

languages, concurrency, and device and physical data independence. But current database systems
do not adequately support time-based presentations. Relational data manipulation languages have
demonstrated the value of letting the application specify what is wanted, and letting the database
plan how to retrieve it. To support time-based presentations, a data manipulation language for a
multimedia database should also allow the application to specify when, where, and how precisely
the data should be delivered [10]. These constraints on delivery are an example of a QOS-based
interface.

None of the proposed data models for time-based multimedia that we are aware of support
queries for imprecise results. For example, Gibbs describes a data model that captures the structure
and synchronization relationships of complex time-based multimedia presentations [4]. This model
includes media descriptors that attach a quality factor, such as "VHS quality" or "CD quality",
to each media object, but these labels describe the quality of the representation rather than the
presentation. Without the notion of presentation quality in the data model, one would presume
that all information would be preserved in the result of a query. In practice, information loss in a
time-based presentation is inevitable and unconstrained by current data models.

This paper defines a methodology for presentation QOS specification. The definitions are
intended to be general enough to apply to presentations in any multimedia system. In particular,
our methodology supports the following goals:

• Model user perception of quality. Just as modern compression algorithms exploit knowl­
edge of human perception [18], a multimedia system can better optimize playback resources if
it knows which optimizations have the least affect on perceived quality.

• Formal semantics. We would like to be able to prove that multimedia system can satisfy a
QOS specification.

• Complex data model. QOS specifications can be defined for a large class of complex mul­
timedia presentations.

The next section defines our terminology in terms of an architectural model for multimedia
presentations. Sections 3 and 4 describe a data model for the specification of content and view
respectively for a presentation. We then define quality in Section 5 as a function of a presentation's
fidelity to the content and view specification, in the context of an error model. We define one
possible error model, and suggest in Section 6 how a formal QOS specification can be used to
optimize resource usage in a presentation. Section 7 gives our conclusions.

2 Architectural Model

In our architectural model, shown in Figure 1, multimedia data come from live sources or
from storage. Digital audio and video data have default content specifications associated with them
that specify the sample size and rate for normal playback. A time-based media editor may be used
to create complex presentations from simple content. A player is used to browse and play-back
content specified by the editor. A user may control a player's view parameters, such as window
size and playback rate, as well as quality parameters such as spatial and temporal resolution. The
combination of content, view, and quality specifications constitute a QOS specification. When a
user chooses to begin a presentation, the player needs to verify that a presentation plan consisting
of real-time tasks will satisfy the QOS specification. A presentation plan is feasible if guarantees
can be obtained from a Resource Manager for the real-time presentation tasks that transport and
transform the multimedia data from storage or other data sources to the system outputs.

This architecture is similar to other research systems that provide QOS guarantees based on
an admission test [13]. However, our definition of QOS is novel in that we make strong distinctions
between content, view 1 and quality specifications. A content specification defines a set of logical
image and audio output values as a function of logical time. A view specification maps content
onto a set of physical display regions and audio output devices over a real-time interval. Quality is

3

Figure 1: An architecture for editing and viewing multimedia presentations.

video cam 1 100-105 I cam2 50-53

audio micl 10-25

o 5

cam1 108-115

8 15

time
...

Figure 2: Timeline view of content specification for a presentation of bicycling video with audio.

a measure of how well an actual presentation matches the ideal presentation of content on a view
and a quality specification defines a minimum acceptable quality measure. We will refer to quality
when we mean the measure, and QOS when we mean the combination of content, view, and quality
specifications.

By allowing independent control of content, view and quality, a multimedia system can offer
a wider range of services that take advantage of the flexibility of computer platforms. To illustrate
these services, consider the presentation of video and audio as described in Figure 2. The first
video clip refers to 5 seconds of a digital video file. The video file is named caml because it was
captured with the first of two cameras recording the same bicycle racing event. The digital video
for caml has a resolution of 320x240 pixels. A second video file named cam2 shows another view of
the bicycling event and has a higher resolution of 640x480 pixels. The video presentation cuts from
caml to cam!! for 3 seconds, and then back to caml for the last 7 seconds. The audio clip file mid
contains a digital audio sound-track recorded at the same time as the video clips. After selecting
this content for presentation, a user should be able to choose view parameters and quality levels
independently. For example, if the user chooses a view with a 640x480 pixel display window, but
a quality specification that requires only 320x240 pixels of resolution, then the player may be able
to avoid generating the full resolution images from cam2. The quality specification allows the user
to indirectly control resource usage independent of the content and view selections. The player can
optimize resource usage so long as the presentation exceeds the minimum quality specification. Users
might also like to specify an upper bound on cost for resource usage, but since cost is independent
of information loss, constraints on cost are beyond the scope of this paper.

4

3 Content Specification

To provide a concrete example of presentation QOS semantics, this section defines a data model
for specifying the content of multimedia presentations. The model supports composition of audio
and video data to create complex presentations. Other media such as text and still images may be
included by modelling them as video stills with finite duration. Our data model does not support
user interaction, but it could be extended to do so by making content specifications depend on the
timed sequence of user inputs. Since user interaction and other extensions would not substantially
change our definition of quality, we do not consider them further in this paper.

We describe the data model using the Z specification language [14] in order to focus attention
on the mathematical properties rather than on details of syntax and implementation. See the
accompanying sidebar for an overview of Z notation.

5

Z notation

We use a subset of the Z specification language as defined in The Z Reference Manual [14]
and augmented with the standard arithmetic and calculus operators and relations defined over
the set of real numbers. The example below shows a global declaration of a schema type S. A Z
schema type consists of a signature of typed variables together with constraints on those variables.
A declaration v : S says that v has schema type S and the components v.x and v.y must obey
the constraints for x and V respectively in schema S.

