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Generalized beam matrices: 
Gaussian beam propagation 

in misaligned complex optical systems 

Anthony A. Tovar land Lee W. Casperson 

Department of Electrical Engineering, Portland State University, Portland, Oregon 97207-0751 

Received October 4, 1994; revised manuscripf~received February 2, 1995; accepted February 8, 1995 

A novel 3 X 3 transfer-matrix method is developed to propagate off-axis Gaussian beams in astigmatic optical 
systems that may include tilted, displaced, or curved optical elements. Unlike in a previous generalized 
ray matrix formalism, optical elements that possess gain or loss such as Gaussian apertures, complex lenslike 
merna, and amplifiers are included; and a new beam transformation is found. In addition, a novel exponential 
variable-reflectivity mirror, which displaces a Gaussianbeam without changing its spot size, and a complex 
prismlike medium are introduced. 

1. INTRODUCTION 

The beginning of paraxial ray theory is often ascribed to 
the German mathematician and physicist Karl Friedrich 
Gauss (1777-1855), who wrote down in his classic 1840 
memoir -Dioptrische Untersuchungen two linear simul­
taneous equations whereby the height and the angle 
of an output ray are linked to the corresponding input 
quantities. 1 However, English mathematician Arthur 
Cayley (1821-1895) did not invent modern matrix the­
ory until 1858.2 Paraxial ray matrix concepts developed 
slowly and were popularized only with the advent of the 
laser.3 These matrices were subsequently generalized to 
account for misalignment4 and axis curvature5 of optical 
elements. This theory involves the use of 3 X 3 matrices 
in which only six of the matrix elements are nontrivial. 
A summary of these generalized ray matrices is given 
in Ref. 6. 

Meanwhile, Gaussian beam theory was popularized 
by Kogelnik, who showed that, like paraxial light rays, 
Gaussian beams could be traced through a wide variety 
of aligned optical systems by simple 2 X 2 matrix multi­
plication. 7 Furthermore, Kogelnik's beam matrix repre­
sentation for a given optical element was the same as the 
corresponding ray matrix representation. It was then 
suggested that the center of a Gaussian beam travels 
along the same trajectory as that of a light ray.s The 
subsequent proof identified the restriction that the optical 
element or system must be 10ssless.9 However, lossless 
optical systems are represented only by beam matrices 
that are real. For these systems the 3 X 3 generalized 
ray matrices may be used to propagate the displacement 
and the slope of the amplitude center of Gaussian beams 
in tilted optical systems. 

A notational difficulty arose when the Gaussian beam 
theory was applied to optical systems that include optical 
elements with gain or loss. Such optical elements are 
represented by complex-valued beam matrices. These 
elements, such as Gaussian-profiled apertures and am­
plifiers with a radial gain profile, are often crucial to de­
termining even the qualitative mode structure of lasers. 
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In optical systems, Gaussian beam matrices are thus 
distinct from ray matrices, as the former are complex 
valued and the latter are ineffectual since there is no 
simple interpretation for complex-valued position and 
slope of a light ray. To overcome this, a beam transfor­
mation was found so that the center of a Gaussian beam 
may be traced through a complex (i.e., nonlossless) optical 
system. 10 Similar transformations have also been found 
to trace axialll and off-axisl2 polynomial-Gaussian beams 
in complex optical systems. However, these transforma­
tions are appropriate only for aligned systems, and the 
complex-valued 2 X 2 Gaussian beam matrices cannot 
be extended as complex-valued 3 X 3 ray matrices to ac­
count for misaligned or curved optical elements that have 
gain or loss. With the lack of an existing transfer-matrix 
method to propagate Gaussian beams in misaligned com­
plex optical systems, one must resort to system analysis 
on an ad hoc basis.13,14 Thus the intent of this paper 
is to identify a novel 3 X 3 matrix method that enables 
one to propagate Gaussian beams in optical systems that 
have both gain (or loss) and misalignments. Though 
the form of these matrices is different from that of the 
purely real generalized ray matrices, there are still only 
six independent matrix elements. 

In Section 2 Heaviside's differential form of Maxwell's 
equations is solved for a curved complex lenslike medium. 
The solutions may be put into a form that suggests a 
transfer-matrix approach. This matrix approach is con­
sidered in Section 3, and it is found that a large num­
ber of optical elements fit within the framework of this 
generalized beam matrix theory. In particular, the com­
plex lenslike medium, the Gaussian aperture, the spheri­
cal boundary, the thin lens, and the spherical mirror 
are generalized so that they may be tilted, misaligned, 
or curved. In addition, the generalized beam matrix is 
found for a new prismlike medium, tilted boundary, a 
tilted mirror, a misaligned ABeD system, and an axis 
transformation. Of particular interest is the exponen­
tial apodized aperture, which displaces a Gaussian beam 
without changing its spot size. The results are· summa­
rized in Section 4. 

© 1995 Optical Society of America 



erson 

:thus 
:plex 
3 no 
and 
3for­
earn 
tical 
und 
ams 
'ma-
the 

mot 
I ac­
lave 
trix 
om­
ysis 
lper 
bles 
;hat 
ugh 
'the 
[mly 

311's 
um. 
;s a 

:on­
lm­
;his 
)m­

,eri­
i'ror 
led, 
{: is 
r, a 
:lxis 
len­
lam 
na-

I 

A. A. Tovar and L. W. Casperson 

2. GENERALIZED BEAM MATRIX FOR 
CURVED COMPLEX LENS LIKE MEDIA 

Complex lenslike media are materials in which the gain 
and/or the refractive index varies quadratically in the 
transverse direction. It is the purpose of this section to 
derive from first principles Gaussian beam propagation 
in these lenslike media, which are allowed to be curved. 
The solution is put into a new matrix form. 

