
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

1-2001

Rate-Matching Packet Scheduler for Real-Rate Rate-Matching Packet Scheduler for Real-Rate

Applications Applications

Kang Li
Oregon Graduate Institute of Science & Technology

Jonathan Walpole
Oregon Graduate Institute of Science & Technology

Dylan McNamee
Oregon Graduate Institute of Science & Technology

Calton Pu
Oregon Graduate Institute of Science & Technology

David Steere
Oregon Graduate Institute of Science & Technology

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer and Systems Architecture Commons, and the OS and Networks Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Kang Li ; Jonathan Walpole ; Dylan McNamee ; Calton Pu and David C. Steere, "Rate-matching packet
scheduler for real-rate applications", Proc. SPIE 4312, Multimedia Computing and Networking 2001, 49
(December 22, 2000); doi:10.1117/12.410913; http://dx.doi.org/10.1117/12.410913

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in
Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please
contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/69
mailto:pdxscholar@pdx.edu

1

A Rate-Matching Packet Scheduler for Real-Rate Applications
Kang Li, Jonathan Walpole, Dylan McNamee, Calton Pu and David C. Steere*

 Department of Computer Science and Engineering
Oregon Graduate Institute

{kangli, walpole, dylan, calton, dcs}@cse.ogi.edu

Abstract

A packet scheduler is an operating system component that controls the allocation
of network interface bandwidth to outgoing network flows. By deciding which
packet to send next, packet schedulers not only determine how bandwidth is
shared among flows, but also play a key role in determining the rate and timing
behavior of individual flows. The recent explosion of rate and timing-sensitive
flows, particularly in the context of multimedia applications, has focused new
interest on packet schedulers. Next generation packet schedulers must not only
ensure separation among flows and meet real-time performance constraints, they
must also support dynamic fine-grain reallocation of bandwidth for flows with
variable-bit-rate requirements. Unfortunately, today’s packet schedulers either do
not support rate and timing sensitive flows, or do so with reservation systems that
are relatively coarse-grain and inflexible.

This paper makes two contributions. First it shows how bandwidth requirements
can beinferreddirectly from real-rate flows, without requiring explicit specifica-
tions from the application. Second, it presents the design, implementation and per-
formance evaluation of a rate-matching packet scheduler that uses these inferred
requirements toautomaticallyanddynamicallycontrol the bandwidth allocation
to flows.

1. Introduction

A packet scheduler is an operating system component that allocates the limited bandwidth of an outgoing
network interface among competing flows. It manages interface buffers and controls which packet to send
next. As the Internet evolves, applications such as Internet streaming video players that generate multime-
dia network flows, are expected to be widely supported. These applications are timing sensitive, and they
require packet schedulers to support isolation among flows and allocate the right amount of bandwidth to
meet their timing-constraints.

Today’s packet schedulers either isolate timing sensitive flows from bursty ones by using priority schemes
[3, 13], or they implement coarse-grain sharing of the bandwidth among competing flows using reserva-
tions [5, 6, 10 and 15]. Unfortunately, priority schemes do not take into account the timing requirements of
the individual flow. Reservation-based schedulers do take timing requirements into account, but do not
generally support fine-grain dynamic readjustments of reservations. The consequence of using static reser-
vations is that bandwidth must be over-reserved based on the worst case requirement, which can cause sig-
nificant inefficiency when variable bit-rate flows are present.

* This research was supported in part by DARPA contracts/grants N66001-97-C-8522 and N66001-97-C-8523, and by Tektronix Inc., and Intel
Corporation.

2

In this paper we describe a RAte Matching Packet (RAMP) scheduler. Instead of asking a user to specify a
resource-level reservation, such as a bit-rate value over a certain period, the RAMP scheduler automati-
cally and dynamically infers bandwidth requirements and allocates bandwidth to match them.

The novel aspects of the RAMP scheduler are the way it infers bandwidth requirements from flows and the
way it controls the allocation of bandwidth using them. It infers a flow's bandwidth requirements from per-
flow state information in the packet scheduler. For instance, a per-flow queuefill-level in the packet sched-

uler indicates the mismatch between the amount of data that a flow* wants to send and the packet sched-
uler’s bandwidth allocation to it. A feedback control system is used to monitor this queue fill-level and
adjust the bandwidth allocation to the flow in order to keep the queue fill-level at a target level. In this way,
variable bit-rate multimedia flows can run successfully without over-reserving bandwidth.

In this paper, in addition to quantitatively evaluating the RAMP scheduler we investigate the interactions
between it and TCP congestion and flow control [8]. TCP congestion and flow control ensures that a flow’s
sending rate does not exceed the end-to-end network bottleneck or the flow’s receiving rate. Thus, conges-
tion and flow control may impose practical limits on the target bandwidth even though the flow might
desire more bandwidth. In this case the RAMP scheduler does not attempt to allocate more bandwidth than
can be used.

The paper is organized as follows. In Section 2 we first discuss the various bandwidth requirements of
flows. Then we focus on a specific class of flows, called real-rate flows, and discuss the right bandwidth
allocation for them. Based on the concept of the appropriate target bandwidth allocation for the real-rate
flows, we explain the design of the RAMP scheduler in Section 3. Section 4 describes the implementation
of the RAMP scheduler and section 5 provides an evaluation of it. In Section 6, we discuss the interactions
between the RAMP scheduler and TCP’s congestion and flow control. Section 7 discusses related work.
Finally, Section 8 presents our conclusions and describes future work.

2. What is the Right Bandwidth Allocation?

In order to discuss the choice of bandwidth allocation for a flow, we classify flows according to their band-
width requirement bounds. Our discussion focuses onreal-rate flows [1]. Real-rate flows are flows with
specific rate or throughput requirements in which the rate is driven by real-world demands. Examples of
the real-rate flows are sensor-based monitoring systems and video or audio pipelines whose data is played
at a certain frame rate over a network. A key characteristic of real-rate flows is that they only require
enough bandwidth to match their rate requirements and will not use additional bandwidth even if it is made
available to them. In contrast to real-rate flows,greedyflows try to acquire as much bandwidth as possible.
A greedy flow does not have an upper limit on its required bandwidth. Examples of greedy flows are bulk
data transfers, such as ftp and http applications.

The right bandwidth allocation for a real-rate flow is the amount of bandwidth that exactly matches its rate
requirement. Over-allocation will result in unused bandwidth, whereas under-allocation will prevent the
flow from meeting its real-rate target. For greedy flows it is convenient to assume that they accept whatever
bandwidth allocation they get.

