Flmn).

To show the continuity of the normal components of n×w across edges of ∂K, consider an
edge eij shared by two faces Fijl and Fijm. Then by (40) and the continuity of the tangential
components of the Nédélec space, we have the following equalities on eij:

(n×w)|Fijl
· νFijl

= (νFijl
× n) ·w|Fijl = −tFijl

·w|Fijl

= tFijm
·w|Fijm = −(n×w)|Fijm · νFijm

.

Thus n × w is in Rk(∂K) whenever w ∈ Wk(K). It is easy to see that all functions in
Rk(∂K) can be obtained as tangential traces of Wk(K). �

Now we are ready to describe the building blocks of a basis for the general higher order
Mh arising from the variable degree Nédélec spaces. The basis is divided into two parts: one
corresponding to the interior faces of the mesh and another corresponding to the wedges in
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Λh. The former is easy to describe: Let F0 denote the set of all interior faces of the mesh T.
For any face F ∈ F0, define

V̊ (F ) = {w ∈ Rk(F )(F ) : w|∂F · νF = 0 on ∂F},

where k(F ) is the maximum of the degrees from either side of F , as defined in (35). Let B̊F

be a basis for V̊ (F ).
To describe the wedge basis functions, recall the notations introduced in the previous

subsection. Now we additionally require that for every mesh edge `, the “omitted wedge” Ò

is associated to a tetrahedron (having ` as an edge and) having the minimal degree: More
precisely, we choose Ò such that

(43) k(K �
`
) = min

i=1,...,N`

k(KΛi
`
).

For all the remaining Λ ∈ Λh, we define the following Raviart-Thomas type space:

R(Λ) = {r ∈ Rk(KΛ)(∂KΛ) : r is supported on Λ}.

Just as we decompose the standard Raviart-Thomas space, we can decompose R(Λ) into
subspaces corresponding to interior and boundary degrees of freedom: If F +

Λ and F−
Λ denote

the two faces of Λ and R̊(F±
Λ ) = {r ∈ Rk(KΛ)(∂KΛ) : r is supported on F±

Λ }, we can decom-

pose R(Λ) = R̊(F+
Λ )⊕ R̊(F−

Λ )⊕ V (Λ) where V (Λ) is a subspace that is linearly independent

to R̊(F+
Λ ) ⊕ R̊(F−

Λ ), e.g., we can choose V (Λ) to be the L2(Λ)-orthogonal complement of

R̊(F+
Λ )⊕ R̊(F−

Λ ) in R(Λ). (Another alternative is suggested in the next paragraph.) Let BΛ

be a basis for V (Λ). Our next theorem shows that such wedge basis functions together with
the face basis functions form a basis for the global space Mh.

Particular examples of BΛ and B̊F are easy to exhibit. We give one conveniently im-
plementable choice that follow from the previous results of [10]. Let Λ ∈ Λh and let βi,
i = 1, 2, 3, 4 denote the barycentric coordinates of KΛ such that βi and βj are associated to
the two endpoints of the edge `Λ. Define

φ
( � )
Λ =

{
β

�

(βi ∇ βj − βj ∇ βi) on KΛ

0 on all other K ∈ T.

for all α ∈ Iij(4, k(KΛ)) and

ψ
( � )
Λ = [[n× φ

( � )
Λ ]].

We can choose
BΛ = {ψ

( � )
Λ : α ∈ Iij(4, k(KΛ))}.

For an example of a face basis, let F ∈ F0. If βi, βj and βk are the three barycentric
coordinate functions of the face F , then we may choose

(44) B̊F =
⋃

� ∈Iijk(3,k(F )−1)

{
β

�

(βiβj ∇ βk−βjβk ∇ βi)×nF , β
�

(βjβk ∇ βi−βkβi ∇ βj)×nF

}
.

The following theorem gives a basis for Mh.

Theorem 4.1. The set

B =

( ⋃

Λ∈Λh

BΛ

)
∪

( ⋃

F∈ � 0

B̊F

)

is a basis for Mh.
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Proof. It follows from Proposition 4.3 that elements of B̊F and BΛ can be written as [[n×φ]]
for some φ ∈ Wh. Hence the span of B is contained in Mh. It now suffices to prove that

(45) card B = dim(Mh),

and that B is a linearly independent set. For any µ ∈ B̊F , the normal trace from F on ∂F
vanishes:

(µ|∂F ) · νF = 0.