A usual and appropriate starting point for a Gaussian 
beam derivation is the Heaviside form of Maxwell's equa­
tions. Typically these Maxwell-Heaviside equations are 
combined to form a wave equation with the material po­
larization as a forcing function. This polarization may 
be obtained from the density-matrix approach, which sug­
gests that for simple two-level atoms the material po­
larization has components both in temporal phase and 
in quadrature with an assumed harmonic driving field. 
This can be rigorously accounted for by establishing a 
time-independent Helmholtz equation involving a com­
plex permittivity E'. For this study the complex per­
mittivity will be recast as a complex spatially varying 
propagation constant k, where k2 == w 2 f-LE'. The real 
constants wand f-L are the angular frequency of the 
harmonically varying field and the material permeabil­
ity, respectively. With these constraints the resulting 
differential equation is 

V2E' + k 2E' ~ -2V(Vkk . E} (1) 

-The primes are a reminder that the harmonic time depen­
dence exp(iwt) has been factored out of the real electric 
field. The complex vector E' can be separated into scalar 
components, and then Eq. (1) would represent three com­
plex equations in three unknowns for a given complex 
spatially dependent propagation constant. These equa­
tions are coupled, and for rectangular field components 
the right-hand side of Eq. (1) is the only coupling term. 
For simplicity, this coupling term is approximated to be 
negligible compared with either of the two remaining 
terms through the scalar approximation.15- lS This ap­
proximation has greatest validity for the two dominant 
transverse components.9 However, the longitudinal com­
ponent of the electric field can be obtained from, for ex­
ample, Gauss's law for the electric field. Similarly, the 
magnetic field can be obtained from the electric field by 
means of Faraday's law. It should be emphasized that if 
the complex propagation constant is really constant (i.e., 
space independent), then the coupling term is identically 
zero and no approximation has been made. In either case 
the equations become uncoupled and can be solved sepa­
rately. In this scalar approximation it is therefore pos- ' 
sible to define a propagation constant that is different for; 
each of the two rectangular field components, and this is' 
a common way to account for media anisotropy.19 

Even with the right-hand side of Eq. (1) neglected, the 
resulting equation is not trivial. However, in many cases 
the light beam is nearly a plane wave. Hence a plane 
wave traveling in the positive z direction is factored out: 

E'(x, y, z) ~ .p(x, y, z)exp [ -i J,' ko(Z')dZ'] 

x [(cos x)T; + (sin X)iy ] , (2) 
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where X is the angle of the linearly polarized field from 
the x axis. With this substitution Eq. (1) can be rewrit­
ten in the scalar approximation as 

(J2tj; + (J2tj; _ 2iko (Jtj; 
(Jx2 (Jy2 (Jz 

[k2( ) 2' dko-] + x, y, z - ko - 1, d;" tj; = 0 , 

where the paraxial approximation 

looz (:~)I «1-2iko ~~I 

(3) 

(4) 

has been made. The paraxial approximation is distinct 
from, though consistent with, the previous approximation. 
The scalar approximation is interpreted as requiring that 
the material properties not vary significantly in a wave­
length of material, whereas the paraxial approximation 
requires that the complex field amplitude not have any 
important variation in the distance of a wavelength in the 
direction of propagation. A third approximation that is 
usually made is that there is negligible gain in the dis­
tance of a wavelength. However, such an approximation 
is unnecessary and is not in conflict with the two other 
approximations. 20 Therefore no such approximation is 
made here. 

For arbitrary variations of the complex propagation 
constant it is difficult to obtain exact analytic solutions to 
the paraxial wave equation (3). However, analytic solu­
tions to Eq. (3) can be found under a wide variety of condi­
tions if the propagation constant is Taylor series expanded 
in the transverse directions, keeping only constant, linear, 
and quadratic terms: 

k2(x, y, z) = [ko(z) - 1/2 k lx (z)x - liz k2x (z)x2 

- 1/2 kly(z)y - 1/2 k2y (z)y2]2 (5) 

= ko(z)[ko(z) - k2x (z)X2 - k1x (z)x 

- k2y (z)y2 - k1Y(Z)Y]. (6) 

Thus a slowly varying transverse profile approximation is 
also made. In a slightly more general analysis, twisting 
lenslike media may also be treated by the addition of a 
kxy(z)xy term in Eq. (5).9 

It should be noted that the assumption of an ideal 
quadratic propagation constant can be valid only out to 
some finite radius in a realizable medium. For simplic­
ity, it is assumed here that the propagating modes are 
confined completely within the quadratic-profile region. 
However, a quadratic is an excellent approximation near 
the center of any smoothly peaked function, including the 
Bessel radial dependence of the gain in a gas discharge,21 
a Gaussian radial dependence of the gain that is due to 
optical pumping, or similar profiles that are due to spa­
tial hole burning.22 The complex propagation constant 
[Eq. (5)J can be separated into its real and imaginary 
parts as 
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_ {3ix {3iy _ {32x + (3lx 
[ 

2 2 ( )2 
k(x, y, z) - {3o + 8{32x + 8{32y 2 X 2{32x 

_ {32y (y + ~)2J 
2 2{32y 

. alx aiy a2x + aix 
[

22 ( )2 + ~ aO + -- + -- - - X --
8a 2x 8a2y 2 2a2x 

a2y ( aiy )2J -- y+-- , 
2 2a2y 

(7) 

where (3 and a are the real and imaginary parts of the: 
complex propagation constant, respectively. It can read'! 
ily be seen that the effect of the linear terms k ix and k iy 
is to displace the quadratic medium from the z coordinate 
axis. For each transverse axis it is sensible to define the 
displacements ofthe index of refraction axis, d x{3, dY{3, and 
the displacements of the gain axis, d xa , d ya , as 

(3iAz) 
d X {3(z) = - 2{32x(Z) , 

(3iy(Z) 
d y{3(z) = - 2{32y(Z) , 

dxa(z) = _ aix(z) , 
2a2x(Z) 

dya(z) = _ aix(z) . 
2a2Y(Z) 

(8) 

(9) 

(10) 

(11) 

As may be seen from Eq. (7), along an axis defined by the 
index of refraction (x = dX {3, Y = d y{3) or gain (x = d xa , y = 

dya ) of the optical medium, the effective axial propagation 
is different from one defined along the z axis. 