S __ __

[x,yR
[V2 x

Other global functions and constants can be declared with an axiomatic description. The following
example declares that length is a function from schema type S to the set of real numbers and that,
for all variables v of type S, length v is the difference between the V and x components of v.

length : S -+ R

V'v : S e length v = v.v - V.x

Free type definitions declare type constructors and arguments that generate a new type. For
example, a Tree is either a leaf or a branch with an integer value and two subtrees. The type
constructor branch is a function from a 3-tuple of an integer and two Trees to a Tree.

Tree ::= leaf I branch«l. x Tree x Tree))

The Z language includes common notation from set theory and first-order logic. We give brief
definitions here for other notation that may be unfamiliar.

S :PX
X-+Y
X-+Y
damf
ranf
mintS)
max(S)
seq X
()
head s
tail s

(let x == E1 • E2)
{x:TIPeE}

S is declared as a subset of X
binary relation
function from X to Y
domain of the function f
range of the function f
the minimum of a nonempty set of numbers S
the maximum of a nonempty set of numbers S
a finite sequence with elements of type X
the empty sequence
head of sequence
tail of sequence
let x be an abbreviation for E1 in E2
the set of all E such that x has type T and P is true.

Our content specifications define a set of logical output channels and the acceptable real­
number values for those outputs that may vary continuously with time. It is an important feature
of this model that the audio and video specifications may have infinite resolution. For example, the
visualization of a continuous function whose values can be computed rather than read from storage is
limited by the computational resources and the display device, but not by the content specification.

We assume only two basic types: Real numbers and Integers. Digital inputs and outputs will
be declared as Integers, but nearly all other quantities will be modeled as Real numbers. Real
numbers are used for the specification of logical values to avoid placing an artificial limit on the
content resolution. We begin with a declaration of these basic types:

6

[R,l]

The Interval schema gives a start position and an interval extent. We use this information to
specify both clipping intervals and linear transformations. In a linear transformation, we use start
as an offset and extent as a scale factor,

,Interval
I start: R
. extent; R
I

To make it easier to treat all outputs uniformly, we define a single schema for describing output
dimensions, This schema must contain the maximal set of dimensions for all output types. When
used for audio specifications, we simply ignore the x and y intervals. The Space schema specifies
intervals for t, x, and y coordinate dimension and a z interval for the output range. For example,
we describe the dimensions of a sampled video source with a Space that stores the start index and
number of frames in the t interval, the start index and number of samples across and vertically in
the x and y intervals respectively, and the range of sample values in z.

Space __ __

I" t : Interval
I x: Interval

I
y: Interoal
z : Interval

A Content specification is a recursive construct built from basic audio and video sources. Each
audio, video, sampledAudio, and sampledVideo construct defines a single logical output channel.
More complex content may be specified using clip, trans/orm, cat, synch, and select constructs. The
LogicalOutput type is used in the select construct to reference a particular logical output, The exact
meaning of each of these constructs is described below,

LogicalOutput ::= IA udio ({l» II Video {(2.»

Content :;= audio«Space x (R -4 R))
I video«Space x (R -4 R -4 R -4 R))
I sampledAudio«Space x (l-4 R))
I sampledVideo«Space x (l-4 l -4l-4 R)))
I clip«Space x Content»
I trans/orm({Space x Content»
I cat«seq Content»
I synch«seq Content»
I select({LogicalOutput x Content»

The audio constructor takes a pair with a Space descriptor and a function from a real time
coordinate to a real z value. For example, a sine function could be given as an audio source function
with no limit on the resolution of the signal. As described in the following sections, the resolution of a
presentation is limited only by an actual implementation on digital outputs. The video constructor
also bikes a pair with a Space descriptor and a function, but the video source function requires
additional real coordinates for x and y. The domain and range for the functions are specified with
the Space argument. The constructors for sampledAudio and sampled Video require functions of
integer coordinates. For simplicity, this definition supports only monochrome video, but the same
approach can be generalized to specify a tuple of values at each point for color.

Figure 3 illustrates a content specification for the example presentation from Figure 2, We'll
describe this specification from the bottom up, beginning with the two sampled Video specifications

7

I clip I t:O.lsP

Figure 3: Content specification in normal-form for example presentation.

and the one sampledAudio specification that form the leaves of the tree. The first video specification
declares that the source cam1 contains 8-bit samples in 3450 frames and each frame has 320x240
pixels. The second video source named cam2 has 1590 frames and each frame has 640x480 pixels.
The audio source mid has 100 seconds worth of samples at 8000 8-bit samples/second. Both videos
are scaled in time to play at 30 frames/second and their z ranges are normalized by the transform
specifications. The first video is scaled by a factor of 2 to match the dimensions of the second video
and is offset by -100 seconds so that the clip can begin at logical time zero. The second video and
the audio are both offset for synchronization with the first video. The audio is normalized and scaled
in time to play at 8000 samples/second. The video presentation is assembled by concatenating a
clip of seconds 0-5 from the first transformed video with seconds 5-8 from the second, followed by
the clip of seconds 8-15 from the first again. The result is then synchronized with a clip of seconds
0-15 from the transformed audio.

The tronsform, clip, cat, synch, and select specifications support stretching and shrinking,
cut, paste, and synchronization of logical outputs. Although other features are desirable, such as
the ability to mix several logical outputs together, the constructs described are sufficient for editing
useful time-based multimedia presentations and for illustrating the meaning of view and quality
specifications in the next sections.

The meaning of a content specification is defined by a set of allowed logical output values for
every point of the logical output space. Let the Interval function I return the set of real numbers in
an interval. Then a point (x, y, t) is in the logical space s if (~. E I s.x) 1\ (y E I s.y) 1\ (t E I s.t).