The normal traces of functions in BΛ from Λ on `Λ are linearly independent. Hence by a
minor modification of the arguments in the proof of Proposition 4.2, the linear independence
of B follows from the linear independence of functions within BΛ and B̊F .

To prove (45), let us first count the number of elements in B. The dimension of V̊ (F ) can
be calculated easily (either directly or using (44)). It equals

card B̊F = 2 card I123(3, k(F ) − 1) = k(F )
(
k(F ) + 1

)
.

Moreover,
card BΛ = card I12(4, k(KΛ)) = k(KΛ) + 1.

Thus,

(46) card B =
∑

Λ∈Λh

(k(KΛ) + 1) +
∑

F∈ � 0

k(F )
(
k(F ) + 1

)
.

Now let us compute the dimension of Mh by using the following identity (see (38))

dim(Mh) = dim(Wh) − dim(Wh).

By the tangential continuity conditions on the variable degree space Wh, we find that the
space of traces nF ×w on a face F ∈ F for w ∈ Wh is Rk� (F )(F ) where

k
˜
(F ) = min{k(K) : K ∈ T and K has F as a face}.

Furthermore, the tangential component w · t on an edge E is in Pk� (E)(E) where

k
˜
(E) = min{k(K) : K ∈ T and K has E as an edge}.

Splitting the global degrees of freedom of Wh as edge degrees of freedom, face degrees of
freedom, and interior degrees of freedom, we find that

dim(Wh) =
∑

E∈
�

(
k
˜
(E) + 1

)
+

∑

F∈ �

k
˜
(F )

(
k
˜
(F ) + 1

)
+

∑

K∈ �

1

2

(
k(K) − 1

)
k(K)

(
k(K) + 1

)
.

Consequently,

dim(Wh) − dim(Wh) =

( ∑

K∈ �

6
(
k(K) + 1

)
−

∑

E∈
�

(
k
˜
(E) + 1

))

+

( ∑

K∈ �

4k(K)
(
k(K) + 1

)
−

∑

F∈ �

k
˜
(F )

(
k
˜
(F ) + 1

))
.(47)

Because of (38), it suffices to show that the above equals card B.
In order to do this, we simplify the right hand side of (47). Observe that by rearrangement,

∑

K∈ �

4k(K)
(
k(K) + 1

)
=

∑

F∈ �

(
k(K+

F )
(
k(K+

F ) + 1
)

+ k(K−
F )

(
k(K−

F ) + 1
))
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where K±
F is a defined earlier and one of k(K±

F ) is understood to vanish if F ⊆ ∂Ω. Hence
∑

K∈ �

4k(K)
(
k(K) + 1

)
−

∑

F∈ �

k
˜
(F )

(
k
˜
(F ) + 1

)
=

∑

F∈ � 0

k(F )
(
k(F ) + 1

)
.

Similarly, denoting by K i
`, i = 1, 2, . . . , N`, the tetrahedra in T which have ` as an edge, the

rearrangement
∑

K∈ �

6
(
k(K) + 1

)
=

∑

`∈
�

N∑̀

i=1

(
k(Ki

`) + 1
)

implies, in view of (43), that

∑

K∈ �

6
(
k(K) + 1

)
−

∑

E∈
�

(
k
˜
(E) + 1

)
=

∑

`∈
�

( N∑̀

i=1

k(Ki
`) + 1

)
−

∑

`∈
�

(
k(K �

`
) + 1

)

=
∑

Λ∈Λh

(
k(KΛ) + 1

)
.

Using these identities in (47) we obtain

dim(Wh) − dim(Wh) =
∑

Λ∈Λh

(
k(KΛ) + 1

)
+

∑

F∈ � 0

k(F )
(
k(F ) + 1

)

which coincides with card B as computed in (46). Hence (45) follows. �

5. Formulae for the lowest order case

In [7], we discussed a few implementation techniques to implement and solve the two
dimensional analogue of the Lagrange multiplier system (31)–(32). The considerations there
apply to the three dimensional case as well. In particular, one can form the stiffness matrix
of (31)–(32) and then perform one further elimination (of the pressure multiplier) to obtain
a Schur complement system involving the tangential velocity variable λh alone. We do not
repeat this and other details discussed in [7]. However, since the formulae for the liftings
change in three dimensions, we give here new formulae for the liftings as well as local stiffness
matrices for the lowest order case.