The goal now is to obtain exact solutions to Eq. (3) with 
the propagation constant [relation (6)] under a wide vari­
ety of conditions. Following Ref. 23, a Gaussian substi­
tution of the form 

ljJ(x, y, z) = 1jJ'(x, y, z)exp{-i[1i2Qx(z)x2 + ihQy(Z)y2 

+ SAz)x + Sy(z)y]} (12) 

yields a new equation, 

a21jJ'. aljJ' a21jJ' 
--2 - 2~(Sx + Qxx) - + --2 
ax ax ay 

_ 2i(Sy + QyY) aljJ' _ (Sx 2 + Sy 2)IjJ' 
ay 

'(Q Q)' 'k aljJ' . dko ,1,1 - 0 - ~ x + y IjJ - 2~ 0 - - ~ -d 'f - , . az z 
(13) 

when combined with the following choices for the 
z-dependent parameters: 

Qx 2 + ko(z) dd~x + ko(z)k2x (z) = 0, (14) 

2 dQy ) 
Qy + ko(z) dz + ko(z)k2y (z = 0, (15) 

Q S k ( ) 
dSx ko(z)klx(z) = 0 

x x + 0 z dz + 2 ' (16) 

Q S + k ( ) dSy + ko(z)kiy(z) = o. 
y y 0 z dz 2 

(17) 
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Equation (13) may be simplified substantially for 
fundamental-mode propagation. In particular, if 
1jJ'(x, y, z) = exp[ -iP(z)], then the phase parameter 
equation is 

dP. ( 2 S 2) . dko - 0 (18) 2ko dz + ~(Qx + Qy) + Sx + y + ~ dz - . 

Equations (14) and (15) are beam parameter equations, 
and Qx and Qy are known as beam parameters. Each of 
these two equations is uncoupled and can be solved in­
dependently. Since the forms of Eqs. (14) and (16) for 
the beam's parameters in the x direction are identical to 
those of Eqs. (15) and (17) for the beam's parameters in 
the y direction, then for every equation written for the x 
direction there is a corresponding equation for the y direc­
tion. Thus, though only x-direction equations are writ­
ten, astigmatism is accounted for. The Gaussian beam's 
1/ e electric-field amplitude spot size and radius of phase 
front curvature at a flat plane are related to the beam 
parameter by the relation20 

( ) 
(3o . 2 

Qx z = Rx(z) - ~ wx2(z) . 
(19) 

Equation (16) is sometimes called the displacement pa­
rameter equation, and Sx is likewise known as the dis­
placement parameter. Equation (16) is also uncoupled 
and can be solved independently once its corresponding 
beam parameter equation has been solved. The signifi­
cance of the displacement parameter lies in the fact that 
if dxa is the displacement of the amplitude center of the 
beam in the x direction and dxp is the displacement of the 
phase center of the beam in the x direction, then, if we 
separate the argument of the exponential into real and 
imaginary parts and complete the squares in Eq. (12), it 
follows that 

dxa(z) = -Sxi(Z)/Qxi(Z) , 

dxp(z) = -Sxr(z)/Qu(z). 

(20) 

(21) 

Here, and everywhere below, the rand i subscripts are 
meant to denote the real and imaginary parts of a complex 
function. Equations (20) and (21) may be inverted and 
combined into 

As the displacement of the amplitude center represents 
the position of a Gaussian beam, the slope of a Gaussian 
beam can be obtained by taking a z derivative of Eq. (20) 
and substituting Eqs. (14) and (16). In the x direction 
the slope is found to be 

ddx~ = _ a2x (d _ d. ) + (1 -aAQxr/Qxi) 
dz Qxi xa xa 1 + aA 2 

Qxr 
X (dxa - d xp ) To' (23a) 

= a2x wx
2 

(d. _ d.) + (1 + a A1Tnwx2/11Rx) 
2 xa xa 1 + aA 2 

X (dxa - d xp ) , (23b) 
Rx 

where aA == ao/ {3o and the z dependences have been sup­
pressed for readability. Equation (23b) is written in this 
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form to reduce to Eq. (14) of Ref. 24 when a'2x = 0 and 
a'A = O. In this way the beam slope is related to the phase 
center of a Gaussian beam. Equation (22) can therefore 
be rewritten as 

1 + a',\2 
Sx = - Qxrdxa + {30 1 _ Q /Q. 

a'A xr Xl 

X [ d~a + ~: (dx• - d xa) ] - iQxidxa , (24) 

where d~a == ddxa/dz. Often, the input and output planes 
are chosen to be in a homogeneous dielectric medium (or 
free space), and in this case Eq. (24) reduces to 

Sx = -Qxdxa + {3od~a' (25) 

The goal now is to solve Eqs (14)-(17) and express the 
results in terms of beam matrices. This is achieved by 
making the Ricatti substitution, 

QAz) 1 dux 
ko(z) = ux(z) 'dz""' (26) 

into Eqs. (14) and (16), which may be expressed as 

d: [ ko(z) ~; ] + k2x (z)uAz) ~ 0, (27) 

d 
dz [uAz)Sx(z)] = _1/2klx (z)ux(z). (28) 

As a linear homogeneous second-order differential equa­
tion, Eq. (27) has solutions that may be written as a linear 
combination of two independent functions: 

ux(z) = Ax(z)ux(O) + Bx(z)u~(O). (29) 

The derivative may be written in a similar form: 

u~(z) = Cx(z)ux(O) + DxCz)u~(O) . (30) 

If we take the z derivative of Eq. (29), it follows that 
CAz) = dAx/dz and Dx(z) = dBx/dz in material media. 
If we substitute Eqs. (29) and (30) into Eq. (27) and use 
the fact that Ax(z) and Bx(z) are linearly independent, it 
follows that 

d 
dz [ko(z)Cx(z)] = -k2xCZ)Ax(z) , (31) 

d 
dz [ko(z)Dx(z)] = -k2Az)Bx(z). (32) 

These results may be used, for example, to show that the 
z derivative of the product of ko(z) and the Wronskian, 
AAz)DAz) - Bx(z)Cx(z), is zero, from which it follows that 

ko(O) 
Ax(z)DxCz) - Bx(z)Cx(z) = ko(z) , (33) 

where ko(O) and ko(z) are the axial complex propaga­
tion constants at the input plane and the output plane, 
respectively. 

Equation (28) may be integrated directly, and from 
Eq. (29) it can be seen that 
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ux(z)S,(z) ~ uAO)SAO) - [~ 10' ku(z')AAz')dz' }x(O) 

~ [~ 10' klAZ')Bx(Z')dZ}~(O). (34) 

If we define 

1 (Z 
G (z) == -"2 J 0 k1x (z')A(Z' )dz' , (35) 

1 (Z 
H(z) == -"2 J

o 
klx (z')B(zl)dz', (36) 

then Eqs. (29), (30), and (34) can be written in a new 
generalized beam matrix form: 

( 

uxCz) ) [AxCZ) Bx(z) 0] 
[QxCz)/ko (z)]ux (z) = Cx(z) DxCz) 0 

Sx(z)ux(z) Gx(z) Hx(z) 1 

( 

uxCO) ) 
X [Qx (O)/ko (O)]uxCO) , 

SAO)ux(O) 

(37) 

where Eq. (26) has also been used. In SI units the di­
mension of BxCz) is meters, the dimensions of CxCz) and 
Gx(z) are inverse meters, and Ax(z), Dx(z), and HAz) are 
dimensionless. 