Beyond the application-level requirements, other factors such as the limits imposed by network congestion
and flow control influence the right bandwidth allocation for a flow. Congestion control ensures that a
flow’s bandwidth does not exceed the end-to-end bottleneck of the connection. Similarly, flow control
ensures that the sending rate for a flow does not exceed the rate at which the flow can be received. These
two controls prevent a flow from congesting the network or overwhelming a slow receiver. Since the send-

*From a packet scheduler’s point of view, transport layer protocol controls, such as TCP’s congestion and flow control, are part of the flow, and
hence contribute to the specification of the flow’s requirements.

3

ing application is unable to utilize more bandwidth than the lower of the flow and congestion control lim-
its, a packet scheduler’s upper bound on bandwidth allocation for a flow is calculated as the minimum of
these two limits and the bandwidth requirements of the flow.

Many present-day UDP-based video streamers either do not use a congestion control protocol, or use an
application-specific congestion control scheme. In this case, the target bandwidth allocation in RAMP is
simply the bandwidth being requested by the application. Given the consensus among the Internet commu-
nity that congestion control is fundamental to the health of the Internet [24], we believe most UDP stream-
ing applications will eventually use congestion control. Thus, in this paper, we focus our discussion on
RAMP and its use by congestion-controlled real-rate flows. Furthermore, we assume that they use TCP-
friendly congestion and flow control.

A packet scheduler controls the allocation to a flow according to available bandwidth at the local interface,
and the factors discussed above. Briefly, the correct allocation to a flow is limited by the minimum of the
flow’s application-level requirement, its tcp congestion control limit, its tcp flow control limit, and the
available interface bandwidth. Therefore, if enough local interface bandwidth is available, the scheduler
should allocate bandwidth that matches TCP’s output. If the local interface bandwidth is insufficient, then
the scheduler should allocate bandwidth according to the available local interface bandwidth. Eventually,
TCP congestion control will adapt to this bottleneck.

RAMP has an additional goal of maintaining fine-grain timing requirements for competing flows. RAMP
uses two parameters,proportion andperiod, to specify bandwidth allocations for flows. Proportion is a
percentage of the total bandwidth. Period specifies the interval over which the dispatcher guarantees the
proportion value. The proportion value for a flow is derived according to the approach discussed above.
RAMP implements proportions using a reservation mechanism that ensures isolation among flows. Period
is related to the timing requirement of the flow. Currently, RAMP uses a system default period value for all
flows.

3. The Design of the RAMP Scheduler

The RAMP scheduler, illustrated in Figure 1, is composed of three parts: (i) a requirement monitor that
infers the mismatch between a flow’s current bandwidth requirement and its current bandwidth allocation,

and converts the mismatch to a pressure value for each flow*, (ii) a feedback controller that uses these pres-
sure values to adjust each flow’s bandwidth allocation automatically, and (iii) a low-level packet dispatcher
that supports lightweight, per-flow bandwidth reservations based on the values specified by the controller.
A salient feature of the RAMP scheduler is its high-frequency feedback loop that links these components
in order to continually monitor requirements and adjust allocations. Each of these components is described
in the subsections below.

*Here the word “pressure” is borrowed from fluid control systems, in which higher mismatches result in higher pressures.

4

3.1. The Requirement Monitor

The RAMP scheduler maintains a separate queue for each real-rate flow. The requirement monitor uses
these queues to infer mismatches between current bandwidth requirements and allocations for each flow,
and to monitor the scheduler-related delay for flows. When a flow uses TCP the input rate to the flow’s
queue is determined by TCP’s control output. For UDP flows the input rate is determined directly by the
flow’s sending rate. The output rate from the queue is determined by the allocation RAMP gives to the
flow. If these two rates match the fill-level of the queue will remain constant, and its value is an indication
of the delay RAMP is imposing on the flow. If the fill-level is dropping then RAMP is overallocating band-
width to the flow. Similarly, if the fill-level is rising RAMP is underallocating bandwidth for the flow. The
control target for RAMP is to maintain a constant fill-level at a level determined by the flow’s latency toler-
ance. Flows can either specify a target fill-level, based on their latency tolerance, or use the default value.
The requirement monitor uses the difference between a flow’s sampled queue fill-level and its target fill-
level as the pressure, and sends these values to the feedback-based controller.

Not all the flows’ requirements are derived in the way described above. We classify all flows into two cate-
gories according to the discussion in the Section 2.Real-Ratecategory is for real-rate flows, which include
real-rate TCP flows and real-rate UDP flows [26, 27].Greedycategory is for greedy flows, which include
greedy TCP flows and non-congestion-controlled non-real-rate UDP flows. The above monitoring mecha-
nism applies directly to flows in Real-Rate Category. For flows in Greedy Category, the requirement moni-
tor treats all of them together as a single real-rate flow, whose minimum allocation is based on a system
default requirement value. In other words, real-rate flows are treated preferentially and greedy flows com-
pete for the remaining bandwidth in the same way they do in conventional systems. The current prototype
of the RAMP scheduler needs users to specify the type (Real-Rate or Greedy) of flows. By default, the
RAMP scheduler classifies a non-type-specified flow into Greedy category.

3.2. The Feedback Controller
The controller takes the Requirement Monitor’s results (the pressures) combines them with stored history
information, and uses standard control components to match the bandwidth allocations to the flows’
requirements. Those control components are widely used in classical control systems. By adjusting the
bandwidth allocation to keep the per-flow queue fill-level at a target fill-level, the packet scheduler matches
the queue’s consumption rate to the rate at which the flow is producing data.

Flow-1 Network

 Per-flow Queues

Packet Dispatcher

Figure 1: The Components of the Rate-Matching Packet Scheduler: the Requirement

 Flow-2

Data
Packets

Requirement Monitor Feedback Controller

Pressure
 values

Proportion and
period values for
each flow

Per-flow queue
 fill-levels

Monitor, the Feedback Controller and the Packet Dispatcher

5

Figure 2 shows the structure of the controller’s control circuit for one real-rate flow. The controller takes
the per-flow queue’s pressure as input, and sends it to a low-pass filter. Low-pass filters give an exponential
averaging over the past history and are generally used in control systems to smooth the input to avoid gen-
erating oscillations in the controller’s output. An aging parameterL to the Low-Pass Filter defines the
weight on the current input. The value1 - L is the weight given to past history.