First, consider the local maps which define the linear and bilinear forms in (31)–(32) for
the lowest order case (i.e., k(K) = 0 for all K ∈ T). Let K be any tetrahedron in T. Simple
computations show that

w(λ) =
1

|K|

∫

∂K\∂Ω

λ× n ds, u(λ) =
1

2|K|

∫

∂K\∂Ω

(x− xK) × (n× λ) ds,

w(g � ) =
1

|K|

∫

∂K∩∂Ω

g � × n ds, u(g � ) =
1

2|K|

∫

∂K∩∂Ω

(x− xK) × (n× g � ) ds,

� (p) = � K
p × (x− xK), u(p) =

1

2|K|

∫

K

(x− xK) × � (p) dx,

w(f) = w
K� × (x− xK), u(f) =

1

2|K|

∫

K

(x− xK) × w(f) dx,

where the point xK denotes the barycenter of the tetrahedron K,

� K
p = −

1

2|K|

∫

∂K

pn ds, w
K� =

1

2|K|

∫

K

f dx.
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Λ

K

KL

KR

xL

xR

x1

x2

x3

x4

n3

n4

Figure 2. The lifting of the basis function from Λ is supported on three mesh
tetrahedra K, KL, and KR.

Here and elsewhere we use |X| to denote the measure of X.
In order to implement (31)–(32), one uses the basis for Mh and Ph described previously,

applies the above local lifting maps to the basis functions, and forms local stiffness matrices
of the bilinear forms of a(·, ·) and b(·, ·). In line with these steps, we next simplify the
above expressions in the case of a lowest order basis function of Mh and Ph. Let K be the
tetrahedron formed by vertices x1,x2,x3 and x4. Let Fi denote the face of K opposite to
vertex xi, and ni denote the outward unit normal of K on the face Fi. We first give the
lifting of ψΛ, a basis function associated with a Λ ∈ Λh with KΛ = K (see Figure 2). Since
we are considering the lowest order case, by definition,

ψΛ =






n3 × (β1 ∇ β2 − β2 ∇ β1) on face F3,

n4 × (β1 ∇ β2 − β2 ∇ β1) on face F4,

0 on all other mesh faces.

It is easily seen that the above expression is equal to the following:

ψΛ =






−
1

2|F3|
(x− x4) on face F3,

−
1

2|F4|
(x− x3) on face F4,

0 on all other mesh faces.

The computations are simplified by working with the latter expression for ψΛ, which also il-
lustrates the connection of the tangential traces with the Raviart-Thomas space. The liftings
wΛ := w(ψΛ) and uΛ := u(ψΛ) are supported on three tetrahedra, unless Λ intersects ∂Ω.
Since the formulae one obtains when Λ intersects ∂Ω is similar to the remaining cases, we
only consider the case shown in Figure 2, where the lifting is supported on the three tetra-
hedra shown, namely, K, KL and KR. Letting xij = xi − xj for any subscripts i and j, we
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K+
F

K−
F

F

n−
F

n+
F

Figure 3. The lifting of the pressure basis function from a face F is supported
on the tetrahedra adjacent to the face F .

have

wΛ = −
(x31 + x32) × n4

6|KL|
, uΛ =

−1

48|KL|

[
(x13 × n4) × xL1 + (x23 × n4) × xL2

]
, on KL,

wΛ = −
(x41 + x42) × n3

6|KR|
, uΛ =

−1

48|KR|

[
(x14 × n3) × xR1 + (x24 × n3) × xR2

]
, on KR,

wΛ =

[
(x31 + x32) × n4

6|K|
uΛ =

1

48|K|

[
(x13 × n4) × x41 + (x23 × n4) × x42

+
(x41 + x42) × n3

6|K|

]
, + (x14 × n3) × x31 + (x24 × n3) × x32

]
, on K.

