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NÉDÉLEC SPACES IN AFFINE COORDINATES

JAYADEEP GOPALAKRISHNAN, LUIS E. GARCÍA-CASTILLO, AND LESZEK F. DEMKOWICZ

Abstract. In this note we provide a conveniently implementable basis for simplicial
Nédélec spaces of any order in any space dimension. The main feature of the basis is
that it is expressed solely in terms of the barycentric coordinates of the simplex.

1. Introduction

Nédélec spaces are perhaps the most widely used finite element spaces in computa-
tional electromagnetics. They are very easy to describe: The simplicial Nédélec space
of the first kind [7] of order k ≥ 1 is

(1.1) Rk = P k−1 ⊕ Sk,

where P ` denotes the set of all vector functions whose every component is a polynomial
of degree at most ` and S` = {q ∈ P ` : each component of q(x) is a homogeneous
polynomial of degree ` and x · q(x) = 0 for all x}.

Although many implementations using Nédélec spaces of the lowest order exist, there
are very few codes that employ high order simplicial Nédélec spaces. One of the diffi-
culties in programming methods using high order Nédélec spaces is the complexity of
generating element basis functions. In this note we give a readily implementable basis
in affine (or barycentric) coordinates of Nédélec spaces of any order. We present the
basis for arbitrary orders as well as arbitrary space dimension N ≥ 2. Although, only
cases N = 2 and N = 3 are usually of interest, considering general N is not an over-
generalization, as we shall see. For example, to get an affine basis for the N = 3 case,
we have to work with the highest degree part of a Nédélec space in R

4 and establish a
correspondence with the Nédélec space in one less space dimension. Thus, for brevity,
we consider general N .

The connection between the lowest order Nédélec elements and Whitney forms are
well known. This leads to the following basis in affine coordinates for the lowest order
Nédélec space on an N -simplex:

{λi∇λj − λj∇λi},

where λi, i = 1, . . . , N + 1 are the affine coordinates of the simplex. We provide an
elementary approach to generalize such forms to the higher order case.

Many papers devoted to the construction of specific shape functions for computational
electromagnetics have appeared in engineering literature [1, 3, 2, 4, 5, 6, 8, 10, 11]. In
particular, this note is motivated by an elegant presentation of Webb [9] devoted to the
construction of hierarchical shape functions of arbitrary order in terms of barycentric

This work was done during a visit of the second author to ICES sponsored by Secretaŕı de Estado
de Educación y Universidades of Ministerio de Educación, Cultura y Deporte, Spain. The second
author also acknowledges the support of Ministerio de Ciencia y Tecnoloǵıa of Spain under project
TIC2001-1019. The first author was supported by ICES through a faculty fellowship.
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coordinates. We provide an algebraic link between Nédélec’s characterizations in [7] and
results in [9]. It follows from our results that Webb’s functions do not span the original
Nédélec space. While [9] aims at constructing a heirarchical basis, our aim in this note is
simply to rigorously establish a general form of the higher order Nédélec basis functions
in affine coordinates. As we shall see, it is possible to achieve this aim by elementary
arguments.

2. Some characterizations of the Nédélec space

In [7], Nédélec characterized Rk in terms of the symmetric multilinear form

(2.1) εk(q)(r1, r2, . . . , rk+1) =
1

(k + 1)!

∑

σ

(dkq)(rσ(1), rσ(2), . . . , rσ(k)) · rσ(k+1),

where the sum runs over all permutations σ of the set {1, 2, . . . , k + 1}, q is any smooth
vector function R

N 7→ R
N , ri’s are any set of k + 1 vectors in R

N , and dkq is the k-th
order Fréchet derivative of q, i.e., if q = (q1, . . . , qN)t and dkqi is the standard Fréchet
derivative of qi then dkq = (dkq1, . . . , d

kqN )t. It is proved in [7] that a smooth function q

is in Rk if and only if εk(q) = 0. With this equivalence as a starting point, we will derive
some other characterizations of the homogeneous part of the Nédélec space, namely Sk.
These characterizations help us give a basis for Rk in affine coordinates.

The characterizations are stated in the next theorem. The statements of the theorem
use multi-index notations which we now describe: The set of multi-indices is

I(N, k) = {α ≡ (α1, α2, . . . , αN) : αi ≥ 0 are integers satisfying

N∑

i=1

αi = k}.