The low-pass filter’s output connects to aproportional-integral-derivative(PID) control component. PID
controls are widely used in many control applications to provide acceptable response together with stabil-
ity and damping. It combines the proportion of the summed pressures with the integral and the derivative
of the pressures. It has parametersP, I, andD, which control the weight of each part in the output. The pro-
portion part P contributes to the output based on the instant error between the monitored fill-level and the
target fill-level. Thus, parameter-P decides how fast the allocation catches up with the requirement. The
integral part I contributes to the output based on the accumulated error. Thus, parameter-I decides how fast
the allocation erases the accumulated requirement-allocation-mismatch and reaches a stable state. The
derivative part D slows down the output reaction in proportion to the most recent pressure variation. Thus
the parameter-D decides the damping factor of the control reaction, which avoids the over allocation of
bandwidth in the case of a sudden change in a flow’s requirement.

In the RAMP scheduler, if the allocation reacts too slowly, the scheduler will inhibit TCP’s ability to probe
for additional bandwidth. On the other hand, if the allocation reacts too fast, the scheduler may over allo-
cate bandwidth.

The output of the PID is the proportion value, which specifies the data rate required by the flow. Another
aspect of the bandwidth allocation is the period, which is the minimum temporal granularity over which
the bandwidth allocation must be enforced. Dynamic period adjustments are not implemented in our cur-
rent prototype, which assigns the same period to all flows.

3.2.1. Overload Policy

So far the discussion has assumed that the RAMP scheduler interface is only partially loaded. In this sub-
section we address the overload issue. Since we treat the greedy flows as a single real-rate flow, the inter-
face is only truly overloaded when the sum of all the real-rate requirements exceeds the total bandwidth.
Otherwise, RAMP can always allocate bandwidth to meet these requirements before allocating the remain
bandwidth to greedy flows.

When the total of the real-rate flows' requirements exceeds the interface's capacity, it is not possible to
meet all requirements. In this case, the flows must adapt their bandwidth consumption requirements either
by reducing the rate at which they submit packets, or by dropping packets. Both cases represent a quality
adaptation policy, and the policy could be flow-specific. The RAMP scheduler detects this overload condi-
tion early enough to deliver a QoS exception to the application. Applications can use QoS exceptions to

Pressure Low-Pass
Filter

PID Proportion

Period

Figure 2: The Feedback Controller

Controller

Period Control

Proportion Control

6

perform adaptation early, thus, reducing their requirements. Further discussion of QoS adaptation
approaches are beyond the scope of this paper, but are discussed in [2].

3.3. The Packet Dispatcher

The lowest level of the RAMP scheduler is a reservation-based packet dispatcher. The packet dispatcher
implements the bandwidth allocations that are assigned by the feedback controller and determines the glo-
bal order of packet transmission through the interface. Reservation requirements to the packet dispatcher
are described by two parameters: proportion and period. Proportion is a percentage of the total bandwidth.
Period specifies the interval over which the dispatcher guarantees the proportion value. Within a period, the
dispatcher can either send a flow's packets in a single burst or send them smoothly. The RAMP scheduler’s
packet dispatcher implements an earliest deadline first (EDF) policy [9], in which the end of period is the
deadline value for each flow (see section 4).

4. Implementation

The RAMP scheduler is implemented as a component of an end-host* operating system. Most of it is
implemented in the Linux 2.0.35 operating system kernel. The only exception is the feedback controller,
which is currently implemented at user-level to allow rapid prototyping using the SWiFT software feed-
back toolkit [7]. SWiFT supports an approach to building adaptive system software based on control the-
ory. It supplies basic control components such as the control blocks shown in Figure 3, and the feedback
controller is built with these components. The controller’s PID component and low-pass filter component
have parameters that can be set to define the behavior of the controller. For the evaluation described in this
paper, we use the set (P=0.35, I=0.005, D=0.01) as the PID component’s setting, and (L=0.5) for the low-
pass filter’s setting.

Because of the user-level implementation of the controller, monitoring is implemented using system calls
which expose the queue fill-levels. The requirement monitor samples the queue fill-levels by calling the
monitoring system calls and produces the pressures. The sampling frequency in the prototype system is
100HZ. Since these system calls are made frequently, the user-level implementation is a source of ineffi-
ciency, and we plan to ultimately move the controller into the kernel.

The packet dispatcher enforces the bandwidth allocations specified by the controller. Since the built-in
packet scheduler in Linux 2.0.35 does not support bandwidth reservation, we replaced it with our own res-
ervation-based packet dispatcher. In contrast to the Linux built-in packet scheduler, our packet dispatcher
manages a queue for each flow, or more accurately, for each socket. When a flow creates a socket, the

packet dispatcher creates a per-flow queue and attaches it to the socket†. Figure 3 illustrates the relation-
ship between the flows and the packet dispatcher. Flow-1 and Flow-2 use TCP sockets. TCP controls when
the packets go from the socket buffer to the per-flow queue in the scheduler. Flow-3 uses a UDP socket.
Since UDP sockets do not accumulate data (no socket buffers), their packets directly enter the per-flow
queues in the scheduler. The packet dispatcher selects packets from these per-flow queues based on each
flow’s proportion and period values that are set by the controller. Then it sends the selected packet to the
interface queue. If the interface queue is full, the dispatcher is stalled until free space is available. Packets
are removed from the interface queue and sent to the network by device interrupts.

Conceptually, the packet dispatcher is driven by timer events. However, in practice, explicit packet related
events occur more frequently. RAMP’s packet dispatcher is driven by device interrupt events and by sys-

*The RAMP scheduler does not use any specific end-host information, and the algorithm could be used in router operating systems. However,
there are scalability issues associated with supporting per-flow states in current router operating systems.
†Linux kernels use thesk_buffstructures to manage network queues in a similar way to thembufstructures [16] in BSD UNIX, which avoid data
copying when moving data in the kernel. Thus, adding per-flow queues will not increase data copying costs in this implementation.

7

tem events such asip_outputthat happen when a packet enters its corresponding per-flow queue. When
none of the above system events happen, we use a system timer to ensure that the dispatcher runs at least
every 0.1msec. If some system events happen before the system timer fires, we reset the system timer to
another 0.1msec. This approach is similar to the one described in [32]. Our prototype system’s CPU tick
size is set to 0.1 msec, thus the smallest time interval we get from the system is 0.1msec.