Next, let us derive the liftings associated with the pressure. To treat this case, consider a
face F (shared by the tetrahedra K+

F and K−
F – see Figure 3). Let pF denote the indicator

function of edge F . The liftings � F := � (pF ) and uF := u(pF ) are supported on K+
F ∪ K−

F .
Let x±

i , i = 1, . . . , 4 denote any enumeration of the four vertices of K±
F . In accordance with

our previous notation, set xK±

F
equal to the barycenter of K±

F and xiK = x±
i −xK±

F
. We can

express the liftings on K±
F by

� F (x)|K±

F
= � ± × (x− xK±

F
), uF (x)|K±

F
=

1

40

4∑

i=1

xiK × ( � ± × xiK).

where

� ± = −
|F |

2|K±
F |
n±

F

and n±
F denotes the outward unit normal of K±

F on F (see Figure 3).
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The formulae for the maps associated with the body force are similar. If f is supported
only on K, then w(f) and u(f) are supported only on K. Their values on K are given by

w(f) = w × (x− xK), u(f) =
1

40

4∑

i=1

xiK × (w × xiK),

where

w =
1

2|K|

∫

K

f dx.

Now that we have expressions for the liftings of the basis functions, we can easily compute
the local stiffness matrices of the bilinear forms a(·, ·) and b(·, ·) with respect to the basis.
Once the local matrices are made, one assembles them to get the global matrices in much the
same way as one does for standard finite element methods. To compute the local stiffness
matrix, we first list the degrees of freedom local to an element. In this list, we include the
omitted elements of Λ̂h. The omissions can be taken care of after assembly by simply deleting
the rows and columns corresponding to the omitted elements of Λ̂h. To geometrically identify
the degrees of freedom on an element K, let xi denote the vertices of K and Eij denote the
edge of K with endpoints xi and xj. There are six wedge degrees of freedom interior to K,
which we denote by Λij for ij ∈ I0 := {12, 13, 14, 23, 24, 34}. The wedge Λij is geometrically
identified as the wedge contained in ∂K with edge Eij. In addition, there are twelve degrees
of freedom from wedges “exterior” to K that contribute to the local stiffness matrix of K.
We denote these as Λijk for ijk ∈ I1 := {ijk : ij ∈ I0 and k does not equal i or j} (cf. [7,
Figure 4]). The wedge Λijk is the (unique) wedge with edge Eij, whose one face coincides
with the face of K formed by vertices xi,xj and xk, and whose other face is not contained
in ∂K. Thus all wedge degrees of freedom within an element can be identified using the
index set I = I0 ∪ I1. The pressure degrees of freedom are easier to enumerate: There is one
for each face of K, so they can be identified using the index set L := {1, 2, 3, 4}. The local
stiffness matrices associated to an element K can now be given by

A
(K)
IJ =

∫

K

w(ψΛI
) ·w(ψΛJ

) dx, I, J ∈ I,

B
(K)
LJ = −

∫

K

curl � (pL) · u(ψΛJ
) dx, J ∈ I, L ∈ L,

C
(K)
LM =

∫

K

� (pL) · � (pM) dx, L, M ∈ L.

Here, as before, pL denotes the characteristic function of the face FL for all L ∈ L.
We can calculate the integrals above after substituting the previously given expressions

for the liftings of the basis functions in the integrands. To take into account modifications
required near the boundary ∂Ω, let σj equal zero if the face Fj is contained in the boundary
∂Ω and equal one otherwise. The simplified expressions for A(K), B(K) and C(K) for any
element K are given below. Suppose that {i, j, k, l} is any permutation of {1, 2, 3, 4}. Then
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define

W I =

{
σl(xki + xkj) × nl + σk(xli + xlj) × nk,

− σl(xki + xkj) × nl,

if I = ij,

if I = ijk,

U I =





σl(xik × nl) × xli + (xjk × nl) × xkj +

σk(xil × nk) × xki + (xjl × nk) × xlj,

− σl(xik × nl) × xli + (xjk × nl) × xkj,

if I = ij,

if I = ijk,

After a few simplifications, one finds that

A
(K)
IJ =

1

36|K|
W I ·W J ,

B
(K)
LJ =

1

48|K|
EL ·UJ ,

C
(K)
LM =

1

80|K|

4∑

`=1

(EL × x`K) · (EM × x`K),

where EL = nL|FL| for all L ∈ L. Using these local matrices, it is quite easy to implement
the lowest order case of our method, even for general tetrahedral meshes. For the variable
degree and higher order case, one would need to select a good basis for the polynomial spaces
involved on one element and then perform the above steps within a computer implementation.
Our calculations above, besides showing the essential simplicity of our discretization in the
lowest order case, also clarifies the data structures one would need in implementing the
method.