The notation xα for any x ∈ R
N and α = (α1, . . . , αN) ∈ I(N, p) denotes the product

xα1
1 xα2

2 . . . xαN

N . In a similar vein, the operator ∂α for any α ∈ I(N, p) is defined by

∂α =
∂p

∂xα1
1 ∂xα2

2 · · ·∂xαN

N

.

We denote by e` the multi-index whose indices are all zero except the `-th one, e.g.,
e1 = (1, 0, . . . , 0). We adopt the convention that any term involving a multi-index
with negative components is zero. Let Ck(RN) denote the set of k times continuously
differentiable R

N 7→ R
N maps. The following theorem is proved later.

Theorem 2.1.

A: If q is a function in Ck(RN ), it is in Rk if and only if

N∑

`=1

β`∂
β−e`q` = 0, for all β ∈ I(N, k + 1).

B: If q is the homogeneous polynomial given by

(2.2) q =
N∑

`=1

( ∑

α∈I(N,k)

cα,`x
α

)
e`,
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it is in Rk if and only if

(2.3)

N∑

`=1

cβ−e`,` = 0, for all β ∈ I(N, k + 1),

where we understand that cβ−e`,` = 0 whenever any component of β − e` is
negative.

Remark 2.1. Note that Statement B of the theorem characterizes Sk. Since it is proved
in [7] that q ∈ Sk if and only if x · q(x) = 0, we find that (2.3) is equivalent to
x · q(x) = 0. This equivalence can also be directly seen easily.

Remark 2.2. One way to obtain Nédélec-type spaces is motivated by Theorem 2.1. By
Nédélec-type spaces we mean spaces R̃k that satisfy the “exactness property” ∇Pk =
{q ∈ R̃k : curlq = 0} (when N = 3). Let {aβ,`} be any set of positive numbers. Define

S
(a)
k =





N∑

`=1

∑

α∈I(N,k)

cα,`x
αe` :

N∑

`=1

aβ,` cβ−e`,` = 0, for all β ∈ I(N, k + 1)



 .

Then it is easy to see that P k = S
(a)
k ⊕ ∇P k+1, where P k+1 denote the space of scalar

homogeneous polynomials of degree k+1 and P k denotes the space of vector polynomials

whose components are in P k. Hence R
(a)
k ≡ P k−1 ⊕ S

(a)
k defines a Nédélec-type space.

When all aβ,` = 1, the space R
(a)
k coincides with the Nédélec space. But R

(a)
k and Rk

are not equal in general.

We can find a basis for the highest degree part of the Nédélec space, namely Sk, by
solving for the null space of the matrix implicit in (2.3). This will be done in the proof of
the next theorem. To describe the basis, first partition the set of multi-indices I(N, k)
into

Ij(N, k) = {β ∈ I(N, k) : all except j of the components of β are zero}.

Clearly I(N, k) is the disjoint union of the I1(N, k), I2(N, k), . . .IN (N, k). Note that sets
Ij(N, k+1) are empty for j > k+1. For N = 3, there is a natural correspondence between
Ij(N, k+1), j = 1, 2, 3 and Nédélec’s edge, face and interior degrees of freedom. (This is
made clearer after Theorem 3.1.) Consider β ∈ Ij(N, k +1) and let `(1), `(2), . . . `(j) be
integers such that β`(m) > 0 and β` = 0 for all ` /∈ {`(1), . . . , `(j)}. Define the collection

of j − 1 functions Bβ
k for j > 1 by

Bβ
k = {xβ−e`(m)e`(m) − xβ−e`(m+1)e`(m+1) : m = 1, 2, . . . , j − 1}.

Also define

B
(j)
k =

⋃

β∈Ij(N,k+1)

Bβ
k .

Note that in some cases B
(j)
k is empty. For example, if N = 3, the set B

(3)
1 is empty.

Theorem 2.2. The set Bk ≡ B
(2)
k

⋃
B

(3)
k

⋃
· · ·

⋃
B

(N)
k is a basis for Sk.



NÉDÉLEC SPACES IN AFFINE COORDINATES 4

We will now prove both the theorems.

Proof of Theorem 2.1. By Nédélec’s characterization, q is in Rk if and only if εk(q) = 0.
We will show that εk(q) = 0 if and only if (2.3) holds. Let us first obviate some of the
difficulties in dealing with the definition (2.1) by observing a simplification of εk: Since
the Fréchet derivative dkq(r1, . . . , rk) is symmetric with respect to interchanges of ri,
εk simplifies to

(2.4) εk(q)(r1, r2, . . . , rk+1) =
1

k + 1

k+1∑

j=1

rj · d
kq(r1, . . . , rj−1, rj+1, . . . , rk+1).