I : Interval -t P R

I v = { r : R I (v.start ~ r) 1\ (r < v.start + v.extent)}

We also use the Interval type to describe linear transformations. Given an Interval i, let
the functions tr and utr respectively transform and untransform a real number r by a scale factor
i.extent and an offset i.start. For example, if i.start:= 3.0 and i.extent = 2.0 then tr 4.5 i = 12.0.

tr, utr : R ---+ Interval---+ R

tr r i := r * i.extent + i.start

uti r i (r i .start) / i. extent

Content specifications constrain logical output values only during explicit time intervals. For
example, the content specification in Figure 3 allows any output values before logical time 0 and
after logical time 15. The functions start, end, and duration are used to reference the logical time
interval over which output values are constrained by a content specification. The logical start of
a content specification is the minimum time t at which some output value is not acceptable! The

8

logical end is the minimum time t such that no output value is constrained for times greater than
or equal to t. The function IAudios returns the integral number of logical audio outputs that are
constrained by a content specification and IVideos returns the number of logical video outputs.

start, end, duration: Content -+ R
I [Audios, IVideos : Content -+ Z

start c = min { t : R I ..., (V I : LogicalOutput; x, y, z : R • (l, x, y, t) z) E logical c) }

end c = min { t : R I
"It' : R • (t ::; t') => (V I: LogicalOutput; x, y, z : R • (I, x, y, t', z) E logical c) }

duration c = end c start c

IAudios(c) = max {n : Z 1 ..., (V x, y, t, z : R. (lAudio(n),x, y, t, z) E logical c)}

lVideos(c) = max {n : 21 ..., (V x, y, t, z : R. (lVideo(n), x, y, t, z) E logical c)}

The meaning of each of the content constructs is captured by the following definition of a
function for logical content. For a given content specification, the logical function returns a relation
between a point in the logical output space and the acceptable output values for that point. We read
the expression (l, x, y, t, z) E logical c as: the content specification c specifies that logical output I,
at point (x, y) and time t may have value z. Note that specifications reduce the set of acceptable
values and where nothing is specified, all values are acceptable.

Logical Value == LogicalOutput x R x R x R x R

9

I logical: Content ---+ P LogicalVafue

logical (audio(s, f)) = { I : LogicalOutput; x, y, t, z : R I
(l = fA udio 1) A (t E [s. t) => z = It. (l, x, y, t, z) }

logical (video(s,I)) = {I : LogicalOutput; x, y, t, z : R I
(l = lVideo 1) A (x E [s.x) A (y E [s.y) A (t E [s.t) => z = I t y x. (I,x, y, t, z)}

logical(sampledAudio(s, f)) = {I: LogicalOutput; x, y, t, z : R I
(l = LA udio 1) A (t E [s. t) A z = I l t J • (l, x, y, t, z) }

logical(sampledVideo(s,f)) = {I: LogicalOutput; x, y, t, z: R I
(l = lVideo 1) A (x E [s.x) A (y E [s.y) A (t E [s.t) => z I ltJ lxJ lyJ • (l,x, y, t, z)}

logical(clip{s, c)) = {I: LogicalOutput; x, y, t, z : R I
(x E [(s.x)) A (y E [(s.y)) A (t E [(s.t)) =>

(I, x, y, t, z) E logical c. (I, x, y, t, z)}

logical(transIorm(s, c)) = {I: LogicalOutput; x, y, t, z : R I
(l, x, y, t, z) E logical c. (I, tr x s.x, tr y s,y, tr t s.t, tr z s.z)}

logical(cat({))) = {I: LogicalOutput; x, y, t,z: R. (l,x, y, t,z)}

logical (cat(q)) =
logical (head q)
n {I: LogicalOutput; x, y, t, z : R I

(I, x, y, t, z) E logical (cat (tail q)) • (I, x, y, t + end (head q) - start (cat (tail q)), z) }

logical (synch(())) { I : LogicalOutput; x, y, t, z : R • (l, x, y, t, z) }

logical (synch q) =
{n : 2; x, y, t, z : R I (tAudio n, x, y, t, z) E logical(head q) •

(IAudio(n + (IAudios(synch(tail(q)))), x, y, t, z)}
n {n : 2; x, y, t, z: R I (lVideo fl, x, y, t, z) E logical(head q).

(lVideo(n + (lVideos(synch(tail q))),x, y, t, z)}
n logical(synch(tail q))

logical(select(lAudio n, c)) = {l : LogicalOutput; x, y, t, z: R I
(I = lA udio 1) A {(lA udio n, x, y, t, z) E logical c) • (l, x, y, t, z) }

logical(select(lVideo n, c)) = {I: LogicalOutput; x, y, t, z : R I
(l IVideo 1) A ((lVideo n, x, y, t, z) E logical c) • (I, x, y, t, z)}

The first predicate for logical(audio(s,f)) says that if I is the logical output lAudio 1 and t
is within the interval s,t then the only acceptable value for z is the function I(t). Otherwise, any
values are acceptable for z. Note that the interval s.z may indicate the intended range of source
values, but there is no need to enforce this range when defining the logical content. The predicate
for logical (video(s, f)) expresses a similar constraint for the logical output l Video 1.

For sampled audio and video, the logical coordinates are rounded down to the nearest integer.
Consequently, the number of samples (frames) is given by ls.t.extent J and the pixel dimensions for
video frames is ls.x.extent J * l s.y.extent J. This information about sample resolution is needed only
for accessing the source functions and is not carried explicitly in the definition of logical content.

A clip(s, c) construct specifies that for all logical outputs, points within the Space s are con­
strained to have the same values as specified by c. All points not in s are effectively "clipped" out
and may have any value. Note that the z interval in s does not participate in the clipping.