The three rows of matrix equation (37) represent three 
equations. It follows, by dividing the second equation by 
the first, that 

Qx(z) = Cx(z) + Dx(z)Qx(O)/ko(O) 
ko(z) AxCz) + BxCz)Qx(O)/ko(O) 

(38) 

This is the Kogelnik transformation.7 The beam pa­
rameter Qx is related to the light beam's spot size and 
radius of curvature through Eq. (19). In a similar man­
ner the third equation divided by the first equation in 
Eq. (37) yields a new law analogous to the Kogelnik trans­
formation: 

Sx(O) 
SxCz) = Ax(z) + BxCz)Qx(O)/ko(O) 

+ Gx(z) + Hx(z)Qx(O)/ko(O) . (39) 
Ax(z) + Bx(z)Qx(O)/ko(O) 

For aligned optical systems, Gx = 0 and Hx = 0 and 
Eq. (39) reduces to a transformation derived previously. 10 

In Appendix A it is shown that when the generalized 
beam matrix elements are purely real (i.e., for lossless 
optical systems), the propagation characteristics may be 
described in terms of a generalized ray matrix. Once 
the generalized beam matrix is known, the procedure to 
propagate a Gaussian beam's position, slope, spot size, 
and phase front curvature involves the use of the inter­
mediate complex parameters Qx and Sx, which may be 
obtained from Eqs. (19) and (24), respectively. The out­
put beam parameter, Qx(z), and the output displacement 
parameter, Sx(z), may be obtained from Eqs. (38) and (39). 
The Gaussian beam's output parameters of interest may 
then be obtained from Eqs. (19) and (24). 
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As a specific example of a generalized beam matrix, a 
complex lenslike medium with ko(z) = ko and k2x (z) = k2x 
is considered. In this case Eq. (27) is easily solved, and 
the corresponding generalized beam matrix is 

[ 

cos( Yxz) 

-Yx sin ( Yx z ) 
Tcomplex lenslike medium = 11 Z 

-"2 0 klx(zl)cOS(Yxzl)dzl 

where Eqs. (35) and (36) have been used, as has the 
definition 

(41) 

For z-independent ko and k2x , the GAz) and HAz) in­
tegrations in Eq. (40) may be performed for arbitrarily 
curved media by Taylor series expanding klx(z) and apply­
ing successive integration by parts and noting Eqs. (31) 
and (32). Though this procedure to propagate an off-axis 
Gaussian beam in a curved complex lenslike medium is 
straightforward, the usefulness of the generalized beam 
matrices is amplified by its application to more compli­
cated systems of optical elements, which is considered in 
Section 3. 

3. GENERALIZED BEAM MATRICES 
FOR OPTICAL SYSTEMS 

In Section 2 generalized beam matrices were introduced, 
and the generalized beam matrix for a curved complex 
lenslike medium was identified. The purpose of this sec­
tion is to identify generalized beam matrices for several 
other optical elements and apply the matrix method to 
optical systems. To encourage analogies, we divide op­
tical elements into three classes: nonprofiled, linearly 
profiled, and quadratically profiled. N onprofiled optical 
elements such as homogeneous media possess no phase 
variation or amplitude transmission variation in either 
of the transverse directions. Similarly, linearly profiled 
optical elements are linear in the transverse variations of 
their complex propagation constants. Prisms and tilted 
mirrors are familiar examples of linearly profiled optics. 
In the same manner lenses and spherical mirrors (which 
are approximately parabolic) are examples of quadrati­
cally profiled optical elements. 

For a system of optical elements it is sensible to des­
ignate the various reference planes numerically. In par­
ticular, the generalized beam matrix may be written as 

Tcomplex prismlike medium = 

A. A. Tovar and L. W. Casperson 

where the 1 and 2 subscripts represent the input and 
output parameters of the optical element and system, 
respectively. As solutions to the differential equations 
discussed in Section 2 require, the bottom, rightmost ele-

1 

:} (40) 

ment of the generalized beam matrix is unity. However, 
since the observable beam properties exist only as ra­
tios of Ux, Qxko -lux, and Sxux, these observables are un­
changed if the beam matrix is multiplied by any nonzero 
z-dependent function. Thus, if the bottom, rightmost ele­
ment is initially nonzero, the generalized beam matrix 
may be scaled to make it unity. However, there may ex­
ist certain peculiar matrices in which the bottom, right­
most element is zero. In this case the output position 
and slope of the Gaussian beam would be independent 
of the input position and slope. Though it is straight­
forward to extend the results below to account for this 
effect, this possibility is excluded from further consider­
ation here. 

As in Section 2, the Kogelnik transformation is obtained 
by dividing the second row of Eq. (42) by the first row: 

Qx2 ex + DxQxl/kol 
k02 = Ax + BxQxti kOl . 

(43) 

The displacement transformation is obtained by dividing 
the third row of Eq. (42) by the first row: 

An alternative, but redundant, transformation may be 
obtained either by dividing the second row of Eq. (42) by 
the third row or by dividing Eq. (44) by Eq. (43). 

As is typical in transfer-matrix methods, system analy­
sis merely consists of matrix multiplication of the individ­
ual elements in reverse order. Though the procedure for 
obtaining the generalized beam matrix for any medium 
described by Eq. (7) has been shown above, the only gener­
alized beam matrix derived thus far represents a complex 
lenslike medium. Since the value of Yx and the varia­
tion of klx in Eq. (40) are arbitrary, it is straightforward to 
analyze optical systems that consist only of piecewise con­
tinuous curved complex lenslike media with these differ­
ent properties. In the limit of small Yx, an arbitrarily 
curved complex lenslike medium is a special case of a com­
plex prismlike medium. For arbitrary variations of ko(z) 
and klx(z) Eqs. (27), (35), and (36) are simply integrals, 
since k2x (z) = 0, and the matrix for a complex prismlike 
medium is 

i d ko(O)ko -l(z)dz 

ko(O)ko -l(Z) 

1 (d 1z 

-"2 J 0 klAz) 0 ko(O)ko -l(z')dz'dz 

o 

o 
1 

. (45) 
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Table 1. Generalized Beam Matrices for Nonprofiled Elements 
D 

