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Systematic procedures are presented for determining the optical components needed to produce an arbitrary 
tra~sformation of a Gaussian light beams's spot size, radius of curvature, displacement, and direction of prop a­
gatlOn. As an example, an optical system is considered that spatially separates the two coincident Gaussian 
beams produced by a high-diffraction-loss resonator that uses a Gaussian variable-reflectivity output coupler. 
In addition, an ARCDGH reverse matrix theorem and anABCDGH Sylvester theorem are also derived. These 
ma~rix theorems may be used to satisfy special constraints inherent in the design of multipass and periodic 
optIcal systems. @ 1997 Optical Society of America I S07 40-3232(97 )00904-61 

1. INTRODUCTION 
An oft-encountered problem in laser optics involves de­
signing an optical system to convert a Gaussian beam 
with known characteristics into a Gaussian beam having 
some desired characteristics. Based on experience with 
many such systems, one is sometimes able to guess the 
type of system that is needed to produce a required beam 
transformation. The emphasis in this study, however, is 
on synthesis. I

-
3 It ought not be necessary to rely on eX­

perience or good luck to design an optical system that will 
produce some required transformation of a Gaussian 
beam. 

Though the design procedure for complex Gaussian­
beam optical systems has been spelled out, the founding 
paper on the subject used 2 X 2 complex beam matrices.! 
However, many of today's optical systems incorporate op­
tical elements, such as prisms, that do not fit within the 
framework of Kogelnik's 2 X 2 beam matrices.4 Impor­
tant effects such as misalignment, whether intentional or 
by accident, also require an alternative formalism. Re­
cently, Kogelnik's 2 X 2 ABCD beam matrices were gen­
eralized to 3 X 3 ABCDGH matrices.i'i This generaliza­
tion allows the inclusion of additional complex optical 
elements and such effects as misalignment, which 
changes a light beam's position and direction. Thus one 
purpose of this work is to generalize the synthesis process 
to include beam displacement and deflection. 

The design process, as developed here, involves three 
more-or-less distinct steps: (1) converting the desired 
performance characteristics of an optical system into ex­
plicit values or constraints on the values of the transfor­
mation matrix elements; (2) factoring the matrix into cer­
tain primitive matrix forms; and (3) replacing each of 
these primitive matrices with realizable optical compo­
nents, After some background about Gaussian-beam 
propagation in Section 2, various potential design con-

0740-3232/97/040882-12$10.00 

straints are considered in Section 3. With the informa­
tion in those two sections, one can deduce the matrix 
needed for a desired transformation-this is step (1) of 
the design process. Almost any ABCDGH matrix that 
can be encountered in optics is factorable into primitive 
matrices of three basic types, and several possible factor­
izations are obtained in Section 4, These factorizations 
constitute step (2) of the design process. In Section 5 it is 
demonstrated how each of these primitive matrices can be 
realized by using actual laboratory components. This is 
step (3), and it concludes the design process. As an eX­
ample, an optical system is designed in Section 6 that 
spatially separates two superimposed Gaussian beams. 

2. PROPAGATION OF GAUSSIAN LASER 
BEAMS 
A. Laser Beams in Optical Systems 
For our purposes a Gaussian beam is characterized by 
four parameters: lie electric-field amplitude radius, or 
spot size (w); radius of curvature of the phase fronts (R); 

and displacement of the amplitude center, i.e., position 
(d u ) and slope (d:!). Solutions of Maxwell's equations for 
beam propagation in many media of interest can be writ­
ten most compactly in terms of combinations of these fun­
damental parameters. Thus we USe a complex beam pa­
rameter (q) and a complex displacement parameter (S) 

defined at each place on the optical axis as 

1 1 Am 
R 

l-- (1) 
q 7rW 2 ' 

S= 27r(-1 ) 
~ -da + d~ , (2) 

In '. q 

where Am is the wavelength of the laser beam in the opti­
cal medium (Alnol. With these definitions a wide range 
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of optical elements and systems can be represented by 3 
.x: 3 matrices, and Gaussian-beam propagation from ref­
erence plane 1 to reference plane 2 is determined from 

( u~q) = [~ ~ ~1 U~q (3) 

Su 2 G H 1 8u 1 

For the systems of interest here, the x and y variations 
can be treated independently. For brevity, we are omit­
ting coordinate subscripts for most of the analysis, and 
j he equations may be understood to govern independently 
the x and y field variations. For example, for the x varia­
tions each matrix element and field variable should be 
given an x subscript. For clarity, however, the x and y 
variations are indicated explicitly in Subsection 3.D, 
which deals with beam transformations. 