A translorm (s, c) construct specifies a linear transformation of points in the content specified
by c. For example, if start e = 0, duration c = 60, s.t.start = 10, and s.t.extent = 2, then
start{ transIorm(s, c)) = 10 and duration (transIorm{ s, e)) = 120. The transformation construct

10

transfol'm(s, c) with all start fields in s equal to zero and all extent fields in s equal to one is the
identity transformation and has no effect.

A temporal sequence of content can be specified with a cat(q) construct. The content for a
member of the sequence q is logically shifted in time to start just as the previous content in the
sequence ends. The synch(q) construct specifies that a set of logical outputs all reference the same
time scale. If the content specifications Cn and Cm specify nand m logical outputs respectively, then
synch((cn , cm ») specifies m + n logical outputs.

The select(I, c) construct offers a way to reference only the content of a single logical output
within a complex specification. Where the syncll construct aggregates multiple logical outputs into
a single content specification, select(l, c) specifies only a single logical output with the same content
as c specifies for logical output l. For any H, the logical output defined by select(l, c) is (lAudio 1)
if 1= (tAudio n) and (lVideo 1) if 1= (lVideo n). If a content construct does not specify the logical
output I then select(l, c) is the null specification; that is, all values are permissible on all outputs.

It is worth noting that no matter how a content specification is composed, its logical content
may be equivalently specified by a content specification with the normal-form shown in Figure 3. In
normal-form, every specification is a tree with a syncll construct at the root. The synch construct
specifies a sequence of cat constructs. Each cat construct specifies a single logical output with a
sequence of clip constructs. Each clip specifies a portion of a transform construct and each transform
construct defines the logical dimensions of a basic media source. A basic media source must be either
an audio, video, sampledAudio, or sampled Video construct.

This definition of content satisfies our goal of a data model for complex presentations except
that we have no way to relate the logical content to actual presentation outputs. The logical outputs
of a content specification have both temporal and spatial proportions, but they have no physical
size or real duration. To make the connection to actual presentation outputs, we need to specify a
mapping between the content and physical devices.

4 View Specification

A View specification allocates physical devices for logical outputs and maps logical time to a
real-time clock. While the physical devices may present an upper bound on spatial and temporal
resolution, the view does not specify presentation quality. Figure 4 shows a view specification
that allocates an unusually small 8x6 pixel window on a monochrome (black and white) display
for the bicycling video presentation. Although the output device clearly limits the quality of the
presentation, the view does not specify how the content is to be represented on the display. It
is the presentation plan that must choose how to resample the source and how to represent gray
scale information. The combination of content and view specifications serve as a device-independent
specification of a perfect quality presentation. The idea of an ideal presentation is formally defined
below. In the next section, we define less-than-perfect quality based on the difference between this
ideal presentation and actual presentation outputs.

Since we are not interested in the details of the physical device I/O, we simply assume that
there is a set of audio output devices AudioDev and video output devices VideoDev. A Device is
either one of the audio devices or one of the video devices.

[AudioDev, VideoDev]

Device == A udioDev U VideoDev

The logical dimensions in a content specification are generally not the same as the physical
dimensions of the view. The Output schema declares a field tr that defines the transformation from
logical to view output dimensions and a field clip that defines clipping bounds for view outputs.
In Figure 4, the Output specification for [Video 1 transforms the 640x480 logical image size to 8x6
and then offsets the image 2 pixels in x and 1 in y. The z values are transformed from the logical
range of [0, 1) to the view range of [0,256). The clipping bounds for both audio and video match the

11

Screen

(0,0)

logical output 1

(640,480)
Output

deY Screen

x:2,8/640 y:l,6/480 z:O,256

clip 0,J5

tr z:O,256

clip z:0.256

Figure 4; Example of a view that allocates an 8x6 pixel window on a display device for presentation
of the bicycling video.

full range of the transformed content. Note that the time fields are ignored, because the temporal
transformation and clipping for all outputs is given in the View specification. This asymmetry is
necessary to preserve the content synchronization while allowing flexibility in the display of multiple
logical outputs.

Ou~ut __ __

[
dev : Device
~r, clip: Space

A View specifies a partial function map that assigns a subset of the logical outputs to physical
output specifications. Logical content that is to be presented must be mapped to physical outputs
of the appropriate type. Logical outputs that are not in the domain of the map function are ignored.
The tr field is used to transform logical time in a content specification to a real-time clock. The clip
field specifies the real-time start and duration of the presentation.

View __ ___

I map : LogicalOutput -I-> Output
, tr: Interval I dip, lnt,rool

(lAudio n E dommap) => (3d: AudioDev. (map(lAudio n)).dev = d)

. (lVideo n E dom map) => (3 d : VideoDev. (map(LVideo n)).dev = d)

A view specification together with a content specification defines an ideal presentation, where
the output devices are assumed to have infinite resolution. This assumption is necessary for a

12

device-independent definition of quality. We model a presentation as a set of Device Value tuples
(d, x, y, t, z) that give the z value for a particular Device d and coordinates x, y, and t.

Device Value :::::::: Device X R x R x R x R

We define a function ideal c v that returns the relation between devices and the values spec­
ified by a Content specification c and a View specification v. The relation ideal c v contains all
Device Value tuples (d, x, y, t, z), where the view maps a logical output I to a device d and x, y,
and t are within the clipping bounds for d, only if the corresponding logical value is allowed by the
content specification c. The corresponding logical point is computed by substituting I for p and
"un-transforming" x, y, t, and z back to logical space.

ideal: Content -t View -t P Device Value

ideal c v:::: {d; Device; x,y,t,z: R.
(31 : LogicaLOutput; p : Output.

((l E domv.map) 1\ (v.map l:::: p) 1\ (p.dev:::: d)
1\ (d E AudioDev) 1\ (t E I v.clip)) =>

(3 x, , y' : R • (l, x' , y', utr tv. tr, utr z p. tr. z) E logical c))
1\ (31 : LogicaLOutput; p : Output.