Optical Medium 

Homogeneous medium 

Aligned mirror 

Aligned boundary 

Retroreflector 

Axial medium 

Axis transformation 

Misaligned ABCD 

Tangential Plane (x) 

[
1 d 0] 
o 1 0 

o 0 1 

[
1 0 0] 
010 

001 

[
1 0 0] 
o kodk02 0 

001 

[-1 0 0] 
o -1 0 

o 0 1 

[

1 ko(O)fodko-l(Z)dZ 0] 
o ko(O)ko -led) 0 

001 

[ta: 0, 

0 

n 1 

-Xo 

[AX B, 

~J CX Dx 

Gx Hx 

Generalized Beam Matrix 

Sagittal Plane (y) 

[
1 d 0] 
010 

001 

[
1 0 0] 
o 1 0 
001 

[
1 0 0] 
o kodk02 0 

001 

[-1 0 0] 
o -1 0 

o 0 1 

[

1 ko(O)fodko-l(Z)dZ 0] 
o ko(O)ko -led) 0 

001 

[ 
1 0 OJ o 1 0 

tan Oy -Yo 1 

[

AY By OJ 
Cy Dy 0 

Gy Hy 1 

Gx = f3o[(Ax - 1)tan Ox - Cx(xo + L sin Ox)] 
Hx = 130[(1 - Dx)xo + Bx tan Ox - DxL sin Ox] 

Gy = f3o[(Ay 1)tan Oy - Cy(yo + L sin Oy)] 
Hy = 130[(1 - Dy)yo + By tan Oy - DyL sin Oy] 

When klxCz) = 0 and ko is constant, Eq. (45) reduces to 
the generalized beam. matrix for a homogeneous medium. 

A. Axis Transformation 
The matrix representations for several nonprofiled opti­
cal elements are well known and are listed in the first 
five rows of Table 1. However, the boundary matrix and 
the axial medium matrix are generalized here so that the 
low nonsaturating gain per wavelength approximation is 
not made.20 Small tilts of an optical element or system 
of elements may be accounted for by the use of a z-axis 
transformation (see, for example, Ref. 6). Thus the pur­
pose of this subsection is to derive the generalized beam 
matrix for two optical elements. The first axis transfor­
mation changes the position and the slope of the optic 
axis. The second beam matrix is for an aligned optical 
system that is tilted with respect to the optic axis. 

The axis transformation matrix represents one of a 
class of thin optical elements. In optical systems in 
which the media at the input and the output are identi­
cal, many of these thin optical elements have the property 
that A = D = 1 and B = O. Therefore, for any such opti­
cal element, the displacement parameter transformation 
[Eq. (44)] reduces to 

Sx2 = Sxl + Gx + Hx Qxl , 
kOl 

(46) 

and the Kogelnik transformation [Eq. (43)] reduces to 

Qx2 = C + Qxl. 
k02 x kOl (47) 

To examine the effects of this transformation on the po­
sition and the slope of a Gaussian beam, we substitute 
Eqs. (22) and (47) into Eq. (46) and separate the result 
into real and imaginary parts. Without loss of general­
ity, it is assumed that the media at the input and the 
output of the system are free space. It then follows from 
Eqs. (20) and (21) that 

d - Qxlidxal - Gxi - HxiQxlrl f30 - HxrQxld f30 
xa2 - , 

r' Qxli + f3 0Cxi . 
(48) 

d' - Qxlrdxpl - Gxr - HxrQxlrl f30 + HxiQxlJ f30 
xp2 - Qxlr + f30Cxr ' (49) 

where, as in Section 2, the rand i subscripts represent 
the real and imaginary parts of the complex quantity, re­
spectively. The phase and amplitude displacements are 
related to the beam slope from Eqs. (23). When the input 
and output media are free space, Eqs. (23) reduce to 

d~a = (dxa - d xp ) Qxr . 
f30 

Combining Eqs. (47)-(50) yields 

(50) 
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d' = (CxrQxli - CxiQxlr )(d - H / f3 ) + d' 
xa2 Qxli + f30Cxi xal xr 0 xal 

+ Gxr - HxiQxld f30 _ (Qxlr + f3o Cxr) 
f30 Qxli + f3 0Cxi 

X Gxi + HxiQxlr/ f30 . (51) 
f30 

This equation, used with Eq. (48), is useful for deter­
mining the effects of a thin element on the position 
and the slope of a Gaussian beam. As an example, the 
Gaussian aperture is considered. For an undisplaced 
aligned Gaussian aperture, Gx = 0, Hx = 0, and Cx = 

-2i/ f3ow ga,x2, where wga,x is the width of the aperture. 
In this case Eqs. (48) and (51) reduce to 

d 
dxal 

xa2 = , 
1 + (wxI/wga,x)2 

(52) 

d' Rxl-l(Wxl/Wga,x)2 d' 
xa2 = - 1 + ( / )2 d xal + xal , Wxl Wga,x 

(53) 

TWt,dABCD,X ~ [ ~ ° 1 

f30 tan Ox - f3o(xo + L sin Ox) 

A. A. Tovar and L. W. Casperson 

Taxis transformation,x = [ ~ 
f30 tan Ox 

° 0J 1 0· 

- f3oxo 1 

(58) 

Since the matrix elements are real, this generalized beam 
matrix may also be derived by use of Eqs. (56) and (57) to­
gether with the generalized ray matrix conversion formu­
las (A13) and (A14) in Appendix A. However, it should 

. ·/be emphasized that the ray matrix techniques may not be 
; used for complex-valued matrices and could not be used, 
for example, to derive Eqs. (52) and (53). 

The axis transformation matrix (58) may be used to ob­
tain the generalized Gaussian beam matrix for a tilted op­
tical system that would otherwise be representable by an 
ordinary complex ABCD matrix. The methodology con­
sists of postmultiplying the ABCD matrix to tilt the optic 
axis and premultiplying the ABCD matrix to transform 
the optic axis back to its original position and slope.6 The 
difference of the position of the axis at the output from 
that at the input is L sin Ox, where L is the length and Ox 
is the tilt angle of the ABCD system. The matrix for an 
aligned system with a global tilt angle of 0 is 

0J [Ax Bx 

~][ -fio ~an ex 
° n ° Cx Dx 1 (59) 

1 ° ° f3oxo 

Bx [ Ax n = f3o[(Ax - l)tan Ox ~"Cx(xo + L sin Ox)] 

Dx (60) 

f3o[Bx tan Ox - DxL sin Ox + (1 - DJxo] 

respectively. Equation (52) was previously derived.25 

From Eqs. (52) and (53) it follows that a calibrated Gauss­
ian aperture may be used to obtain a beam's phase front 
curvature and spot size by merely measuring beam po­
sitions and slopes. 