As is common in transfer-matrix methods, the matrix 
representation for an optical system is the product of the 
matrices for the individual optical elements multiplied in 
t he reverse of the order in which they are encountered by 
t he laser beam. In general, the matrix representation for 
a given optical element is obtained by solving Maxwell's 
equations. These matrices have been derived for a wide 
variety of optical elements,5 and a condensed table of 
these matrices is given in Fig. 1. An important element 
not in Ref. 5 is the grating whose ABCDGH matrix is de­
rived in Appendix A. For simplicity, the matrices in Fig. 
1 are specified in their unimodular form. The variable u 
in Eq. (3) is unimportant by itself, and only ratios of the 
components of the input and output vectors in Eq. (3) are 
observables. As Eq. (3) represents three equations, we 
divide the second by the first to obtain the Kogelnik 
transformation4 and the third by the second to obtain the 
8 -parameter transformation5: 

1 C + D/q1 (4) 

S1 G+H/ql 
S2 = A + B/ql + A + B/ql . 

(5) 

In the problem of synthesis, we assume that there is sO.me 
desired relationship between the input values of spot SIze, 
radius of curvature, position, and slope and the output 
values of these same parameters. Thus q 1, 8 1 , q 2, and 
8'2 are given, and Eqs. (4) and (5) may be used in the de­
termination of A, B, C, D, G, and H. 

The determinant of the beam matrix is the ratio of the 
complex refractive indices of the media at the inp~t an~ 
output planes. 1,5 In many cases these media are l~entI­
cal, and, if so, an additional constraint on the matnx ele­
ments would be 

AD - BC = 1. (6) 

Equations (4)-(6) represent six equations (sinc~ eac~ is a 
complex equation) to be solved for the real a~d Ima~mary 
parts of the matrix elements, i.e., six equatIOns WIth 12 
unknowns. In general, there may be more th.a~ one ap­
propriate beam matrix. However, several addItIOnal con­
straints may follow from other considerations, and some 
of these are discussed in Section 3. 

B. Laser Beams in Resonators 
In the design of conventional laser resonators, one of~en 
finds that the eigenmode of the resonator has a GaUSSIan 
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transverse distribution. By definition of a mode, the spot 
size and the radius of curvature repeat after the Gaus­
sian beam propagates once around the resonator. If 
ABCDGH represents the round-trip matrix for a laser 
resonator starting at some particular reference plane, 
then 

(7) 

(8) 

where q x and 8 x denote the values of q and 8 after a 
large number of round trips. These oscillation condi­
tions, substituted into Eqs. (4) and (5), become 

D 2~ A + li [I - (A ; /)) T'. 
(9) 

(10) 

where Eqs. (1), (2), and (6) have also been used. Thus 
Eqs. (6), (9), and (10) are the initial constraints needed for 
designing laser resonators. 

The::+: sign in Eq. (9) indicates that there are two val­
ues for the steady-state beam parameter. These signs 

Homogeneous medium 
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refractive index: n 

Thilliells 
focallengtlt: f 
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aperture width; w 

ga 
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prism angle: e 
refractive index: II 

Exponential aperture 

dampingwidtlr. w 
ea 

Spherical mirror 
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Tilted mirror 
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ABCDGH matrix representation for several optical ele­Fig. 1. 
ments. 
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represent two different modes. Except when both are 
metastable, one of these modes will be stable, and the 
other will not be stable. Inevitable perturbations in real 
lasers do not allow the unstable mode to exist. The 
stable mode is the one in which6 

I
A + D .[ (A + D)2]1/21 

F =---+J1 --- >l. 
s 2 - ~ 2 

(11) 

The sign in Eq. (11) that yields a stability factor greater 
than one is the sign that should be used in Eq. (9). If one 
requires that the stability factor have a certain value, 
then that would be an additional design constraint. 

Even if there is not a specifically designed spot size, it 
may be desired that 

W'102> O. (12) 

This is known as the confinement condition, and if it is 
not satisfied, the laser beam mode will not be Gaussian. 

3. DESIGN CONSTRAINTS 
In the typical cascaded optical system design problem, the 
Gaussian beam's parameters at the input plane and the 
output plane are known. The ABCDGH beam matrix el­
ements are determined from Eqs. (4)-(6). Similarly, the 
ABCDGH beam matrix elements for a laser resonator 
may be determined from Eqs. (6), (9), and (10). In either 
of these configurations, there may not be a unique 
ABCDGH matrix. However, it often occurs in practice 
that there are additional design constraints, and some of 
these are discussed below. 

A. Length Constraint 
Optical systems often have some type of length con­
straint. If there is no specific length constraint, there is 
still often a maximum or minimum length allowed for the 
system. Since length is not a property inherent in the 
ABCDGH matrix, length constraints must be met in the 
matrix factorization process. 

B. Diffraction Angle Constraint 
Constraints on the output beam of either a cascaded opti­
cal system or a laser resonator may be stated in terms of 
a diffraction angle. For an output beam with a given 
spot size and radius of curvature, the corresponding dif­
fraction half-angle is 

x. [ ( 2 0 ) 2]112 
8 clifT = TTW 1 + R. ' (13) 

where 20 = 7TW 2/l1. is the usual Rayleigh length. To 
minimize the diffraction angle, a lens may be placed at 
the output plane to collimate the beam. This is a com­
mon technique in resonator design. 