Since we have not yet completed the dynamic period control component of the scheduler, the period allo-
cation for each flow is currently set to 0.1 msec, which, being dependent on the system timer, is the small-
est possible value in our implementation. We plan to implement dynamic period control [4] in the future.

5. Evaluation

Two sets of experiments are designed to evaluate the RAMP scheduler. One evaluates RAMP’s benefits
and capabilities, and is discussed in this section. The other explores the interactions between RAMP and
TCP’s congestion and flow control, and is discussed in Section 6.

In order to validate the benefits of the RAMP scheduler, we conducted experiments to: (1) show that it is
able to separate flows and protect a congestion-controlled real-rate flow from a UDP-based greedy flow;
and (2) test it’s ability to dynamically detect changes in the requirements, and use them to dynamically
adjust allocations. In order to do these experiments, we used two benchmark applications. The first is the
Quasar video player [28]. It plays a video clip through a network using TCP. The second was constructed
to allow tighter control over the bandwidth requirements. This benchmark application also sends data
across the network through a TCP socket. Users of the benchmark application can set its bandwidth
requirement. By changing the requirement and monitoring the resulting allocation, we can evaluate the
responsiveness and accuracy of the RAMP scheduler.

All experiments were run on two 400Mhz Pentium II machines, both with 128MB of memory and 3c905
Ethernet Cards. The sender machine ran our modified version of Linux 2.0.35 with our RAMP scheduler,
and we set the Ethernet interface to work in the 10Mbit/s mode. The receiver machine ran Linux 2.0.35

without our packet scheduler*, and the Ethernet interface worked in the 100Mbit/s mode to ensure it is not
the bottleneck. A 100Mbit/S Ethernet switch connected the sender machine and the receiver machine. We
disable the controller’s dynamic period control and focus on the proportion allocation. In the following
experiments, all flows’ period allocations are assigned to 0.1msec. The target fill-levels used by the RAMP
scheduler are all 16Kbytes, and the scheduler samples queue fill-levels every 10msec.

*Our experiments are designed to model the use of the RAMP scheduler in an environment that is mixed with other schedulers, such as FCFS
schedulers. The motivation behind this approach is two folds: because of two reasons: (1) We assume only one bottleneck in the system, and a
RAMP scheduler in an unloaded interface performs similarly to a FCFS scheduler; (2) Even in the future, FCFS schedulers are likely to exist in
most systems [16,17].

Flow-1

Flow-2

 Flow-3

TCP

TCP

Packet
Dispatcher

Device
Interrupt
Handler

Figure 3: The Packet Dispatcher in an End-host’s OS

Per-flow QueueSocket Buffer

Interface
 Queue

The RAMP Scheduler (in kernel part)

8

5.1. Bandwidth Sharing Result with UDP Cross Traffic

This experiment evaluates RAMP’s ability to protect real-rate flows in the presence of competing work-
load. In this experiment, we demonstrate the bandwidth sharing result of the RAMP scheduler when a TCP
video flow (in this case generated by the Quasar player) competes for bandwidth with UDP flows, and
compare it with the well-known bandwidth sharing results for FCFS packet schedulers applied to the same
situation.

The target of this experiment is to show the effect of competing UDP traffic on the real-rate TCP traffic.
We show this by comparing the bandwidth usage of the real-rate TCP under three cases: (a) the real-rate
TCP runs through a FCFS scheduler with no other competing traffic; (b) the real-rate TCP runs through a
RAMP scheduler with competing greedy UDP traffic; (c) the real-rate TCP run through a FCFS scheduler
with competing greedy UDP traffic. Since RAMP derives the real-rate TCP’s requirement and dynamically
reserves bandwidth for it, we expect the TCP flow under RAMP to receive the same bandwidth it gets
when no competing traffic exists.

In order to measure the effectiveness of RAMP’s isolation for real-rate flows, we calculate the accumulated
bandwidth usage of the real-rate flow in the three cases. We use its accumulated usage in case (a) as the
requirement, and compare it to the allocations given by the RAMP and the FCFS scheduler. Figure 4 shows
the accumulated error in allocation for a FCFS scheduler and a RAMP scheduler. LineRAMPin Figure 4
remains close to 0 as time increases, indicating that the bandwidth allocation meets the requirement. The
FCFSleaves 0 as time increases, indicating that the allocation with a FCFS scheduler under the same con-
dition does not keep up with the requirement. In summary, this first experiment shows that RAMP is able
to implement traffic separation for dynamically varying real-rate flows.

5.2. Response to Dynamic Changes in Bandwidth Requirements

In this subsection, we show the ability of RAMP to dynamically detect changes in the flow’s requirement
and use them to adjust the bandwidth allocation. The experiment is designed to let us control a flow’s band-
width requirements, and log the RAMP scheduler’s bandwidth allocation. By comparing the allocation

Figure 4: Bandwidth sharing for a real-rate video flow and competing traffic.

0

20

40

60

80

100

0 10 20 30

A
cc

um
ul

at
ed

 U
sa

ge
 E

rr
or

(M
bi

ts
)

Time (Second)

Accumulated Error Comparison

RAMP
FCFS

0

20

40

60

80

100

0 10 20 30

A
cc

um
ul

at
ed

 U
sa

ge
 E

rr
or

(M
bi

ts
)

Time (Second)

Accumulated Error Comparison

RAMP
FCFS

9

with the requirement, we can quantify how well the RAMP’s allocation automatically tracks the flow’s
requirement. The details of the experiment are as follows: We run our benchmark application on an other-
wise idle network. The sender side network interface is controlled by the RAMP scheduler. The bench-
mark application varies its rate requirements according to a step function (with steps up and down). This
step function serves as the input for the experiment. We log the per-flow queue fill-levels, which are the
inputs to the RAMP scheduler, and the bandwidth allocation, which is the output of the RAMP scheduler.

Figure 5 shows the result of this experiment. The first observation is that the per-flow queue fill-levels
expose the flow’s bandwidth requirement information. For example, the per-flow queue’s fill-level starts to
increase at the time the flow increases its requirement. The RAMP scheduler uses the fill-level information
to drive the bandwidth allocation to match the flow’s requirement. As shown in the figure, RAMP responds
to the change in the queue fill-level variations by rapidly adjusting the allocation. The experiment result
matches our expectations: the RAMP scheduler’s allocation roughly follows the benchmark application’s
requirement variations. However, notice that RAMP over-reacts to the step changes and takes some time to
stabilize.