((I E domv.map) 1\ (v.map l:::: p) 1\ (p.dev:::: d)
1\ (d E VideoDev) 1\ (t E I v.clip) 1\ (x E I p.clip.x) 1\ (y E I p.clip.y)) =>

((l, utr x p. tr. x, utr y p. tr. y) utr tv. t1', utr z p. tr. z) E logical c))
.(d,x,y,t,z)}

The implementation of a presentation plan uniquely determines the value for every device at
every point and time. The schema Presentation models the implementation with separate functions
for audio and video. The a Val function takes an A udioDev and an integer clock value and return
an integer z value. The vVal function takes a VideoDev and integer values for the clock, X, and y
coordinates, and returns the integer value at that pixel.

Presentation _____________________ _

aVal ; AudioDev -t l-t l
v Val : VideoDev -t l -t l -t l -t l

We define a function actual that takes a particular presentation and returns a relation rep­
resenting these output values. The relation actual P contains a point (d, x, y, t, z) only if z is the
value of the device d and pixel (x, y) while the clock value is t as defined by P. We are assuming
that we can observe only one output value per clock tick and that the output value is constant over
the duration of a clock cycle.

actual: Presentation -t P Device Value

actual P ::::
{d : Device; x, y, t : R I

d E A udioDev • (d, x, y, t, P. a Val d l t j) }
U {d : Device; x, y, t : R ,

dE VideoDev.(d,x,y,t,P.vValdlxj lyJ ltJ)}

The relation actual P and the relation ideal c v have the same type. In the next section we
use this fact to define a mapping between them.

5 Quality Specification

We define the quality of a presentation to be the ratio of the worth of the actual presentation
to the worth of the ideal presentation. Although worth may be subjective, we believe the ratio can
be usefully modelled with a few assumptions:

13

value value

ideal

II lime I J t2 lime

Figure 5: Presentation error may be attributed to value error alone, as shown on the left, or to some
combination of timing and value errors.

1. User perception of presentation quality can be modelled by a continuous function of time and
device coordinates.

2. The quality of a presentation that differs from the ideal is less than one. How much less
depends only on user perception of the difference.

3. User perception of the difference between an actual presentation and the ideal is based on a
mapping from points in the actual presentation to points in the ideal presentation.

With these assumptions, quality is independent of data representations and transport mech­
anisms. In particular, our definition of quality is not based on the data throughput required for a
presentation, but instead can be used to determine throughput requirements as shown in the next
section. In this section, we provide a model for computing quality and define quality specifications
in terms of this model.

The declaration for an Errorlnterpretation below is the most important part of our QOS
specification because it defines an error model for measuring presentation quality. An error model is
a set of functions that describe the number of ways in which an actual presentation may be different
from an ideal presentation. We refer to these functions as error components.

Consider the presentations illustrated in Figure 5. A minimal error model includes a function
for error in the z dimension for every output, but assumes error in x, y, and t dimensions are
zero. The error function returns the minimum difference between the actual output value z and
an ideal value for each output, p, at the same point and time. This error model is the smallest
model that can map from actual P to ideal c v for any P, c, and v. We say that an error model is
complete if we can specify arbitrarily high quality (as judged by humans) by requiring that all error
components in the error model are sufficiently close to zero. The minimal error model is complete
because the presentation becomes indistinguishable from the ideal as the Z error component goes
to zero everywhere.

The choice of error components in our error model is intended to provide a useful model of
human perception. IdeaIIy, a presentation QOS specification should accept all presentations that
humans accept and reject only those that humans reject. A conservative specification is one that
never accepts a presentation that humans would reject. If an error model is complete, we are
assured that every error component has a non-zero threshold for which it becomes imperceptible.
As a result, we can always find a conservative specification that constrains all errors to be less than
their threshold values. But such a specification would undoubtedly reject many presentations that
humans would accept.

We can show that any conservative QOS specification based on the minimal error model need­
lessly rejects presentations that we find acceptable. With the minimal error model, we can only

14

accept presentations with no timing error and small z error as illustrated on the left in Figure 5.
The right side in Figure 5 shows that a simple startup delay produces large z error measurements
under the minimal error modeL But a person judging the presentation would be able to compensate
for the small startup delay and perceive very little z error. By adding a constant time shift error
component to the error model, we can accept the larger set of presentations where z error is small
after compensating for some small startup delay.

Our error model adds many error components to achieve a better match between conservative
QOS specifications and human perception. The shift error component allows a presentation to be
behind (or ahead of) schedule. Rather than require the error component for time shift to be constant,
we allow shift to vary through a presentation. The rate at which the time shift drifts is constrained
by a rate error component. The rate error is zero while the shift error is constant, but increases
in magnitude when the presentation speeds up or slows down. We added a jitter error component,
which allows small "hiccups" in the timing that would otherwise be prohibited by constraints on
rate error. For example, logical time for a video might be accurately perceived as stopping between
frames and then advancing instantaneously as the next frame is presented. Rather than reflecting
this rate fluctuation in the rate error component, the jitter error component accounts for these small
timing errors. How much of the timing error is due to jitter and how much to shift is a matter of
interpretation! We include a synch error component for each pair of outputs because shift errors are
not very noticeable except as synchronization error between outputs.

The shift, rate, and jitter error components are defined similarly for :1: and y dimensions since
spatial presentations can suffer from displacement, scaling and small distortions that are analogous
to the temporal error components.