C. Lossless Optical Systems 
Most often one would also be inclined to require that the 
losses in a cascaded optical system be minimized. This is 
done by minimizing the number of components in the op­
tical system and ensuring that each component has as ap­
propriate optical coating. One would also often use opti­
cal elements that are represented by a strictly real 
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ABCDGH matrix, since only these are lossless (and gain­
less). If the matrix elements are required to be real, six 
of our 12 unknowns are abruptly set equal to zero. In ad­
dition, the complex equations (4) and (5) reduce substan-
tially to 

[ ( B) 2 ( B ) 2]1/2 
W2 = W1 A + R1 + Zo ' 

(A + :J + (:.)' 

d a2 = Ada1 + Bd~1 + (BG - AH)/ f30, 

d~2 = Cd a1 + Dd~1 + (DG - CH)/ f30, 

where f30 = 2 7T/X. m . 

D. Fourier-Transforming Optical Systems 

(14) 

(15) 

(16) 

(17) 

In imaging and other applications, it is desired to design 
Fourier-transforming optical systems. An arbitrarily 
profiled beam propagating through an optical system rep­
resented by an ABCDGH matrix is transformed as 
follows 7

: 

E~ut(x) = exp(-i¢) J:x KABCDGH(XO, x)E:n(xo)dx o, 

(18) 

where 

KABCDGH(XO, x) 

~ KABcn(XO, x)exp[ -i( ~Hexp[ -i( BO ~ AH)xo], 

(19) 

KABCD(XO, x) 

= C'~B r exp[ -i ,,: (DX' - 2X: + AXo')]. (20) 

The function ¢ represents a space-independent phase 
shift. For astigmatic and other optical systems, there is 
a more general two-dimensional Fourier-transforming 
integral. 7 By examining the kernel, one can see that the 
optical system is a purely Fourier-transforming system 
when A = 0, D = 0, H = 0, and B, C, and G are strictly 
real. If B, C, and/or G are complex, then the optical sys­
tem is Laplace transforming. 

E. Periodic Optical Systems 
There are a number of applications that make use of pe­
riodic optical systems. As a design problem, we suppose 
that the predetermined ABCDGH matrix representation 
for an optical system is to be factored into n identical sub­
matrices. The initial design process then consists of ob­
taining the nth root of the system matrix. This may be 
obtained by using a Sylvester theorem8 that specifies the 
8th power of a matrix, where 8 can be a fraction. How­
ever, the Sylvester theorem for a unimodular ABCDGH 
matrix has not been given previously. To derive it, we 
define 
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(21) 

It may be noted that As , B s , C s , and D s are the same as 
the corresponding 2 X 2 matrix elements.8 A simple 
way to obtain G sand H s is to use the commutativity re­
quirement MS M = M MS. If this is done with the gener­
alized beam matrix, then it immediately follows that 

AsG + CsH + G s = AGs + CHs + G, (22) 

(23) 

These two equations may be used to produce G sand H s , 
and the results are shown in Fig. 2. 

F. Multipass Optical Systems 
In the design of standing-wave lasers and reflective opti­
cal systems, where the light signal travels in both direc­
tions, it is useful to use a reverse matrix-a matrix that 
governs light propagation through an optical system 
backward. The derivation of the reverse theorem has not 
been given before for ABCDGH matrices, but it follows a 
similar derivations given in Ref. 9. The reverse matrix 
relates the input beam to the output beam for a beam 
traveling predominately in the negative z direction. The 
input beam properties in terms of the output beam prop­
erties may be obtained by multiplying both sides ofEq. (3) 

on the left by the matrix inverse. The result is 

( U~q) = M-1( U~q) 
Su 1 Su 2 

(24) 

Operation Description 
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Now the vectors must be written to reflect the fact that 
the beam is propagating predominately in the negative z 
direction. When the beam is traveling in the positive z 
direction, the governing differential equations are5 

as(z) k o(z)k 1(z) 
Q(z)S(z) + ko(z) --;;;- + 2 . (26) 

However, these may be rewritten for beams traveling in 
the - z direction as 

[_Q(Z)J2 + ko(z) a[~~;~)] + k o(z)k 2(z) = 0, (27) 

a[ -S(z)J k o(z)k 1(z) 
[-Q(z)J[ -S(z)J + ko(z) a( -z) + 2 

(28) 

and it follows that, for reverse propagation, S ---t -S and 
Q ---t -Q (Q = ko/q). For this transformation Eq. (24) 
may be rewritten as 

r~ 
0 ~ ]( u/(~q») ~ M-tr ~ 

0 

JJ -1 -1 
0 -1 (-S)u 1 0 0 

X ( u/(~q») (29) 