In classic control systems, a system’s behavior can be described by its step-input response character, which

is defined by its response time*, settling time† and overshoot‡ [35]. Step-input is the worst possible change
in the input signal because it contains infinitely high frequencies. In practice, variations in the input signal
will be better than this. According to control theory, once the above character values are known, we can
predict the system’s behavior to any other input. In order to quantify the characteristics of the RAMP
scheduler, we amplify the response of the RAMP scheduler to a step-input in Figure 6. Figure 6 shows that:
for the current settings of the PID control component RAMP’s response time is about 150 msec, its settling

*The response time refers the period from the time that the allocation first reaches 10% of the new requirement value to the time that the allocation
first reaches 90% of the new requirement value.
†The settling time refers the time from the requirement value change to the time that the allocation first reaches a stable value (the absolute error
with the average is within the range of 5% of the average).
‡The overshoot refers the maximum amount of bandwidth over-allocated (under-allocated if the requirement decreases) to the flow.

Figure 5: RAMP scheduler’s allocations versus
 the benchmark application’s requirements variations

0

2000

4000

6000

8000

10000

0 10 20 30 40
0

20000

40000

60000

80000

100000

120000

140000

Y
1:

 B
an

dw
id

th
 (

K
b/

S
ec

)

Y
2:

 B
uf

fe
r

fil
l-l

ev
el

 (
B

yt
es

)

Time (Second)

Dynamical bandwidth allocation

allocation (using Y1)
bandwidth requirements (using Y1)

per-flow buffer fill-level (using Y2)
target buffer fill-level (using Y2)

0

2000

4000

6000

8000

10000

0 10 20 30 40
0

20000

40000

60000

80000

100000

120000

140000

Y
1:

 B
an

dw
id

th
 (

K
b/

S
ec

)

Y
2:

 B
uf

fe
r

fil
l-l

ev
el

 (
B

yt
es

)

Time (Second)

Dynamical bandwidth allocation

allocation (using Y1)
bandwidth requirements (using Y1)

per-flow buffer fill-level (using Y2)
target buffer fill-level (using Y2)

10

time is about 1000 msec, and its average overshoot is 65% of the step height. The significance of overshoot
for RAMP is that it will attempt to allocate more bandwidth than is really needed. One way to deal with
this is to ensure that the interface is always under utilized in order to allow the overshoot. The problem
with this approach is its inefficiency, especially considering the fact that the measured overshoot with
RAMP’s current settings is 65% of the step size. This approach would require us to operate at only 1/1.65
of the available interface bandwidth, which is not acceptable. An alternate approach is to allow RAMP to
temporarily over-allocate the interface bandwidth, which would cause an accumulation of packets in the
device buffer (the interface queue in Figure 3). The size of this accumulation is dependent on the rate-vari-
ation characteristics of the input signal. For the step-input in Figure 6, the maxumum accumulation is
determined by the difference bwtween Area-B and Area-A, which introduces less than 50 msec delay to
the device buffer.

6. Interactions between the RAMP Scheduler and TCP

RAMP automatically adjusts local interface bandwidth allocation according to the TCP’s output. However,
TCP adapts its output rate according to the available end-to-end bandwidth, which can be limited by the
local interface bandwidth allocation controlled by RAMP.

To study this interaction, we consider TCP’s flow control and congestion control separately. We discuss the
flow control first in subsection 6.1, then show the congestion control experiment and discuss the overall
interaction in subsection 6.2.

6.1. TCP Flow Control and the RAMP Scheduler

TCP flow control imposes a limit on the amount of data that can be sent without having been acknowl-
edged, in order to ensure that the receiver-side buffer will not overflow. The amount of data that can be sent
at any time corresponds to the difference between the available buffer space of the receiver and the amount
of unacknowledged data that is still in the network. Since the RAMP scheduler’s queues are no different to
router queues in this respect, data in them are considered as data in transition in the network. Hence the
RAMP scheduler can not cause the receiver side buffers to overflow. Furthermore, the output rate adjust-

Figure 6: RAMP scheduler’s step-input response

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

0 1 2 3 4

Y
1:

 B
an

dw
id

th
 (

K
b/

S
ec

)

Time (Second)

Step-Input Response

Overshoot

Settling Time

Response

Time

90%

10%

target(+/-)5%

Area-B

Area-A

allocation
bandwidth requirements

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

0 1 2 3 4

Y
1:

 B
an

dw
id

th
 (

K
b/

S
ec

)

Time (Second)

Step-Input Response

Overshoot

Settling Time

Response

Time

90%

10%

target(+/-)5%

Area-B

Area-A

allocation
bandwidth requirements

11

ments caused by TCP flow control are no different to the rate adjustments caused by other application-level
requirement variations as far as RAMP is concerned. Thus, the bandwidth allocation by the RAMP sched-
uler tracks the TCP flow control output automatically without interacting with it. We verified this result
through experiments, which are presented in [33].

6.2. TCP Congestion Control and the RAMP Scheduler

The congestion control experiment is designed to show the interaction between TCP and RAMP when
there is an end-to-end bottleneck other than the RAMP controlled local interface. When the end-to-end
bottleneck changes its rate, TCP adapts its output rate to this end-to-end bottleneck rate. In this experiment
we verify whether the RAMP scheduler limits TCP’s ability to detect the available end-to-end bottleneck
rate. The details of this study include: (a) verifying whether TCP is still able to probe for more bandwidth
when it is available; (b) verifying whether RAMP causes additional timeouts by its potential effect on the
TCP round-trip-time; and (c) verifying whether TCP’s congestion window expands in the same way with a
RAMP scheduler as it does with a FCFS scheduler.

In order to study the interaction, we simulate a congestion link and control its bandwidth variations. Then
we use it to run a real-rate TCP flow with a RAMP scheduler and a FCFS scheduler respectively, and com-
pare TCP’s congestion window and timeout behaviors in the two cases.