Even after accounting for temporal and spatial errors, the difference between an actual presen­
tation value and the corresponding ideal value at an infinitesimal point is not particularly meaningful.
The problem is that humans don't perceive independent values at infinitesimal points, but instead
integrate over small display areas and time intervals. This fact is routinely exploited by graphics
algorithms that use dithering. For example, a black and white display can represent a 50% gray
tone by a pattern with every other pixel turned on. Dithering trades off spatial resolution for more
accurate average values. The resolution of an image in the :1: dimension can be thought of as the
width of the smallest resolvable vertical stripe. We define resolution in y and in time similarly. Then
the interesting measure of z error is the difference in average value over the neighborhood of a point
defined by :r, y, and t resolution. This separates objective value errors into perceived resolution loss
and perceived value errors. Our error model further decomposes value errors into z-dimension shift,
rote, and jitter error components to model perceived offset, scale, and noise errors respectively.

Several type declarations and functions simplify the formal definition of our error model and
quality constraints. An xytFun is just an abbreviation for a function that takes three real numbers
for x, yand t coordinates and returns a real number.

xytFun == R ---7 R ---7 R ---7 R

The Error data type provides names for the error components that our error model associates
with each output.

Comp ::= err I shift I rate I jitter I res
Error ::= X ((Comp» I Y((Comp» I T((Comp» I Z((Comp)}

The Error type does not include a name for synchronization error because this error com­
ponent is represented in the ErrorInterpretation by a separate function type. The aug function is
needed to express the relation between error in z and resolution error in x, y, and t. The expres­
sion aug (xres, yres, tres) f computes an xytFun that is the average value of the function f over
the local region defined by xres, yres, and tres. Because audio outputs do not vary in x or y,
aug (X res, Y res, T res) f is independent of the values of X res and Y res in that case and is
therefore well defined even when X res and Y res are not specified.

15

aug : (xytFun x xytFun x xytFun) -> xytFun -> xytFun

(aug (xres, yres, tres) f) x y t =
(let Xr == xres x y t; Xl == X - (xr/2); X2 == X + (xr/2);

Yr == yres x y t; Yl == Y - (Yr/2); Y2 == Y + (Yr/2);
tr == tres X y tj t1 == t - (tr/2); t2 == t + (tr/2) •

1 ft, rll'fX'(f x' y' t') dx' dy' dt')
xr*'Yr*tr tl JYl Xl

Errorlnterpretation _________________________ _

c: Content
v: View
P : Presentation
error : Output -> Error -> xytFun
synch : Output -> Output -> xytFun

V p : Output. (let i == error p •
3 Z.deai) Zactual : xytFun •

(V x) y, t : R • (p) x, y, t, Z,deal X Y t) E ideal c u)
1\ (Ii x, y) t : R • (p, x, y, t, Z actual X Y t) E actual P)
1\ i(Z err) = (). x,y, t: R.

Zactual X Y t-
Zideal(X + i(X err) x y t)(y + i(Y err) x y t)(t + i(T err) x y t))

1\ i(X err) = i(X shift) + i(X jitter)
1\ i(Y err) = i(Y shift) + i(Y jitter)
1\ i(T el'r) = i(T shift) + i(T jitter)
1\ i(X rate) = 8i(X shift)/8x
1\ i(Y rate):::: 8i(Y shift)/8y
1\ i(T rate) = 8i(T shift)/lJt
1\ (let perceiuedErr = i (Z shift) + « 1 + i (Z rate)) * Z,deat) + i (Z jitter) •

aug (i (X res), i (Y res), i (T res)) (i (Z err)) =
aug (i (X res), i(Y res), i(T res)) perceiuedErr))

Ii p, q : Output •
synch p q = (error p (T shift)) - (el'ror q (T shift))

The error model in this declaration defines a set of error components for each output through
the error function as weIl as an error component for each pair of outputs defined by the function
synch. The predicate for an Errorlnterpretation is like a differential equation in that it does not have
a unique solution for the error component functions. Instead, we observe that error measurement is
inherently subjective because the output signals do not carry meta-information about the intended
relationship to the specification. An Errorlnterpretation merely defines one subjective mapping and
a set of error components that are consistent with each other and the mapping. We say that an
error model is sound if, for any trio of Content, View, and Presentation, a set of error component
functions exist that satisfy the definition of the error model. We claim that the error model proposed
above is both sound and complete.

We declare a quality specification to be a schema that gives the minimum acceptable level of
quality and also provides values for calibrating the affect of each error component on presentation
quality.

I :~~b:: ~utPut -> Error -> R
I calibSynch: Output -> Output -> R

(0::; min) 1\ (min < 1)

16

The meaning of the quality schema in conjunction with a content and view specification is
given by the following schema for a QOS specification:

QOS __ __

I c ; Content
v: View
q: Quality
P : Presentation

3 i : Error/nterpretation _ i.c = c 1\ i. v = v 1\ i.P = P 1\

V p E ran v.map; x, y, t : R-
(let

error = (oX m: Error-I j error l' m x y t I)'
q.callb pm'

h (\ JOt t I i .synch p pi X Y t I'
sync = '" p: u pu - q.calibSynch l' 1" J-
. < (IT -error m) * (IT -synch 1")) q.mm _ mE Error e p'Eran v.map e

This schema consists of Content, View, and Quality specifications that constrain a presentation
P. The QOS specification is satisfied only if an Errorlnterpretation exists for c v and P such that,
at all times and all points on every output, the quality of the presentation is greater than or equal
to q.min. We compute quality with an exponential decay function that depends on the absolute
value of error components. This model has the following properties:

_ quality is one when all error components are zero.

_ quality is monotonically decreasing with increase in the absolute value of any error component.

_ quality approaches zero as all error components approach infinity.

This definition for QOS specifications is very strict in that quality must exceed the minimum
everywhere during a presentation. It would be nice to extend the specification semantics to allow a
presentation to occasionally drop below this minimum quality, but this extension is left for future
work.

For a given presentation and its specification, our error model allows an infinite number of
interpretations; each with a different affect on the calculation of presentation quality. What matters
is that an interpretation exists that has acceptable errors. We assume that humans are good at
recognizing the intended presentation content and that they will perceive the interpretation with
errors that are the most acceptable.