(-S)u 2 

Multiplying both sides on the left by the appropriate ma­
trix yields 

Matrix 
cos e = (A + 0)/2 

Sylvester'S 
[A 

JJ 

n 
[ A ,;,(,0) - ,;,1(' t)O I Hsin(.rtl) 

,;:.1 Theorem c J) ~.~ Csin(l1l) J)sin(.~e) - sinl(s- 1)01 

(; 1/ 
sinO (,': II: 

Reverse [ J) 
H 

~l Theorem +-1 I+- C A 

CH ~ Ni AH~R(,' 

Coordinate 180
0 rotation [I) II 

:] Reflection / (it C A 

I ~(,' ~II 

Theorem 

Matrix 

;J' [ n 
~II 

:J [:. 
II 
j) C A 

Inverse CII- f)(,' Jl(,' - All 
(,' II 

., (A ~ l)sin(~~-tJE..--:..t).t~~nJ(.\=-I)el+sinOJ (; + ~i'~(~()l~~I1i-\ -=-l)OI~_(),CH 
(', ~ --- A+0-2 A+J)~2 

. . l)e)- . e (J}-I)sin(sO)+(A~lHsinJ(.\-!)e~~~lll 
II,' Sl~\~) SII\[(s __ Sll~ IJ(; +~- 4 + 1)-::'2-

.4+D-2 . 

Fig. 2. ABCDGH matrix theorems. 
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( ult-q») = [~ 
0 

~ 1M -
1

[ ~ -1 

(-8)u 1 0 0 -1 0 

X ( u1t-q») . 
(-8)u 2 

Therefore the reverse matrix is 

o 
-1 
o 

o 
-1 
o 

0 

~J -1 
0 

o 1 o . 
-1 

(30) 

(31) 

The resulting reverse matrix, obtained by multiplying out 
Eq. (31), is given in Fig. 2. 

G. Ring Optical Systems 
In a ring optical system, the x-transverse axis may be de­
fined so that it points outward from the center of the ring. 
With this coordinate system, flat mirrors are represented 
by the matrix 

Mflat mi"" = [-~1 ~1 H (32) 

If one of the legs of the optical system has the x axis de­
fined to be positive when it points in, then a mirror image 
transformation must be used on the elements in that leg: 

M coordinate reflection = [~ ~ ~ 1· (33) 
-G -H 1 

This result also appears in Fig. 2. 

H. Other Constraints 
Optical systems are sometimes astigmatic, and the re­
sults here are valid for each of the transverse axes. In 
dye lasers, for example, the pump angle and the emission 
angle are not collinear, and the resulting system may be 
astigmatic. A popular resonator design corrects for this 
astigmatism. 10 The frequency/wavelength dependence of 
an optical system may be accounted for by using a 
wavelength-dependent ABCDGH matrix. Requiring that 
an optical system have a certain dispersion response can 
put severe constraints on the optical design. Still other 
constraints might result from other practical consider­
ations. For example, it might be specified that the opti­
cal system has a length of 1 between the reference planes 
or that the spot size and the beam displacement are ev­
erywhere less than some specified value. For the sec­
tions that follow, it is simply assumed that the matrix el­
ements of the desired transformation have, by one means 
or another, been determined. 

4. FACTORING THE MATRIX 
Once the matrix elements are known, one is left with the 
task of finding actual optical components that, when 
placed in sequence, yield the required matrix. For many 
optical systems, the input and output planes are in the 
same type of optical medium, usually free space. For 
these types of optical system, the transfer matrix will be 
unimodular, and these types are given in Fig. 1. As a 
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starting point, it may be observed that all of the optical 
elements from Fig. 1 can be readily expressed in one of 
the following three forms: 

a = [~ ~ 
o 
1 
o 

0] o , 
1 

(34) 

0] o , 
1 

(35) 

0] o , 
1 

(36) 

where a caret denotes a matrix. It is thus reasonable to 
inquire how a broad class of ABCDGH matrices can be 
represented as a product of these matrix primitives (34)­
(36). As an example of one interesting factorization, it 
can be shown by direct matrix multiplication that 

l g ~ ~1 = lHt ~ m ~ ~ ~1 
X l ~ ~ ~]. (37) 

(BG - AH)/B 0 1 
The center matrix is essentially the usual ABCD matrix 
for an aligned optical system. It can be factored into ma­
trices of the a and ~ types [i.e., in terms of Eqs. (34) and 
(35)]1: 

l~ ~ ~] l ~ (A - l)/C 
1 
o 

(D - l)/C 0] 
10, 
o 1 

o 
1 
o 

x l (A -: 1)IB 

o 
1 
o 

B 
1 
o 

~] 
(38) 

~] 
(39) 