The detailed steps of the experiment are: (a) We simulated a bottleneck link based on a leaky bucket model
[31], which defines a link by a queue size and an output rate. We can control the queue size and the output
rate through system calls, which specify the character of the bottleneck according to the parameters of the
leaky bucket model. By controlling the bottleneck link parameters, we create a congestion generator. (b)
The bottleneck is implemented as an additional queue between the packet scheduler and the interface
queue shown in Figure 3. Thus, it is viewed as a network link by both TCP and the RAMP scheduler. (c)
We run the real-rate TCP flow used in Section 5 with a FCFS packet scheduler. We start with a bottleneck
rate larger than the real-rate flow’s requirement, adjust the bottleneck rate down and up and log the TCP’s
congestion window behavior. (d) We repeat the experiment again, using the RAMP scheduler to control the
bandwidth allocation instead of the FCFS scheduler. The queue size is set to 6K bytes throughout the
experiment, and the bottleneck rate varies from 2Mb/Sec to 1.5Mb/Sec and 0.5Mb/Sec, and then goes back
to 1.5Mb/Sec and 2Mb/Sec.

Figure 7 and Figure 8 show the result of this experiment. Figure 7 shows the result of TCP’s congestion
window size’s behavior under the FCFS packet scheduler. When the bottleneck rate reduces from 2Mb/Sec
to 1.5Mb/Sec, the congestion window size drops and keeps the sawtooth shape because of TCP congestion
control’s slowstart and exponential backoff behavior. When the bottleneck rate reduces further, TCP’s con-
gestion window maintains a similar sawtooth shape but varies with lower frequency because of TCP’s self-
clocking. Figure 8 shows the congestion window size’s behavior under the RAMP scheduler, which also
traces the bottleneck rate variations. Figure 7 shows that TCP’s congestion window reaches a larger size
with the RAMP scheduler (window sizes reach 25~30) than with the FCFS scheduler (window sizes reach
10). It also shows the average throughput with the two schedulers are close to each other. However, TCP
expands its congestion window less aggressively with the RAMP scheduler than with the FCFS scheduler.
This behavior is illustrated by the slowly varying sawtooth shape in Figure 8 (in the range of 0.4~0.8 saw-
tooth/sec), compared to the rapid variations in Figure 7 (in the range of 0.94~2.26 saw-tooth/sec).

12

The results also show that the RAMP scheduler adds delay to the data transmission. TCP’s round-trip-time
is increased in average by 400ms, 600ms and 1000ms respectively for the bottleneck rate 2Mb/Sec, 1.5Mb/
Sec, and 0.5Mb/Sec. The increment is mainly attributed by the buffering in the RAMP scheduler. However,
no TCP-retransmission timeouts happen in either experiment. The reason is that TCP uses an adaptive
timer to estimate the timeout period based on the monitored round-trip-time. Thus, even with the increase
in the round-trip-time, all of the packet loses are still detected by duplicated acknowledgements before any
TCP-retransmission timeout happens. The delay introduced by RAMP is different when the bottleneck rate
changes. The reason of it is that current RAMP scheduler choose a constant bytes value as the target fill-

Figure 7: TCP’s behavior with a FCFS scheduler

0

2000

4000

6000

8000

10000

0 20 40 60
-80

-60

-40

-20

0

20

40

60

80

Y
1:

B
an

dw
id

th
 (

K
b/

S
ec

)

W
in

do
w

 s
iz

e
(p

kt
s)

Time (Second)

TCP’s behavior with lightly buffered bottleneck without RAMP scheduler

max_win 10(pkts)

1.85(saw-tooth/s)

max_win 10(pkts)

0.94(saw-tooth/s)

max_win 10(pkts)

1.8(saw-tooth/s)

max_win 10(pkts)

2.26(saw-tooth/s)

avg_rate 1.10Mb/s avg_rate 0.39Mb/s

avg_rate 1.04Mb/s

avg_rate 1.68Mb/s

allocation by FCFS (using Y1)
bottleneck rate(using Y1)

TCP congestion window (using Y2)

0

2000

4000

6000

8000

10000

0 20 40 60
-80

-60

-40

-20

0

20

40

60

80

Y
1:

B
an

dw
id

th
 (

K
b/

S
ec

)

W
in

do
w

 s
iz

e
(p

kt
s)

Time (Second)

TCP’s behavior with lightly buffered bottleneck without RAMP scheduler

max_win 10(pkts)

1.85(saw-tooth/s)

max_win 10(pkts)

0.94(saw-tooth/s)

max_win 10(pkts)

1.8(saw-tooth/s)

max_win 10(pkts)

2.26(saw-tooth/s)

avg_rate 1.10Mb/s avg_rate 0.39Mb/s

avg_rate 1.04Mb/s

avg_rate 1.68Mb/s

allocation by FCFS (using Y1)
bottleneck rate(using Y1)

TCP congestion window (using Y2)

0

2000

4000

6000

8000

10000

0 20 40 60
-80

-60

-40

-20

0

20

40

60

80

Y
1:

B
an

dw
id

th
 (

K
b/

S
ec

)

W
in

do
w

 s
iz

e
(p

kt
s)

Time (Second)

TCP’s behavior with lightly buffered bottleneck without RAMP scheduler

max_win 10(pkts)

1.85(saw-tooth/s)

max_win 10(pkts)

0.94(saw-tooth/s)

max_win 10(pkts)

1.8(saw-tooth/s)

max_win 10(pkts)

2.26(saw-tooth/s)

avg_rate 1.10Mb/s avg_rate 0.39Mb/s

avg_rate 1.04Mb/s

avg_rate 1.68Mb/s

allocation by FCFS (using Y1)
bottleneck rate(using Y1)

TCP congestion window (using Y2)

Figure 8: TCP’s behavior with a RAMP scheduler

0

2000

4000

6000

8000

10000

0 20 40 60
-80

-60

-40

-20

0

20

40

60

80

Y
1:

 B
an

dw
id

th
 (

K
b/

S
ec

)

Y
2:

 W
in

do
w

 s
iz

e
(p

kt
s)

Time (Second)

Automatic bandwidth allocation with light buffered bottleneck in the network

max_win 25(pkts)

0.8(saw-tooth/s)

max_win 20(pkts)

0.4(saw-tooth/s)

max_win 25(pkts)

0.7(saw-tooth/s)

max_win 30(pkts)

0.8(saw-tooth/s)

avg-rate 1.08Mb/s avg-rate 0.30Mb/s

avg-rate 1.01Mb/s

avg-rate 1.76Mb/s

allocation (using Y1)
bottleneck rate (using Y1)

TCP congestion window (using Y2)

0

2000

4000

6000

8000

10000

0 20 40 60
-80

-60

-40

-20

0

20

40

60

80

Y
1:

 B
an

dw
id

th
 (

K
b/

S
ec

)

Y
2:

 W
in

do
w

 s
iz

e
(p

kt
s)

Time (Second)

Automatic bandwidth allocation with light buffered bottleneck in the network

max_win 25(pkts)

0.8(saw-tooth/s)

max_win 20(pkts)

0.4(saw-tooth/s)

max_win 25(pkts)

0.7(saw-tooth/s)

max_win 30(pkts)

0.8(saw-tooth/s)

avg-rate 1.08Mb/s avg-rate 0.30Mb/s

avg-rate 1.01Mb/s

avg-rate 1.76Mb/s

allocation (using Y1)
bottleneck rate (using Y1)

TCP congestion window (using Y2)

0

2000

4000

6000

8000

10000

0 20 40 60
-80

-60

-40

-20

0

20

40

60

80

Y
1:

 B
an

dw
id

th
 (

K
b/

S
ec

)

Y
2:

 W
in

do
w

 s
iz

e
(p

kt
s)

Time (Second)

Automatic bandwidth allocation with light buffered bottleneck in the network

max_win 25(pkts)

0.8(saw-tooth/s)

max_win 20(pkts)

0.4(saw-tooth/s)

max_win 25(pkts)

0.7(saw-tooth/s)

max_win 30(pkts)

0.8(saw-tooth/s)

avg-rate 1.08Mb/s avg-rate 0.30Mb/s

avg-rate 1.01Mb/s

avg-rate 1.76Mb/s

allocation (using Y1)
bottleneck rate (using Y1)

TCP congestion window (using Y2)

13

level. In the future, we plan to use a constant time based fill-level, which will introduce same delay to TCP
even when the bottleneck rate changes.

The results answer several of the questions raised earlier: (a) According to Figure 8, TCP with RAMP is
still able to probe for the end-to-end bottleneck rate, and in average reaches same output rate as TCP with
FCFS does. (b) According to the experiment log, RAMP scheduler did add rate dependant latency, but it
didn’t add any additional timeouts to TCP. (c) Clearly the congestion window expands and contracts with a
different shape when TCP flows run through a RAMP scheduler. Using RAMP the congestion window
expands slowly, but with more overshoot. The reason for this behavior is that RAMP predicts the TCP’s
requirement and allocates the bandwidth based on it. However it introduces delay and smoothing, whereas
the FCFS scheduler immediately gives all the bandwidth allocation to the flow when there is no other com-
peting traffic. According earlier research on TCP throughput [19, 24, and 34], long-delay and smoothed
TCPs expand their window slowly compared to short-delay and bursty TCPs. The RAMP scheduler’s
delay and smoothing impact on TCP is determined by the controller’s target queue fill-level and its respon-
siveness. We believe adjusting the target fill-level and responsiveness of the controller is a way of tuning
the bandwidth sharing result for RAMP and TCP. In the near future, we plan to demonstrate these effects.

7. Related Work

We divide the related work into in several fields, including packet scheduling, multimedia transmission,
network congestion and flow control, and scheduling for other resources.

We have demonstrated the advantage of the RAMP scheduler over FCFS and simple reservation based
packet schedulers. Priority-based schedulers [3, 12, and 13] are similar to RAMP in the sense of separating
flows. However, RAMP differs significantly from priority-based schedulers because it derives flow band-
width requirements and supports proportional sharing based on these requirements. Priority-based sched-
ulers have no knowledge of flow requirements, thus they can only do coarse grain allocations based on
priorities, and they are subject to starvation. Another closely related approach is packet scheduling based
on Fair Queueing [5]. Fair Queueing schedulers share interface bandwidth according to some notion of
“fairness”, and either allocated bandwidth equally to flows or based on some pre-specified weights. The
RAMP scheduler can be classified as one kind of weighted-fair-queueing scheduler in which the weights
are derived automatically based on inferred bandwidth requirements. Linux2.2 kernels supply a powerful
packet scheduler infrastructure [6], allowing them to support several kinds of packet schedulers. However,
none of these packet schedulers infer flow bandwidth requirements and use them to dynamically allocate
bandwidth.

Media streaming and smoothing techniques [27, 30] smooth the bandwidth requirements for stored video
by buffering data at the application level. These approaches make it easier to deploy multimedia applica-
tions in the Internet. The RAMP scheduler addresses the same problem at a different level. It smoothes
streaming data at the network resource level. An advantage of smoothing at this level is that it allows isola-
tion of real-rate flows from competing greedy flows.

The RAMP scheduler is also related to research on active queue management [18, 19, 20, 21, 23, 24, and
25]. Active queue management research is concerned with the interaction between scheduling mecha-
nisms, such as RED [23] and ECN [18], and network congestion control. The RAMP scheduler can also be
viewed as one form of TCP pacing [34]. The TCP pacing effect can be controlled by adjusting the respon-
siveness of the RAMP controller. However, active queue management research does not address the prob-
lem of automatically inferring a flow’s bandwidth requirement.

The RAMP scheduler is designed to support real-rate flows at the resource management level. It is related
to research on transport layer protocols for real-rate flows, such as SCP [26] and RAP [27], which detect
the available bandwidth and trade reliability for less delay to meet the flows’ timing requirements. We

14

believe that successfully deployment of real-rate flows in the Internet needs coordinated support from both
levels.

Finally, the RAMP scheduler uses a feedback-driven control system to manage network interface
resources. Feedback-driven resource management has been successfully applied to other resources such as
CPU [1, 14], and disk bandwidth [11].

8. Contributions and Future Work

This paper has described a packet scheduler that can automatically derive flow bandwidth requirements
and dynamically adjust bandwidth based on them. The main contribution of the RAMP scheduler is that it
uses a feedback-based controller to allocate interface bandwidth to flows without requiring them to com-
municate their explicit bandwidth requirements. The RAMP scheduler infers the flow requirements from
queue state information and consequently moves part of the burden of real-rate application programming
to the resource management level. Our experimental evaluation of RAMP demonstrates its ability to sepa-
rate traffic, and dynamically respond to varying real-rate requirements.

The experiment results also illustrate some interesting interactions between TCP and RAMP. We plan to
further characterize the RAMP scheduler and TCP congestion and flow control using feedback control
models, in order to explore these interactions more thoroughly in the future. Other future work includes
extending the system to control the period allocations, and investigating its effect on end-to-end delay.