Since εk(q)(r1, . . . , rk+1) is linear in each ri, the function q satisfies εk(q) = 0 if and
only if

(2.5) εk(q)(ep(1), ep(2), . . . , ep(k+1)) = 0

for all maps p : {1, 2, . . . , k + 1} 7→ {1, 2, . . . , N}. Note that

εk(q)(ep(1), ep(2), . . . , ep(k+1))

=
1

k + 1

k+1∑

j=1

ep(j) · d
kq(ep(1), . . . , ep(j−1), ep(j+1), . . . , ep(k+1))

=
1

k + 1

k+1∑

j=1

dkqp(j)(ep(1), . . . , ep(j−1), ep(j+1), . . . , ep(k+1))

=
1

k + 1

k+1∑

j=1

∂pqp(j)

∂xp(1)∂xp(2) · · ·∂xp(j−1)∂xp(j+1) · · ·∂xp(k+1)

.(2.6)

Now, construct multi-indices β(p) for each map p such that β(p) = (β1, . . . , βN) has its
component βi equal to the cardinality of the set {j : p(j) = i}. Then, by (2.6),

εk(q)(ep(1), ep(2), . . . , ep(k+1)) =
1

k + 1

k+1∑

j=1

∂β(p)
−ep(j) qp(j),

where we understand all terms involving β(p) − ep(j) to vanish whenever any component

of β(p)−ep(j) is negative. In the above sum, the term ∂β(p)
−ei qi appears exactly as many

times as the value i is attained by the map p, i.e., exactly βi times. Hence,

εk(q)(ep(1), ep(2), . . . , ep(k+1)) =
1

k + 1

N∑

`=1

β` ∂β(p)
−e` q`.

Thus, by (2.5), q is in the Nédélec space Rk if and only if

N∑

`=1

β` ∂β(p)
−e`q` = 0

for all maps p : {1, 2, . . . , k + 1} 7→ {1, 2, . . . , N}.
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Observe now that β(p) ∈ I(N, k + 1), since the sum β1 + β2 + · · · + βN equals the
cardinality of the domain of p. Moreover, we can construct any multi-index η ∈ I(N, k+

1) as β(p) of some map p : {1, 2, . . . , k +1} 7→ {1, 2, . . . , N}. Hence q ∈ Rk if and only if

(2.7)
N∑

`=1

η` ∂η−e`q` = 0, for all η = (η1, . . . , ηN) ∈ I(N, k + 1).

This proves Statement A.
To prove Statement B, we apply (2.7) with q` equal to the `-th component of the

expression in (2.2). Using the elementary identity

(2.8) ∂αxβ =

{
0 if α 6= β,

α! if α = β,

for all multi-indices α, β ∈ I(N, k + 1) (where α! = α1!α2! . . . αN !), we find that (2.7)
for each η ∈ I(N, k + 1) is equivalent to

N∑

`=1

η`cη−e`,`(η − e`)! = η!

N∑

`=1

cη−e`,` = 0.

This proves the theorem. �

Proof of Theorem 2.2. It is obvious that the functions in Bk satisfy (2.3). Hence by
Theorem 2.1, Bk ⊆ Sk.

We now show that functions in Bk are linearly independent. Any function in Bk

can be expressed in the form xα−eiei − xα−ejej for an appropriate multi-index α and
integers i, j. Obviously, without loss of generality, we can assume that i < j in all such
expressions of basis functions in Bk. Let C` = {b ∈ Bk : b = xα−e`e` − xα−emem with
` < m and some multi-index α}. Then the sets C`, ` = 1, . . . , N − 1, form a disjoint
partitioning of Bk. Hence we can write any linear combination of functions in Bk as

p(x) =
∑

i

d
(1)
i b

(1)
i +

∑

i

d
(2)
i b

(2)
i + · · ·+

∑

i

d
(N−1)
i b

(N−1)
i ,

where b
(`)
i ≡ xα(i,`)−e`e` − xα(i,`)−emi emi

, i = 1, 2, . . . , is an enumeration of C` and the
sums above run over these enumerations. We will now show that if p(x) = 0 everywhere,

then all the coefficients d
(`)
i are zero. Since the first component of the vector function

p(x) vanishes, ∑

i

d
(1)
i xα(i,1)−e1 = 0.