Thus two different ABCDGH factorizations are obtained 
by substituting Eqs. (38) and (39) into Eq. (37). As ex­
pected, it requires five matrices to factor an ABCDGH 
matrix arbitrarily-the system matrix has six factors that 
are satisfied by five single-variable matrices and one uni­
modularity condition. Additional factorizations may be 
obtai!led by.examining the commuting properties of a, ~, 
and 8 matrices. Matrices of the ex and 8 types do no~ 
commute wit!: each other. However, matrices of the 8 
type and the {3 type do commute with each other, so that 

li ~ m~ ~~] l~ ~ ~]li ~ n 
(40) 

Th~ validity of this expression can be confirmed by multi­
plymg out each of the product pairs. However, thi~ 
mathematical result makes sense physically, since both 8 

-
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and ~ matrices represent thin optical elements. Matrix 
commutativity involves matrix pairs. However, three­
matrix combinations are also of interest. In particular, it 
may be shown that 

which may be rewritten as 

These three-matrix conversions are analogous to ~-y 
(also known as TI-T) transformations used in electric cir­
cuit analysis. 

Equations (37)-(41) may be combined to yield the fol­
lowing factorizations: 

[ AGe ~ ~]-[ ~ 
H 1 HIB 

(A -~l)/C ~] 

x[~ 
(D - 1)/C 

1 
o ~] 

x [ ~ ~ ~ 1 ' ( 43) 
(BG - AH)IB 0 1 

[~ ~ ~l-[ ~ 
H 1 HIB 

x [~ 

~ m (D -»/ B ~ ~] 
! m (A -:l)/B ~ ~l 

x [ ~ ~ ~11, 
(BG - AH)IB 0 

[
AGe ~ ~l = [(D _11)IB ~ ~l[ ~ ~ 

H 1 0 0 1 HIB 0 

x [~ ~ ~ l[ (A _11)1 B 
o 0 1 0 

x [ ~ ~ ~11, 
(BG - AH)IB 0 

(44) 

(45) 
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x [ ~ ~ ~] 
(BG - AH)/B 0 1 

o 0] 
1 0 
o 1 

[ ~ ~ ~] ~ [ (D -> )/ B ~ ~ ] 
B(BG - AH) 

1 BG _ AH + H 0 

x 0 

o 

x 

1 

o 
o 
1 

1 0 0 

o 1 o 
BG - AH + H 

1 o 
B 

BH 
1 BG _ AH + H 0 

x 0 

o 

x 

1 

A-I 

B 

o 

1 

o 
o 0 

1 0 

o 1 

o 
1 

o 0] 
1 0 
o 1 

(46) 

(47) 

(48) 

Equations (43) and (44) are obtained by substituting Eqs. 
(38) and (39) into Eq. (37), respectively. Equations (45)-



888 J. Opt. Soc. Am. A/Vol. 14, No. 4/ April 1997 

(47) are obtained by using the commutativity of ~ and 8 
matrices [Eq. (40)1 on Eq. (44). Equation (48) is obtained 
by using the matrix transformation (41) on Eq. (47). 

Six different factorizations of ABCDGH matrices in 
terms of the specified matrix primitives have been ob­
tained. In each of the above factorizations, it is assumed 
that B is nonzero. However, for system matrices that 
have B = 0, the system matrix may be rewritten as, for 
example, either one of the following: 

r~ 
o 
D 
H ~1 r~ 

-aA 
D - aC 
H - aG m~ ~ ~1 (49) 

- aC 
C 
G 

-aD 
D 
H 

01 o . 
1 

(50) 

Here a is an adjustable design parameter that may be 
chosen, for example, to match a length constraint. In 
each of these equations, the system matrix is rewritten in 
terms of a matrix primitive and a new system matrix that 
has a nonzero B element. In Eq. (49) the first matrix to 
the right of the equal sign may be factored using any of 
Eqs. (43)-(48). The rightmost matrix in Eq. (50) may be 
factored similarly. 

The six factorizations represent all of the unimodular 
five-matrix factorizations by using only matrices of the ex, 
~, and 8 types. If there exist design constraints that re­
quire the input and output beams to be in media with dif­
fering refracting properties, then the system matrix 
would be nonunimodular. In this case additional factor­
izations using the y matrix of Ref. 1 are required. These 
would be obtained by using the nonunimodular factoriza­
tions of Ref. 1 in Eq. (37). 