When Cx = 0, the Gaussian beam's spot size and radius 
of curvature remain unchanged and Eqs. (48) and (51) 
take on simpler forms: 

d 
- d Gxi Hxr Qxlr Hxi xa2 - xal - -- - - - -- --, 

Qxli f30 Qxli f30 
(54) 

d' = d' + Gxr _ Qxlr Gxi _ (1 + QXlr2) QxliHxi . 
xa2 xal f30 Qxli f30 Qxli2 f30 2 

(55) 

If Gx is real and Hx = 0, then the slope is changed while 
the position remains unaltered. This slope change may 
occur because of the presence of an optical element or 
because of a redefinition of the optic axis. Similarly, if 
Hx is real and Gx = 0, then the position is altered while 
the slope remains unchanged. These operations may be 
written as 

d xa2 = d Xal + Xo , 

d~a2 = d~al + tan Ox, 

(56) 

(57) 

where the displacement of the optical element, xo, and the 
slope of the optical element, tan Ox, are strictly real. One 
may combine these two operations into a single matrix, 
using Eqs. (54) and (55) with real Gx and H x , and the 
generalized beam matrix for this optical element is 

This result, along with the axis transformation matrix 
(60), is included in Table 1. The above matrix allows for 
the analysis of paraxially tilted complex optical systems. 
For example, the Gaussian beam matrix for a spherical 
mirror with curvature R has Ax = Dx = 1, Bx = 0, Cx = 

-2/R, and L = 0. From Eq. (60) the generalized beam 
matrix is 

Tsphericalmirror,x = [-2~-l ~ ~lJ' (61) 
2f3oxoR-l 0 

B. Linearly Profiled Optical Elements 
Generalized beam matrix representations for linearly pro­
filed optical elements are found in this subsection. While 
the thin prism and the exponential aperture are opti­
cal elements that are linearly profiled in complex phase, 
complex prismlike media are linearly profiled in complex 
propagation constant. 

The generalized Gaussian beam matrix for the complex 
prismlike medium introduced here is given by Eq. (45). 
The next optical element considered is an aperture that 
has an exponential transmission or reflection profile. 
Since the exponential aperture is a thin optical element, 
the output is just the input multiplied by the exponential 
transmission function. For an exponential of damping 
length Wea,x, tilted at the small angle Ox and offset by the 
distance xo, the output electric field is 

{Eb exp[ -i(QxX2/2 + Qyy2/2 + Sxx + Syy + P)]}out 

= {Eb exp[ -i(QxX2/2 + Qyy2/2 + Sxx + Syy + P)]hn 

X exp[(x - XO)/(wea,x cos Ox)]. (62) 
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The output beam parameter, the displacement parameter, 
and the phase parameter may be found in terms of the 
input conditions by equating terms in Eq. (62): 

Qx2 = Qxi, (63) 

S 2 = Sxi + W cos ()x x ga,x 
(64) 

ixO 
P2 = Pi - W cos () x ga,x 

(65) 

The generalized beam matrix for the exponential aper­
ture for the x direction may now be obtained from 
Eqs. (43) and (44): 

Texponential aperture,x [ ~ 
i/(wea,x cos ()x) 

° 0] 10· 

° 1 

(66) 

By our postulate the exponential aperture varied in only 
the x direction, and thus the generalized beam matrix in 
the y direction is the identity matrix. However, if the 
axis of the aperture were not parallel to the x direction, 
there would be a similar matrix for the y direction. 

As an intermediate step to determining the generalized 
beam matrix for a thin prism, the matrix for a tilted lin­
ear boundary between two homogeneous media is found. 
The accumulated phase of a plane wave after propagating 
a distance z > z', where z, is the position of a boundary 
between two media with propagation constants kOi and 
k02' is 

E~ut = EIn exp( -ikoiz')exp[ -iko2 (z - z')] (67) 

= E[n exp( - iko2z )exp[ - i(koi - k02 )z']. (68) 

Here the boundary position is allowed to vary with 
transverse distance. The boundary under consideration 
is linear in the xz plane and is defined as being displaced 
from the axis by an amount Xo. Thus 

z' = (x - xo)tan ()x, (69) 

where ()x is measured from the x axis (toward the z axis). 
Equation (69) may be combined with Eq. (68), and it fol­
lows that 

{Eb exp[ -i(Qxx 2 /2 + Qyy2/2 + Sxx + Syy + P)]}out 

= {Eb exp[ -i(Qxx 2/2 + Qyy2/2 + Sxx + Syy + P)]hn 

X exp(-ik02z)exp[ -i(koi - k02 )(x - xo)tan ()x]. 

(70) 

When we equate terms as above, the output phase pa­
rameter is 

P2 = Pi - (kOi - k02 )xo tan ()x , (71) 

and the generalized beam matrix in the x direction is 

1 

Tlin'~ bound"y,x ~ [kOl _ k~2)tan Ox 
° 0] kod k02 ° . (72) 

° 1 
The matrix for a simple prism may be obtained by com-
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bining two linear boundaries: 

"[ 1 Tthin prism,x = ° 
(ko - /3air)(tan ()x2 - tan ()xi) 

° 0] 10· 

° 1 (73) 

The thin prism is allowed to have gain or loss (ko = /30 + 
icxo), as are several of the subsequent optical elements 
considered here. Thus an amplifier (or absorber) wedge, 
for example, is included in Eq. (73). 

The final optical element considered in this subsection 
is the tilted (flat) mirror. The tilted mirror has the same 
characteristic as Eq. (57), and thus the generalized beam 
matrix is given by Eq. (58) with Xo = 0. The results of 
this subsection are summarized in the first five rows of 
Table 2. 

C. Quadratically Profiled Optical Elements 
When Sx = 0, the 3 X 3 matrix method reduces to the 
2 X 2 method of Kogelnik. Thus, for elements in which 
Gx = Hx = 0, the Ax, Bx, ex, and Dx elements are the 
same as those of conventional Gaussian beam optics. It 
is the purpose of this subsection to extend the range of 
validity of these conventional optical elements so that 
they may be displaced, misaligned, or curved. 