To calibrate this quality function to approximate user perception, we can adjust the values
returned by the calib and synchCalib functions in the quality specification. We call these values
critical error values. For every error component in our error model, there is a corresponding critical
error value in the quality specification. When an error component equals the corresponding critical
error value the quality is at most e- 1 or approximately 0.37. Consequently, we should choose these
critical error values to correspond to poor quality.

Figure 6 gives an example of critical error values that are used in the next section. The
units for temporal shift, jitter, res, and synch are in seconds. Measurements for x and y shift,
jitter, and res components are relative to v.clip.x.extent and v.clip.y.extent respectively for a View
v. Measurements for z shift and jitter are also made relative to v.clip.z.extent. All rate error
components are pure numbers with no units. The numbers in the figure represent the principle
author's determination of intolerable error in experiments with a five minute video clip from a
basketball game. Comparable values have been reported by other researchers for synchronization
error [16], but more experimentation is needed to determine how these values depend on the content,
task, and the person who rates the quality.

17

shift rate jitter res synch
VideoDev X 0.1 width 0.1 0.003 width 0.006 width 0.25
VideoDev Y 0.1 height 0.1 0.003 height 0.006 height
VideoDev T 15 0.5 0.1 0.2
VideoDev Z 0.2 range 0.8 0.1 range
AudioDev T 15 0.2 0.0002 0.0003
AudioDev Z 0.2 range 0.8 0.01 range

Figure 6: Example critical error values.

Output l
dev Screen

View I tr x:2,8/640 y: 1 ,6/480 z;0,256

map - f-;.. IV ideo 1
.. clip x:2,8 y:l,6 z;0,256

tr 0,114 IAudio 1 ~~ Output 1
clip 0,15/4 dev /dev/audio

I tr z:0,256

clip z;O,256

Figure 7; View specification for playback of bicycling video at four times normal rate.

A quality specification q can use the values from Figure 6 for its calib and synchCalib functions.
For example, for any video output p, q.calib p (T jitter) would be 0.1 seconds.

6 Using Quality Specifications for Resource Reservation

A multimedia player can generally meet a QOS specification with fewer resources than are
needed for a maximal quality presentation. Consider the content specification from Figure 3 and
a new view specification shown in Figure 7. Let the quality specification q have the critical error
values from Figure 6 and the value 0.75 for q.min. The view represents a user request to play
the presentation at 4 times the normal rate. The resulting ideal specification then calls for 120
frames/second of video. However, the quality specification only requires that quality exceed 0.75.
If all aspects of the presentation were perfect except for video jitter, the quality specification would
admit a presentation with jitter less than or equal to 0.029 seconds, which allows the playback
algorithm to drop more than five out of six frames. We can derive this result from the predicate in
the QOS schema as follows.

Let pv be the video output and i be an interpretation that finds all error components to be zero
except for i. error pv (T J'itter) , We can be sure that such an interpretation exists if our presentation
transports and displays the video data without loss on output devices that match the resolution of
the source. Note that the interpretation i considers all timing error to be jitter as opposed to shift
or rote errors. Since the exponential functions are equal to one when error is zero, we get;

U • R 075 (_I i.error pv (T jitter) x y t I)
v x, y, t. • . < exp /' (..) - q .ca Ib pv T JItter

(1)

Assuming that jitter is always positive, we can substitute the critical value q .calib pv (T jitter) from
Figure 6 and solve for the jitter:

i.error Pv (T jitter) x y t 1 $ -In(0.75) * 0.1 == 0.029 (2)

18

I I I I I I I I I I I I I I I I I I

t.- d
I 2

t.
I

ideal presentation

I I I I I

actual presentation

Figure 8: Example mapping from actual presentation times to ideal presentation times. When shift
error in an interpretation is zero, all timing error must be attributed to jitter.

Thus, the absolute value of the jitter can be as large as 0.029 seconds. Since all other errors are
assumed to be zero, jitter is defined by the error model to be the difference tideal - t where content
displayed by the presentation at time t should have been displayed at time tideal. AJ:, Figure 8
illustrates, if the duration d of the ith frame in a presentation is centered on the ideal time for
presentation of that frame ti then the absolute value of the jitter is always less than d/2 seconds.
Setting d/2 ::.; 0.029 and solving for d gives us a maximum frame duration of 0.058 seconds and a
minimum frame rate of approximately 18 frames/second.

Analysis of a QOS specification can identify a range of presentation plans that might satisfy
the specification as illustrated above. A multimedia player can perform this analysis automatically
in response to playback requests. To guarantee that a particular presentation plan will satisfy a
QOS specification a player must reserve resources for storage access, decompression, mixing, and
presentation processes. The attempt to reserve resources is called an admission test. The admission
test may invoke resource reservation protocols for network and file system resources with resource­
level QOS parameters derived from the process timing requirements. If the player can not find a
presentation plan that both satisfies the QOS requirements and meets the admission test, then the
QOS requirements must be renegotiated.

7 Conclusions

This paper has described a new methodology for QOS specification in multimedia systems.
The primary contributions of this methodology are the clear distinction between content, view and
quality specifications, and the formal definition of presentation quality. Because every component of
our QOS specifications has an unambiguous meaning, it is in theory possible to prove the correctness
of a presentation plan. These formal QOS specifications allow meaningful requests for end-to-end
service guarantees and enable service providers to optimize resource usage. Section 6 gave an informal
illustration of how a QOS specification can be used to derive the minimal frame rate for an acceptable
presentation.

Our formal definition of presentation quality is based on an error model that maps from an
actual presentation to an ideal specification. This mapping property ensures that our error model is
complete because, as all error components in the model approach zero, the presentation necessarily
becomes indistinguishable from the ideal specification. Previous definitions of QOS parameters do
not satisfy this completeness criteria. We have proposed an extensible set of error components that
are a superset of the presentation QOS parameters suggested by other researchers.