5. PHYSICAL REALIZATION OF THE 
MATRIX PRIMITIVES 

Our discussions thus far have emphasized the factoriza­
tion of 3 X 3 ABCDGH matrices into certain primitive 
matrix factors. It remains now to be shown that these 
factors can actually be represented by practical optical 
components. As a starting point, one finds that any ~­
type matrix can be realized in practice. In particular, the 
product (in either order) of the matrix for a thin lens (or 
spherical mirror) with the matrix for a Gaussian trans­
mission filter yields a ~ matrix having an arbitrary com­
plex f3 element: 
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1 0 0 1 0 0 

1 A. 
1 0 1 0 -l ---2 

f 1TWga 

0 0 1 0 0 1 

1 

1 A. 
-- - l ---

f 1TWga 
2 

0 

o 
1 

o 

0 0 

1 0 

0 1 

(51) 

It is of course true that the inverse Gaussian transmis­
sion' characteristic (w ga 

2 < 0) cannot be maintained to 
arbitrary radii, but it is necessary only that this profile be 
approximated to the largest radius of the beam. This 
same restriction applies to the radial phase-shift charac­
teristics of finite-diameter lenses. 

Just as an arbitrary ~ matrix can be realized, so can 
any 8 matrix. In this case a given 8 matrix can be rep­
resented by the combination of an exponential aperture 
(or exponential variable-reflectivity mirror) and a thin 
prism (or amplifier wedge): 

o 
21T(n 1) 
---A.-- tlprism 

o 0 1 

o 
o 0 

1 

o 

o 1 o 

1 o 1 

[ 
2 7T( n, _ 1) 1 
---1\.-- tlprism + 

o 
1 
o 

0] o . 
1 

o 

o 

(52) 

The exponential aperture can be realized only out to some 
finite radius. However, the aperture profile need be re­
alized only to the largest displacement of the beam. The 
width associated with the aperture may be either positive 
or negative, depending on the orientation of the aperture. 
Similarly, the prism angle may be either positive or nega­
tive, depending on the orientation of the prism. It should 
also be noted that a thin amplifier (or absorber) wedge 
has the same ABCDGH matrix as an exponential aper­
ture, and, under certain conditions, it may be either de­
sirable or inevitable to use an amplifier (or absorber) 
wedge. 

The realization of arbitrary ex matrices is a bit more 
complicated. The only practical matrix that is automati­
cally of the ex type is the matrix for a uniform medium of 
length I. But 1 is always a positive real number, so this 
matrix is totally inadequate for representing the negative 
or complex a elements that might result from the factor-
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ization of an arbitrary complex matrix. For this purpose 
a more general representation is needed, and one possi­
bility consists of three complex lenses separated by two 
uniform media. For the system of interest this matrix 
product corresponds to the following matrix 
factorization 1: 

o 
1 
o 

x [ 4(Clr2: - [-1) 

X [ 2("<- [1) 

m~ [t ~l 

~ m ~ [i
2 

~l 
~ n (53) 

Thus an arbitrary complex a matrix can be represented 
as a product of five realizable factors, and this result can 
be easily verified by multiplication. To illustrate the use 
of Eq. (53), let us imagine that we are trying to find a 
practical realization for a given unimodular ABCDGH 
matrix by using the factorization given in Eq. (46). With 
good luck the resulting five matrix factors can be realized 
by five optical elements (or perhaps three, depending on 
how one fabricates thin optical element combinations). 
With bad luck, however, the B element of the a matrix 
may not be a positive real number. Then a more compli­
cated representation of the a matrix is required, and the 
system must be larger. The previous remarks have im­
plied that this is unfortunate when one encounters an a 
matrix in which the B element is not real and positive. 
However, a highly desirable feature of the expansion 
shown in Eq. (53) is that the distance l between the ref­
erence planes is totally arbitrary. In a practical situa­
tion one might like to specify the length of the optical sys­
tem that is to produce a desired beam transformation. In 
the simpler five-matrix realizations, there is no length 
flexibility. In many situations, however, a length con­
straint can be met by multiplying the system matrix by 
the following representation for the identity matrix: 
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r+ 
o 
1 
o 

l/3 
1 
o 

~l r (54) 

6. EXAMPLE DESIGN: LASER BEAM 
SEPARATION 
One of the goals of this section is to demonstrate the de­
sign procedure detailed above by synthesizing a useful op­
tical system. This example also demonstrates the ability 
of complex optical systems to discriminate spatially be­
tween Gaussian beams based on their spot size and phase 
curvature. In particular, an optical system is designed 
that spatially separates two coincident Gaussian beams 
with different spot sizes. 

There are a variety of conditions in which two coinci­
dent Gaussian beams with different spot sizes may be en­
countered. One example involves the laser output of a 
high-diffraction-Ioss resonator (also known as an unstable 
resonator) that employs a Gaussian variable-reflectivity 
mirror. These resonators have important beam quality 
advantages over hard-aperture resonators. In the 
Gaussian mirror lasers the mode inside the laser is 
Gaussian, and thus the output beam that is transmitted 
through the Gaussian mirror has an intensity 

(55) 

= Ib exp(-2x 2w- 2
) 

X [1 - exp( -2x 2w ga -2)] (56) 

= Ib exp( -2x 2w-2
) 