9. References

[1] David C.Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee, Calton Pu and Jonathan Walpole,
“A Feedback-driven Proportion Allocator for Real-Rate Scheduling”, In Proceedings ofOperating
Systems Design and Implementation (OSDI), ACM Operating System Review, Special Issue-Winter
1998, Page 145-258.

[2] Charles Krasic, Jonathan Walpole, Mark Jefferys, Dylan McNamee, David Steere and Calton Pu.
“Dynamic QoS Adaptation in Shared Heterogeneous Environments.” OGI-Tech-Report-CSE-99-011,
available at ftp://cse.ogi.edu/pub/tech-reports/1990/.

[3] Sally Floyd. Notes on CBQ and Guaranteed Service. Draft document, July 1995. Available at http://
www.aciri.org/floyd/cbq.html.

[4] David C. Steere, Joshua Gruenberg, Dylan McNamee, Calton Pu and Jonathan Walpole. “Fine-grain
Period Adaptation in Soft Real-Time Environments”. OGI-TECH-REPORT-CSE-99-012, available at
ftp://cse.ogi.edu/pub/tech-reports/1999/.

[5] Alan Demers, Srinivasan Keshav, and Scott Shenker. “Analysis and Simulation of a Fair Queueing
Algorithm”. In Proceeding of ACM SIGCOMM'89.

[6] Werner Almesberger. “Linux Traffic Control -- Implementation Overview”. Available at http://
icawww1.epfl.ch/linux-diffserv/.

[7] Ashvin Goel, David Steere, Calton Pu, and Jonathan Walpole. “SWiFT: A Feedback Control and
Dynamic Reconfiguration Toolkit”. Technical Report CSE-98-009, Department of Computer Science
and Engineering, Oregon Graduate Institute. June 1998.

[8] Van Jacobson, and Michael Karels. “Congestion Avoidance and Control”.Proceeding of ACM SIG-
COMM’88, pages 79-88, August 1988.

[9] C.L.Liu and J.W.Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Envi-
ronment”JACM, Vol.20, No.1, pages 46-61, 1973.

[10]David D. Clark, Scott Shenker, and Lixia Zhang. “Support Real-Time Applications in an Integrated
Service Packet Network: Architecture and Mechanism”.Proceeding of ACM SIGCOMM’92.

15

[11]Dan Revel, Dylan McNamee, Calton Pu, David C.Steere, and Jonathan Walpole. “Feedback-based
Dynamic Proportion Allocation for Disk I/O”. OGI-TECH-REPORT-CSE-99-001, available at ftp://
cse.ogi.edu/pub/tech-reports/1999/.

[12]Steven Blake, David Black, Mark Carlson, Elwyn Davies, Zheng Wang, and Walter. “An Architecture
for Differentiated Services”. RFC 2475. December 1998.

[13]Philip Almquist. “Type of Service in the Internet Protocol Suite”. RFC1349, July 1992.
[14]John A.Stankovic, Chenyang Lu, Sang H.Son and Gao Tao. “The Case for Feedback Control Real-

Time Scheduling”.EuroMicro Conference on Real-Time Systems, June 1999.
[15]Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala. “RSVP: A New

Resource ReSerVation Protocol”.IEEE Network. September 1993.
[16]Marshal Kirk McKusick, Keith Bostic, Michael J.Karels and John S.Quarterman.The Design and

Implementation of the 4.4 BSD Operating System. Addison-Wesley, 1996.
[17]Linux2.0 kernel source code. Available at http://www.kernelnotes.org/.
[18]B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall,

C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, L. Zhang. “Recommendations
on Queue Management and Congestion Avoidance in the Internet”. RFC2309, April 1998.

[19]S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance”,IEEE/ACM
Transactions on Networking, vol.1, pp.397-413, August 1993.

[20]B. Suter, T. V. Lakshman, D. Stiliadis, and A. K. Choudhury. “Buffer Management Schemes for Sup-
porting TCP in Gigabit Routers with Per-flow Queueing”.IEEE Communications, August, 1999.

[21]Pittsburgh Supercomputing Center. “Enabling High Performance Data Transfers on Hosts”. Available
at http://www.psc.edu/networking//perf_tune.html.

[22]V. Jacobson, R. Braden, and D. Borman. “TCP Extensions for High Performance”, RFC1323, May
1992.

[23]S. Floyd. The RED Web Page. http://ftp.ee.lbl.gov/floyd/red/html.
[24]S. Floyd and K. Fall. “Promoting the use of end-to-end congestion control in the Internet”.IEEE/ACM

Transactions on Networking, August 1999.
[25]S. Floyd. “TCP and Explicit Congestion Notification”.ACM Computer Communication Review, V.24

N.5, October 1994, p.10-23.
[26]S. Cen, C. Pu, J. Walpole. “Flow and Congestion Control for Internet Media Streaming Applications”.

Proceedings of Multimedia Computing and Networking (MMCN), January 1998.
[27]R. Rejaie, M. Handley and D. Estrin. “RAP: An End-to-End Rate-based Congestion Control Mecha-

nism for Realtime Streams in the Internet”.IEEE INFOCOM’99.
[28]Quasar video player. Available at http://www.cse.ogi.edu/sysl/.
[29]L. Zhang, S. Shenker, and David D. Clark. “Observations on the Dynamics of a Congestion Control

Algorithm: The Effects of Two Way Traffic”.Proceeding of ACM SIGCOMM’91.
[30]Wu-chi Feng, Brijesh Krishnaswami, Arvind Prabhudev. “Proactive Buffer Management for the

Streamed Delivery of Stored Video”.Proceeding of ACM Multimedia’98. Bristol. UK.
[31]Srinivasan, Keshav.An Engineering Approach to Computer Networking. page 237~240. Addison Wes-

ley Longman, Inc. 1997.
[32]Mohit Aron, Peter Druschel. “Soft timers: efficient microsecond software timer support for network

processing”. 17th ACM Symposium on Operating Systems Principles. Published asOperating Systems
Review, 34(5), page 232-246, Dec. 1999.

[33]RAMP Experiments Web Page. http://kang.cse.ogi.edu:80/syslnet/archieved.htm.
[34]A. Aggarwal, S. Savage, T. Anderson. “Understanding the performance of TCP Pacing”.IEEE INFO-

COM’2000.
[35]Gene F. Franklin, J. David Powell.Feedback control of dynamic systems. Addison-Wesley Inc. 1994.

	Rate-Matching Packet Scheduler for Real-Rate Applications
	Let us know how access to this document benefits you.
	Citation Details

	ramp