The proposed error model supports modelling of human perception. Each of the error compo­
nents corresponds to observable artifacts that have a measurable effect on human perception. We
have planned experiments to measure these effects. In the meantime, the quality function in Sec-

19

tion 5 offers a simple model of human perception. Because this function is monotonically decreasing
with an increase in any error component, we are assured the existence of a specification that allows
only imperceptible errors.

We defined a data model that supports complex audio and video compositions in order to
show a concrete example of presentation QOS semantics. More expressive data models exist. The
methodology we used to define presentation QOS semantics can be applied to any data model
-that provides a formal specification of continuous media outputs. Such a specification allows us to
measure differences between the specified and actual output values. The error model we described
is also only an example. Other, better, error models may exist, but our methodology will still apply.

Another important achievement of our methodology is the recognition that presentation quality
should be specified in terms of a subjective error interpretation and not in terms of the presentation
mechanism. By requiring only that an acceptable error interpretation exists, our QOS specifications
allow a player to choose an optimal presentation mechanism according to current resource costs and
availability. Knowledge of a presentation mechanism can be used to prove that an acceptable quality
interpretation exists.

We have implemented simple playback systems that make use of this QOS specification method.
More work is planned to investigate algorithms for translating QOS specifications into feasible pre­
sentation plans.

Acknowledgements.

We would like to thank the referees for helpful comments on our initial submission. Tom Little
of Boston University and John Nicol of GTE Labs also gave comments on early versions of this work.
Jim Hook of The Oregon Graduate Institute of Science & Technology aided our understanding of
the formalisms required.

References

[1] David P. Anderson: Metascheduling for Continuous Media. ACM Transactions on Computer
Systems, Vol. 11, No.3, August 1993, pp. 226-252.

[2J Shanwei Cen, Calton Pu, Richard Staehli and Jonathan Walpole: A Distributed Real-Time
MPEG Video Audio Player. To appear in Proceedings of the 5th International Workshop on
Network and Operating System Support for Digital Audio and Video, April 1995.

[3] Geoff Coulson, Gordon S. Blair and Philippe Robin: Micro-kernel Support for Continuous Media
in Distributed Systems. Computer Networks and ISDN Systems, Vol. 26, 1994, pp. 1323-1341.

[4] Simon Gibbs, Christian Breiteneder and Dennis Tsichritzis: Data Modeling of Time-Based Me­
dia. SIGMOD 94 Proceedings, May, 1994, pp. 91-102.

[5] David Hutchison, Geoff Coulson, Andrew Campbell and Gordon S. Blair: Quality of Service
Management in Distributed Systems. Tech. Rep. MPG-94-02, Lancaster University, 1994.

[6] K. Jeffay, D.L. Stone, T. Talley, F.D. Smith: Adaptive, Best-Effort Delivery of Digital Audio
and Video Across Packet-Switched Networks. Proceedings of the Third International Workshop
on Network and Operating System Support for Digital Audio and Video, November 1992, pp.
1-12.

[7] Didier Le Gall: MPEG: A Video Compression Standard for Multimedia Applications. CACM,
Vol. 34, No.4, April 1991, pp. 46-58.

[8] T.D.C. Little and A. Ghafoor: Network Considerations for Distributed Multimedia Object Com­
position and Communication. IEEE Network Magazine, November 1990, pp. 32-49.

[9] P. Lougher and D. Shepherd: The design of a storage server for continuous media. The Computer
Journal, Vol. 36, No.1, February 1993, pp. 32-42.

20

[10] David Maier, Jonathan Walpole and Richard Staehli: Storage System Architectures for Contin­
uous Media Data. FODO '93 Proceedings, Lecture Notes in Computer Science, Vol. 730, 1993,
Springer-Verlag, pp.I-18.

[11] C.W. Mercer, S. Savage and H. Tokuda: Processor Capacity Reserves: Operating System
Support for Multimedia applications. Proceedings of the International Conference on Multimedia
Computing and Systems, May 1994, pp. 90-99.

[12] K.K. Ramakrishnan, Lev Vaitzblit, Cary Gray, Uresh Vahalia, Dennis Ting, Percy Tzelnic,
Steve Glaser and Wayne Duso: Operating System Support for a Video-On-Demand File Service.
Proceedings of the 4th International Workshop on Network and Operating System Support for
Digital Audio and Video, November 1993, pp. 225-236.

[13] Lawrence A. Rowe, Ketan D. Patel, Brian C. Smith, Kim Liu: MPEG Video in Software: Rep­
resentation, Transmission, and Playback. High Speed Networking and Multimedia Computing,
IS&T/SPIE, February 1994.

[14J J .M. Spivey: The Z Notation: A Reference Manual. Second edition, Prentice-Hall International,
1992.

[15J Richard Staehli and Jonathan Walpole: Constrained-Latency Storage Access. Computer, Vol.
26, No.3, March 1993, pp. 44-53.

[16] Ralf Steinmetz and Clemens Engler: Human Perception of Media Synchronization. Tech. Rep.
43.9310, IBM European Networking Center, 1993.

[17J Hideyuki Tokuda, Yoshito Tobe, Stephen T.-C. Chou and Jose M.F. Moura: Continuous Media
Communication with Dynamic QOS Control Using ARTS with an FDDI Network. SIGCOMM
'92, 1992.

[18] Gregory K. Wallace: The JPEG Still Picture Compression Standard. CACM, Vol. 34, No.4,
April 1991, pp. 30-44.

[19J Marek Wernik, Osama Aboul-Magd and Henry Gilbert: Traffic Management for B-ISDN Ser­
vices. IEEE Network, September 1992, pp. 10-19.

21