- Ib exp[ -2x 2 (w-- 2 + W MG -2)], (57) 

which is the sum of two Gaussians with different spot 

sizes. 
Before beginning the design, it is useful to combine 

Eqs. (1), (2), (4), and (5) to produce explicit formulas for 
output radius of curvature, spot size, position, and slope 
of a beam given these properties at the input plane: 

2B,- ) 
2 13m WI 

(58) 

A +~+--'- + A+~ ___ r_ 

( 
B 2B) Z ( B 2B ') 2 

r 2' 2 
. Rl f30lWl Rl f301 W l 

2 

f30Z W } = 

C + - + --2 A, + - - --2 

2D r ) ( Br 2B') 
--2 Ar + - + 2 
f301Wl Rl f30l W l (

Dr 2D,) ( B, 2Br) _ (', C, + D, 

,- R
J 

f301 W j Rl f30jWj R j 

( 
Br 2B,) Z ( B, 2Br) 2 

A + - + -- + A + -- 2 
r R j f301Wj2 'R j f3(llWj 

2B r ) 
2 

f30jW 1 

(59) 

(60) 
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( 
Br 2Bi) 2 ( Bi 2Br) 2 

Ar + - + --2 + Ai + - - --2 
Rl f301Wl Rl f301Wl 

(61) 

A. Determination of the ABCDGH Beam Matrix 
Our goal is to design an optical system that has differing 
effects on two different Gaussian beams. Both beams are 
initially on the system axis (d al = 0), are traveling along 
it (d~l = 0), and are initially collimated (R l = x). Both 
beams are to be propagating parallel to each other and 
the optical axis at the output plane (d~2 = 0). This in­
put plane and the output plane are to be in free space; 
thus f30l = f302 == f3o, and AD - BC = l. 

If we also require that the optical system not change 
the values of the spot sizes (W2 = WI) and the radii of 
curvature (R 2 = R 1 = x), then it is clear that one solu­
tion that satisfies Eqs. (58) and (59) is A = 1, B = 0, C 
= 0, and D = 1 (the optical system has no effect on the 
spot size and the radius of curvature of the beam; there­
fore the ABCD submatrix would sensibly be the identity 
matrix). These values of ABCD satisfy Eqs. (58) and (59) 
under all input conditions, and Eqs. (60) and (61) 
reduce to 

2Hr 

{JOW 12 
f30d a2 = ---2--

G I 

f30lw1
2 

2Hi o = G r + ---2. 
{JOWl 

(62) 

(63) 

The optical system is to separate the two beams, beam a 
and beam b. If beam a is undisplaced by the optical sys­
tem, then when 

(64a) 

it follows that 

d a2 = o. (64b) 

We suppose that beam b is displaced some distance off the 
axis. For specificity, we choose that when 

(65a) 

then 

(65b) 

Substituting Eqs. (64) and (65) each into Eqs. (62) and 
(63) yields four equations with four unknowns: 

o = 
2 

f30wa 2 

2Hr Gi -

f30w b 2 

D. f30 = -----
2 

f30wb 2 

2H· 
O=G+--l

-

r f30w b 2 · 

(66) 

(67) 

(68) 

(69) 

It can readily be found that the solutions to these equa­
tions are 

(70) 

2D. 
G i = -----

Wb
2

- W a
2 ' 

(71) 

f3oD. 
Hr = ----

Wb
2 

Wa 
2 

(72) 

1 

(73) 

Now that the system matrix has been obtained, it must be 
factored into matrix primitives. 

B. Factoring the Matrix 
The matrix may be initially factoring by using Eq. (49): 

[ ~ ~ ~l = [ ~ 
iG i Hr 1 iG

I
· H + ·dG r l i 

d 
1 

-d 
1 
o 

(74) 

Neit~er of the two matrices on the right-hand side of Eq. 
(74) IS a matrix primitive, and therefore they must be fac­
tored further. The left matrix on the right-hand side of 
Eq. (74) may be factored by using Eq. (47): 
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[i~i 
d 

OJ [ 1 
0 

~1 1 o - 0 1 

HI' + idGi 1 (HI' + idGJld 0 

X [~ d 01 1 0 
o 1 

[ 1 
° °1 

X 0 10. (75) 
-Hrld o 1 

The rightmost matrix in Eq. (74) may be rewritten by us­
ing Eq. (53): 

-d 
1 
o 

X [ ~4(dl-~ + 1-') 

X [~ lI2 01 
1 0 
o 1 

X [ ~2(d-~ + 1-') 

0 

~1 1 
0 

0 

°1 
1 o . 
0 1 

Equations (74)-(76) may be combined to yield the 
signed system matrix in terms of matrix primitives: 

[i~i 
0 01 [ 1 

0 

m~ 
d 

1 o = 0 1 1 

HI' 1 (HI' + idGi)ld 0 0 

[ 1 
0 

~1 X 0 1 
-Hrld 0 

X [ ~2(d-~ + Z-') 