6. Extension to other boundary conditions

Although the previously considered Dirichlet boundary condition on velocity is the most
commonly occurring boundary condition in the Stokes problem, other types of boundary
conditions are also encountered in practice. One can have boundary conditions on the
pressure of the form

p = s,

and boundary conditions on tangential vorticity of the form

n× ω = r.

Here s and r are functions prescribed on parts of the boundary ∂Ω. We now show how
one may incorporate such boundary conditions into our hybridized discretization. Note that
the above types of boundary conditions are difficult to impose in a natural fashion in many
existing methods – see remarks in [11, § 4.3] and [12]. They are often practically important.
E.g., pressure is often used as an outflow condition. The tangential vorticity boundary
condition is useful when matching an exterior potential flow since vorticity is known to
decay faster than velocity. The tangential vorticity boundary condition has been considered
previously in [8] in formulations with the stream function.

Assume that the polyhedral boundary ∂Ω is partitioned into three disjoint subsets Γ1,
Γ2, and Γ3, such that each mesh face F ∈ F on the boundary ∂Ω is contained in one and
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only one of these three subsets. We consider the Stokes equations (1)–(2) with the following
boundary conditions:

u = g on Γ1,

n× ω = r

u · n = gn

}
on Γ2,

p = s

u � = g �

}
on Γ3.

A straightforward generalization of our method can be obtained in this case.
To describe it, we first redefine the jump-functions as follows: The functions [[n · v]] and

[[n×τ ]] are defined just as before on the interior faces, but for mesh faces F on the boundary,
we set

[[n · v]]F =

{
0 for all faces F ⊆ Γ3,

n · v for the remaining faces F ⊆ ∂Ω \ Γ3,

and

[[n× τ ]]F =

{
0 for all faces F ⊆ Γ3 ∪ Γ1,

n× τ for the remaining faces F ⊆ ∂Ω \ (Γ3 ∪ Γ1).

Then along the lines of the derivation of (13)–(16), we can derive the following hybridized
mixed formulation: Find (ωh,uh,λh, ph) ∈ Wh × Vh × Mh × Ph satisfying

(ωh, τ h)Ω−(uh, curl τ h)Ω −
∑

F∈ �

(λh, [[n× τ h]])F = (g � ,n× τ h)Γ1∪Γ3
,

(vh, curlωh)Ω +
∑

F∈ �

(ph, [[vh ·n]])F = (f , vh)Ω

− (s, vh · n)Γ3∑

F∈ �

(qh, [[uh ·n]])F = (gn, qh)Γ1∪Γ2
,

∑

F∈ �

(µh, [[n× ωh]])F = (µh, r)Γ2
,

for all τ h ∈ Wh, vh ∈ Vh, qh ∈ Ph,µh ∈ Mh. Here Wh and Vh are the same spaces as before.
The spaces of Lagrange multipliers Ph and Mh continue to be defined by (11) and (12), but
now with the revised definition of jump-functions.

For this formulation, we can prove, by a minor modification of the argument used in
Proposition 2.1, that there is one and only one solution. Moreover, the entire analysis
of Section 3 goes through with minor changes. We obtain a reduced Lagrange multiplier
system and can formulate a theorem entirely analogous to Theorem 3.1. The discussion
of the liftings and the basis functions in the previous sections continue to apply for these
boundary conditions.

The method we presented in this paper gives a powerful alternative for problems in com-
putational fluid mechanics which require exactly divergence free solutions for their successful
treatment. Applications to such problems, the error analysis of the method, and the design
of good preconditioners for solving the resulting matrix equations, are subjects of ongoing
work.
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