The generalized beam matrix for a complex lenslike 
medium was derived above and is given in Eq. (40). The 
next optical element considered is an aperture that has a 
Gaussian transmission or reflection profile. For a Gauss­
ian aperture with l/e amplitude width wga,x tilted at an 
angle ()x and offset by length Xo, the output electric field is 

{Eb exp[ -i(Qxx 2/2 + Qyy2/2 + Sxx + Syy + P)]}out 

= {Eb exp[ -i(Qxx2/2 + Qyy2/2 + Sxx + Syy + P)]hn 

Xexp[-(x - xo)2/(wga,x2 cos2 ()J]exp(-y2/Wga,y2). 

(74) 

As in Subsection 3.B, the output beam parameter, the 
displacement parameter, and the phase parameter may 
be found in terms of the input conditions by equating 
terms in Eq. (74): 

Qx2 Qxi - 2 cos
2 

()x 
2 2 wga,x 

(75) 

2xo 
S 2 = Sxi + i W 2 COS2 ()x x ga,x 

(76) 

X0
2 

P2 = Pi - i W x2 COS2 ()x ga,. 
(77) 

Without loss of generality, it may be assumed that the 
medium surrounding the aperture is completely charac­
terized by the relation k(x, y, z) = /3air. Under this con­
dition the generalized beam matrix may be obtained from 
Eqs. (43), (44), (75), and (76): 

TGaussianaperture,x = [-2i/(/3airW~a,x2 cos2 ()J 
2ixo/(wga,x2 cos2 ()J 

° 0] 10· 

° 1 
(78) 

There is a similar matrix governing the y distribution of 
the fields. 
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Table 2. Generalized Beam Matrices for Profiled Elements Misaligned in the x Direction 

Generalized Beam Matrix 

Optical Medium Tangential Plane (x) Sagittal Plane (y) 

Prismlike 
medium 

fo d ko(O)ko -l(z)dz 

ko(O)ko -l(d) 

-t fod k1x(Z) foz ko(0)ko.- 1(z')dz'dz 

Tilted mirror 

Tilted boundary 

Thin prism 

Exponential 
aperture 

Lo l Ox ~ ~J 
[(hOl - k~')Um Ox 

[(hO - (J'i,)(tan~ q,x2 

o 
k01/k02 

o 

tan <Px1) 

o OJ 1 0 
o 1 

Lenslike medium 

Yx -1 sin(Yxd) 

cos(Yx d ) 
[ 

cos(yyd) +yy -1 sin(yyd) O~J 
-yy sin(yyd) cos(yyd) 

-t Yx -1 fod k1Az)sin(Yx z )dz o 0 

[ 
1 0 OJ 

-2Rx -1 cos ex 1 0 

2f3oxoRx -1 cos ex 0 1 

Spherical mirror 

(1 - kOl/k02)Rx -1 cos ex 
Spherical 

boundary [ 1 

(kOl - k02)(tan ex + xoRx -1 cos ex) 

Thin lens 

Gaussian 
aperture 

[ 1 -factive,x -1 cos ex 

- f3air xofactive,x -1 cos ex 

[ -2i/({J'i,w~a,x' cos' Ox) 

2ixo/(wga,x2 cos2 ex) 

Just as in the linear case, Eq. (68) may be used to obtain 
the matrix representation of spatially nonlinear bound­
aries between complex media. In particular, the bound­
ary of interest here is initially assumed to be spherical, 
so that 

(79) 

This equation may be rewritten as 

[ ( 

2 2 )1/2J Z' = -R 1 - 1 - x ;2Y . (80) 

Typically the extent of the beam is much smaller than 
the spherical radius of the boundary, and Eq. (80) can be 
written approximately as 

x2 y2 
z'=------, 

2Rx 2Ry 
(81) 

0 

1 

0 

0 

1 

0 

0 

kOl/k02 ~J 0 

n 
~J [ 

1 0 0] 
-2i/ f3airWga,i 1 0 

o 0 1 

where the boundary is also allowed to be approximately 
paraboloidal. In writing Eq. (79), we have assumed that 
the boundary was aligned perpendicular to the axis. 
More generally, it may be assumed that the boundary 
is rotated in the xz plane and translated with respect 
to x. In this case an alternative coordinate system is 
of interest: 

[

Z') [1 0 0 0 1 [ cos Ox sin Ox 0 0 1 [ZII) x' 0 1 0 Xo -sin Ox cos Ox 0 0 x" 
= ' 

y' 0 0 1 0 0 0 1 0 y" 
1 0001 0 0011 

(82) 

[

ZII) [ cos OX 
x" = +sin Ox 

y" 0 
1 0 

-sin Ox 

cos Ox 

o 
o 
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In this coordinate system the boundary is aligned, and 
thus 

X,,2 y,,2 
z" = --- - -_. 

2Rx 2Ry 
(84) 

Combining Eqs. (81), (83), and (84) results in 

X2 ( z' ~ - 2Rx cos Ox + tan Ox + Xo ~: Ox )x 

Y X02 cos ()x 2 ( 
2Ry cos Ox - 2Rx + Xo tan Ox), (85) 

where the approximation 

/(X - ~Sin Ox/« 1 (86) 

has been used to avoid twisting of the beam and higher­
order aberrations. Now Eq. (85) may be combined with 
Eq. (68), and after some algebra it follows that 

Tspherical boundary,x 

[ 

1 
= (1 - kOl/ko2)Rx -1 cos ()x 

(kOl - k02 )(tan ()x + xoRx -1 cos ()x) 

Tspherical boundary,y 

o 
kodk o2 

o ~l 
(87) 

[ 
1 0 OJ = (1 - kodko2)(Ry cos ()x)-1 kOl/ko2 0 , (88) 

o 0 1 

2 cos ()x 
P2 = PI - Xo 2Rx - Xo tan ()x . (89) 

The beam matrices for a thin lens may be derived by 
combining two spherical boundary matrices in the usual 
way, and it follows that 

Tthin lens,x = [ -factive,x ~1 cos ()x 

- {30XOfactive,x -1 cos ()x 

o 0] 10, 

o 1 
(90) 

[

10 
Tthinlens,y = -(factive,x cos ()x)-1 1 

o 0 n (91) 

where 

factive,x == (1 - (3air -lko,lens)(Rx1 - 1 - Rx2 -1). (92) 