0 

~1 1 
0 

X [~ lI2 01 
1 0 
o 1 

X [ ~4(dl-~ + 1-1) 

0 

~1 1 
0 

X [~ lI2 01 
1 0 
o 1 

X [ ~2(d~ + I') 

0 

H 1 
0 

(76) 

de-

~1 

(77) 

C. Physical Realization of the Matrix Primitives 
The above matrix factorization is valid for any d and l. If 
we choose l = 2d = 2L13, then Eq. (77) becomes 
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Ui 
0 01 [1 ° 01 [ 1 

0 

~1 1 o = 0 1 0 0 1 

HI' 1 iG i o 1 3HriL 0 

X [~ Ll3 ° 1 [ 1 0 

~1 1 ~ -3~rIL 
1 

0 0 

X [~~L 
0 

m~ 
LI3 

~1 1 1 
0 0 

X [ ~~L 
0 

m~ 
LI3 

~1 1 1 
0 0 

X [~~L 
0 

~1 1 (78) 

0 

and the length of the optical system is L. By comparing 
the rightmost matrix in Eq. (78) with the matrix repre­
sentation for a thin lens from Fig. 1, it follows that the 
first optical element in the system is a lens whose focal 
length is 

f = L/9. (79) 

All of the other lenses in the system have the same focal 
length. It can similarly be seen that the second optical 
element [second from the last matrix in Eq. (78)J repre­
sents free space whose length is 

d = L13. (80) 

There is also a prism in the optical system, whose prop­
erties obey 

3/lIL 
(nprism - 1)8prism = --­

Wb
2 

--1 
w a

2 

(81) 

Finally, there is an exponential aperture whose transmis­
sion profile width is 

(82) 

A schematic of the design is given in Fig. 3. This ex­
ample could not be done with previously developed matrix 
design techniques. 

7. SUMMARY 
The design of optical systems and laser resonators is usu­
ally done by either extensive numerical simulations or by 
analyzing simple two-lens optical systems and working 
backward to produce design information. An alternative 
approach is to consider the design problem directly, and 
optical transfer matrices are well suited to this problem. 
In this study this latter approach has been used to pro­
duce an arbitrary transformation of a Gaussian light 
beam's spot size, radius of curvature, displacement, and 

direction. 
There are three basic steps in the design process: (1) 

converting the desired performance characteristics of the 
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Fig. 3. Designed optical system that spatially separates two input Gaussian beams. The spot sizes of the two input beams (w a and Wb), 

the displacement between the two output beams (11), and the length of the optical system (L) may be chosen arbitrarily. 

optical systems into explicit values or constraints on the 
values of the transformation matrix elements; (2) factor­
ing the matrix into certain primitive forms; and (3) re­
placing each of these primitive matrices with realizable 
optical components. The first step can be achieved for 
optical systems by using Eqs. (1) and (2) with Eqs. (4)-(6). 
For laser resonators Eqs. (6), (9), and (10) may be used to 
determine the ABCDGH matrix. There are often other 
constraints, and several of these have been discussed. 
Once the ABCDGH matrix is known, the next step of the 
design procedure is to factor the matrix into matrix primi­
tives that are realizable as optical components. The six 
different five-matrix factorizations are given in Eqs. (43)­
(4B). The design process is completed by replacing the 
matrix primitives with optical components. This is done 
by using Fig. 1. An example of the complete design pro­
cess is given in Section 6. 

The design process as outlined here takes the formal 
analytical tools developed in the first three papers in this 
series and transforms them into a powerful explicit pro­
cedure for the design of lasers and complex optical 
systems. 

APPENDIX A: DIFFRACTION GRATINGS 
In this appendix the ABCDGH matrix for a diffraction 
grating is obtained, and it is shown to have the same form 
as a thin prism. The matrix may be determined from the 
grating equation, which is 

sin 0incident = sin Orefiected + 
mA 

A' (A1) 

where m is the grating order and A is the grating period. 
If we define the axis for the center wavelength Ao so that 

. . mAo 
sm O[ = sm OR + A' (A2) 

then wavelengths near Ao are paraxial to that axis, so 
that 

mA 

A' (A3) 

where sin 01 = d~I' sin O2 = d~2' cos (h = 1, and cos O2 

= 1. Under these conditions Eq. (A3) becomes 

I ( cos o[), m (A - Ao) 
d =--d-

a2 cos 0 al Acos 0 . . R R 
(A4) 

From Eqs. (AB) and (A9) of Ref. 5 and the unimodularity 
condition, it follows that 

cos OR 
0 0 

cos OJ 

Mgrating = 0 
cos OJ 

0 
cos OR 

27Tm ( _ ~o) - 1 0 1 
A cos O[ 

(A5) 

This has a form similar to a prism matrix. Thus a grat­
ing may be used as an alternative to prisms in the final 
design. 
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