But for two distinct basis functions b
(`)
i and b

(`)
j , the multi-indices α(i, 1) and α(j, 1)

are not equal, so xα(i,1)−e1 6= xα(j,1)−e1 for i 6= j. Hence, by the linear independence of

distinct monomials, all coefficients d
(1)
i are zero. Next, consider {d

(2)
i }. Since the second

component of p(x) vanishes,
∑

i

d
(2)
i xα(i,2)−e2 = 0.
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Note that in this sum there are no terms of the form −d
(1)
i xα(i,1)−e1 because we have

already shown that d
(1)
i = 0. By an argument similar to the above one, we prove that

d
(2)
i = 0. Continuing, we find that all d

(`)
i = 0. Hence Bk is a linearly independent set.

It now only remains to prove that the cardinality of Bk equals the dimension of Sk.
It is easy to count the dimension of Sk: For α, β ∈ I(N, k), α 6= β, the conditions

N∑

`=1

cα−e`,` = 0 and

N∑

`=1

cβ−e`,` = 0

are independent. Indeed, none of the terms in the first sum occurs in the second sum.
Therefore,

(2.9) dim(Sk) = N card(I(N, k)) − card(I(N, k + 1)).

On the other hand,

cardBk =

N∑

j=2

cardB
(j)
k =

N∑

j=2

∑

β∈Ij(N,k+1)

cardBβ
k

=

N∑

j=2

(j − 1) card Ij(N, k + 1).(2.10)

We can compute card Ij(N, k + 1) using the recursion

card Ij(N, k + 1) =

(
N
j

) (
card I(j, k + 1) −

j−1∑

m=1

card Im(j, k + 1)

)
,

and observing that card I2(N, k + 1) = ( N
2 )k. By induction,

card Ij(N, k + 1) =

(
N
j

) (
k

j − 1

)
.

Hence, by (2.10), we find that cardBk equals the sum

sN,k ≡
N∑

j=2

(j − 1)

(
N
j

) (
k

j − 1

)
,

where we use the convention that ( i
j ) is zero if i < j. Now using the identity

k

(
N
j

) (
k − 1
j − 1

)
− N

(
k

j − 1

) (
N − 1

j

)
= (k − N + 1)

(
N
j

) (
k

j − 1

)
,

we find that sN,k = (ksN,k−1 − NsN−1,k)/(k − N + 1). With the help of this identity it
is easy to simplify the sum sN,k to closed form:

cardBk = sN,k =
(N + k − 1)! k

(N − 2)! (k + 1)!
.

The right hand side expression can now be easily seen to equal dim Sk given in (2.9). �
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Degree Basis functions

Interior Face(l, m, n) Edge(l, m)
k = 1 None None λl∇λm − λm∇λl

k = 2 None λlλm∇λn − λmλn∇λl λlλm∇λl − λ2

l
∇λm

λmλn∇λl − λnλl∇λm λ2

m
∇λl − λlλm∇λm

k = 3 λ2λ3λ4∇λ1 − λ1λ2λ3∇λ4 λ2

l
λm∇λn − λlλmλn∇λl λ2

l
λm∇λl − λ3

l
∇λm

λ3λ4λ1∇λ2 − λ2λ3λ4∇λ1 λlλ
2

m
∇λn − λ2

m
λn∇λl λ2

m
λl∇λm − λ3

m
∇λl

λ4λ1λ2∇λ3 − λ3λ4λ1∇λ2 λnλlλm∇λn − λmλ2
n∇λl λlλ

2
m∇λl − λ2

l
λm∇λm

λlλmλn∇λl − λnλ2

l
∇λm

λ2
mλn∇λl − λmλnλl∇λm

λmλ2

n∇λl − λ2

nλl∇λm

Table 3.1. Basis for Nédélec spaces on a tetrahedron in barycentric co-
ordinates for some degrees

3. A basis in affine coordinates

In this section we use the previous results to construct a basis for Rk on an N -simplex
in terms of barycentric coordinates. Let λ`, ` = 1, 2, . . . , N + 1 denote the barycentric
coordinate functions of the N -simplex and set

λ =




λ1
...

λN+1


 .

We will need to use our basis for Sk, as given by Theorem 2.2, but in one dimension
higher. To emphasize the dimension, we shall occasionally use an additional subscript

in our notations: E.g., Sk,N , Bk,N , and B
(j)
k,N are the same as Sk, Bk, and B

(j)
k defined in

N space dimensions, respectively. Now, pick any function in the basis for Sk,N+1 given
by Theorem 2.2, and write it as

(3.1) bβ(x, el, em) ≡ xβ−elel − xβ−emem,

for some β ∈ I(N + 1, k + 1) and some integers l and m. Replace x by λ in (3.1). (We
are now viewing both x and λ as vectors in R

N+1.) Also replace ej by ∇λj for j = l
and m in (3.1) to get functions

(3.2) bβ(λ, ∇λl, ∇λm) = λβ−el∇λl − λβ−em∇λm,

for same multi-indices β allowed in (3.1). At this point, this is a formal replacement
(because ej and ∇λj are vectors of different dimensions), but we will justify it later.

Applying the transformation (3.1) 7→ (3.2) to every element of B
(j)
k,N+1 we get a new set

of functions:

Λ
(j)
k ≡ {bβ(λ, ∇λl, ∇λm) : bβ(x, el, em) ∈ B

(j)
k }.

Note that although Bk,N+1 consisted of functions defined on R
N+1, the new set Λ

(j)
k

consists of functions defined on R
N . (Now we view λ as a function on R

N .)
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Theorem 3.1. The set Λ
(2)
k

⋃
Λ

(k)
k

⋃
· · ·

⋃
Λ

(N+1)
k is a basis in affine coordinates for the

Nédélec space in N dimensions. (The basis functions are of the form (3.2) for some
multi-indices β ∈ Ij(N + 1, k + 1), j ≥ 2.)

Let us now discuss in some detail the application of our results to the particular case of
a tetrahedron with vertices v1, . . . , v4. Let the barycentric coordinate functions be enu-
merated such that λi(vj) = δij. The face of the tetrahedron formed by vertices vl, vm, vn

is called Face(l, m, n) and its edge formed by vertices vl, vm is called Edge(l, m). Table 3
lists basis functions in affine coordinates for Rk for some k, as given by (3.2).

The partitioning of the basis into Λ
(2)
k , Λ

(3)
k , and Λ

(4)
k now has a geometrical interpre-

tation considering the geometry of the tetrahedron. The set Λ
(4)
k gives “interior” basis

functions in the sense that the face and edge Nédélec degrees of freedom (see [7]) are

zero for these functions. Indeed, functions in Λ
(4)
k can be expressed as a difference of two

terms each of which has a factor of the form λpλlλm∇λn. This factor is zero on faces
containing the vertex vn, while on Face(p, l, m) its tangential component is zero. Hence

functions in Λ
(4)
k have zero face and edge Nédélec moments.

The set Λ
(3)
k gives “face” basis functions in the sense that these functions have edge

Nédélec degrees of freedom equal to zero. Indeed, these functions (see (3.2)) are of the
form

λr
l λ

s
mλt

n(λmλn∇λl − λnλl∇λm),

for some nonnegative powers r, s, and t. It is easily verified that the tangential compo-
nents of the function λmλn∇λl − λnλl∇λm is zero on all faces except Face(l, m, n). Its
tangential component is zero on all edges of the tetrahedron.

The remaining functions (those in Λ
(2)
k ) are “edge” basis functions. These functions

(again by (3.2)) take the form

λr
l λ

s
m(λl∇λm − λm∇λl).

Their tangential component is nonzero on Edge(l, m), but vanishes on every other edge
of the tetrahedron.

Note that our edge basis functions may not have zero Nédélec face degrees of freedom
and our face basis functions may not have zero interior moments. In the unlikely event
that nodal basis functions dual to the original Nédélec degrees of freedom [7] are needed,
they can be easily written out in terms of the affine expressions we introduced. For
example, to construct a face basis function that has all its interior Nédélec degrees of
freedom equal to zero, we only need to pick up one of our face basis functions exhibited
above and subtract from it a linear combination of our interior basis functions. This
will suffice, because by construction, our interior basis functions have no face moments.
Similarly, to get an edge basis function that has zero face and interior moments, we only
need to take one of our edge basis functions and subtract from it a linear combination
of face and interior basis functions.

In the remainder of this section, we prove Theorem 3.1. The proof and the construc-
tion of the basis is motivated by well known correspondences between homogeneous
polynomials and the full set of polynomials. As before, let us use an additional sub-
script to emphasize dimension and write Pk,N for the set of polynomials of degree k in
the N -dimensional variable x. Let P k,N+1 denote the space of homogeneous polynomials
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of degree k in the variable x̂ ∈ R
N+1. Writing any p ∈ P k,N+1 as p =

∑
α∈I(N+1,k) cαx̂

α,

we define the transformation A0 : P k,N+1 7→ Pk,N by A0p =
∑

α∈I(N+1,k) cαλα. Since

λ(x) represents barycentric coordinates of some N -simplex in the N -dimensional x-
space, A0p is a polynomial in Pk,N . The procedure that maps basis functions of Sk,N+1

to a basis of Rk,N defines a transformation, which although not A0, is related to A0 as
follows: It is a map A that makes the following diagram commute:

P k+1,N+1
∇bx−−−→ P k,N+1yA0

yA

Pk+1,N
∇x−−−→ P k,N ,

where the subscripts on ∇ indicate the differentiation variable. We define A precisely
in the following proof.

Proof of Theorem 3.1. This proof proceeds by showing that the transformation of (3.1)
into (3.2) can be extended to a homeomorphism A from Sk,N+1 to the Nédélec space
Rk,N . To define A, let x ∈ R

N denote the physical coordinate, so that the the first
N barycentric coordinates are related to x via an invertible matrix B ∈ R

N×N and a
vector b ∈ R

N such that 


λ1
...

λN


 = Bx + b

Let n = [−1,−1, · · · ,−1] and M be the (N + 1) × N matrix given by

M =

[
B
nB

]

Then, since λ = Mx + d for some d ∈ R
N+1,

(3.3) ∇λ` = M te`, for all ` = 1, 2, . . . , N + 1.

Define A : Sk,N+1 7→ P k,N by

(Aq̂)(x) = M tq̂(λ(x))

for any q̂ ∈ Sk,N+1.
Note that the transformation (3.1)7→(3.2) is the restriction of A to Bk,N+1. Indeed,

expressing q̂ ∈ Sk,N+1 as the function q̂(x̂) of an N + 1 dimensional coordinate variable
x̂, the first step in the transformation (3.1)7→(3.2) is the replacement of x̂ by λ. The
next step is the replacement of e` by ∇λ`. By (3.3), the end result of these replacements
is the function Aq̂ (of the N -dimensional variable x).

We will now show that the range of the map A, namely

R̃k,N = {r(x) : r = Aq̂ for some q̂ ∈ Sk,N+1}

equals the Nédélec space Rk,N and that A is injective. To show that R̃k,N ⊆ Rk,N , we
use the following identity which can easily be verified using (2.4): For all vi ∈ R

N ,

(3.4) εk
N+1(q̂)(Mv1, . . . , Mvk+1) = εk

N(Aq̂)(v1, . . . , vk+1),
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where the subscripts of εk distinguishes the domain of the symmetrization operator to
be of N or N + 1 dimensional functions. Since q̂ ∈ Sk,N+1, the left hand side is zero, so
Aq̂ ∈ Rk,N . Thus R̃k,N ⊆ Rk,N .

Now, to show that R̃k,N = Rk,N , it suffices to prove that the map A is injective.
Suppose there is a q̂(x̂) ∈ Sk,N+1 such that (Aq̂)(x) = 0 for all x. Then, M tq̂(λ(x)) =
0. Since the principal N ×N submatrix of M is invertible, this implies that the first N
components of q̂(λ(x)) equal its last component. Thus

q̂(λ(x)) = φk(x) t, where t =




1
...
1


 ,

for some scalar polynomial φk of degree k. Since x̂ · q̂(x̂) vanishes, we find that

λ(x) · q̂(λ(x)) = λ(x) · (φk(x)t) = φk(x) = 0

for all x. Thus, q̂(x̂) vanishes on the hyperplane {x̂ : x̂ · t = 1} in R
N+1. Since homoge-

neous polynomials that vanish on a plane not containing the origin vanish everywhere,
we conclude that q̂ vanishes everywhere and A is injective.

The injectivity of A also proves that a basis of Sk,N+1 is mapped to a basis of Rk,N .
Since Theorem 2.2 asserts that Bk,N+1 is a basis for Sk,N+1, we conclude that ABk,N+1

gives a basis for Rk,N . �
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