The quantity kO,lens = 27Tno,lensA -1 + ialens is the complex 
propagation constant of the lens material, and it may be 
noted that factive,x is therefore complex. When the lens is 
made of a lossless dielectric or when the low gain (or loss) 
per wavelength approximation is made, factive,x becomes 
the usual focal length fx. The results of this subsection 
are summarized in the last five rows of Table 2. 
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4. DISCUSSION 

With the results from Section 3, one may propagate a 
Gaussian beam's spot size, phase front curvature, posi­
tion, and slope through an optical system in which the ele­
ments may be misaligned and nonlossless. The general 
procedure is begun by finding the input beam parameters 
Qx and Qy from Eq. (19) and the input displacement pa­
rameters Sx and Sy from Eq. (24). However, in the usual 
case, the beam is input in a homogeneous medium such 
as free space, and the much simpler Eq. (25) may be used 
instead of Eq. (24). The system matrix may be obtained 
by multiplying the matrix representation for each of the 
optical elements in the reverse of the order in which they 
are encountered by the beam. These matrix representa­
tions are given in Tables 1 and 2. Once the system ma­
trix and the input beam parameters have been obtained, 
the output beam parameters may be found from the 
Kogelnik transformation [Eq. (43)J. Similarly, the out­
put displacement parameters may be obtained from 
Eq. (44). From the output beam parameters the out­
put spot size and phase curvature may be found from 
Eq. (19). Finally, the beam's output position and slope 
may be obtained from Eq. (25). 

The above procedure may be made more transparent 
for those familiar with Gaussian beam matrix theory if 
the following analogies are noted: 

Qx ~Sx 

Qx = R{3o - i ~ ~ Sx = -Qxdxa + {3od~a 
x Wx 

Qx2 = Cx + DxQxdko1 ~ S 2 = Sxl 
k02 Ax + BxQxl/kol x Ax + BxQxl/kol 

+ Gx + HxQxl/kol 
Ax + BxQxdko1 

Thin lens ~ Thin prism 

Gaussian aperture ~ Exponential aperture 

Spherical mirror ~ Tilted flat mirror 

Complex lenslike medium ~ Complex prismlike medium 

There is no analytical matrix representation for a complex 
lenslike medium that is arbitrarily tapered and curved. 
However, it is possible to obtain the matrix representation 
for complex lenslike media with several specific tapering 
~rrd curvature functions. To obtain the matrix represen­
tation for such an optical element, one must first find 
ihe complete complex propagation constant. In general, 
the curvature of the gain axes [Eqs. (10) and (ll)J may 

':be different from the curvature of the index-of-refraction 
'axes [Eqs. (8) and (9)J. In any case, Eq. (7) is useful for 
obtaining the propagation constant. Once the propaga­
tion constant is known, differential equations (27) and 
(28) must be solved. If exact analytic solutions26,27 are 
not readily obtained, WKB approximation techniques,26 
solution-generating methods,27 series expansions, piece­
wise approximation techniques,28 propagation constant 
approximations,28 or numerical methods29 may be used. 
The solutions to Eq. (27) must be put into the form of 
Eq. (29) to yield Ax, A y, Bx, and By. The elements Cx, 
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Cy, Dx , and Dy may then be obtained from the relation­
ships C = dA/dz, D = dB/dz. The remaining elements, 
Gx , Gy , H x , and Hy , are obtained from the integrals in 
Eqs. (35) and (36). 

The matrices in Tables 1 and 2 are also generalized 
from previous similar tables of beam matrices in that 
the possibility of media with high nonsaturating gain per 
wavelength is included. Thus the complex propagation 
constant ko (ko = 21Tn/ A + iao) is employed instead of 
the more commonly used index of refraction n. 

As an example of the formalism, the transmission char­
acteristics of an exponential aperture having the matrix 
shown in Table 2 are examined. Because of the simplic­
ity of the matrix, Eqs. (19) and (25) may be combined into 
Eqs. (54) and (55), which immediately reduce to 

W x 1
2 

d xa2 = d Xa1 + --, 
2wea,x 

, _ , W x 1
2 

d xa2 - d Xa1 + 2R xlWea,x 

(93) 

(94) 

where wea,x is the damping width of the exponential 
aperture. A beam's spot size and phase curvature are 
unaffected by the aperture. Just as for the Gaussian 
aperture, one may use the exponential aperture for beam 
diagnostics by measuring only beam positions and slopes. 

5. CONCLUSION 
All Gaussian beam optical systems are, to some extent, 
nonlossless. Similarly, tilts and misalignments within 
the system are inevitable. Furthermore, in modern op­
tical systems design these effects are often not accidental 
but are introduced for system enhancement. For ex­
ample, high diffraction loss (unstable) resonators use 
transverse losses to achieve high power in a single highly 
stable mode, and prism pairs are used for chirp compensa­
tion. It is therefore useful to have a systematic method­
ology to analyze these systems. 

A novel transfer-matrix formalism has been developed 
from first principles to propagate Gaussian beams of light 
in misaligned, nonlossless optical systems. The optical 
systems are represented by complex 3 X 3 generalized 
Gaussian beam matrices, and matrices have been devel­
oped for several optical elements. Analogies have been 
used for nomenclature and have suggested new optical el­
ements such as the exponential variable-reflectivity mir­
ror and the complex prismlike medium. 

APPENDIX A: REDUCTION TO RAY 
MATRICES IN LOSSLESS OPTICAL SYSTEMS 

The purpose of this appendix is to explore the relationship 
between generalized beam matrices and generalized ray 
matrices for fundamental Gaussian beam propagation. 

The Kogelnik transformation and the displacement 
transformation may be written as 

Qx2 = Cx + DxQxdko1 
k02 - Ax + BxQxl/kOl 

Sx2 = Sxl + Gx + HxQxdko1 , 
Ax + BxQxdkOl Ax + BxQxl/kOl' 

(AI) 

(A2) 

where, in general, the matrix elements are complex. 
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However, in the paraxial ray matrix theory the matrix 
elements are real, and this restriction will be used here. 
Furthermore, the medium surrounding the optical system 
will be assumed to be lossless and homogeneous. Thus 
Eqs. (AI) and (A2) reduce to 

Qx2 (Cx + DxQxlr/ f3o) + i(DxQxlJ f3o) 
f30 (Ax + BxQxlr/ f3o) + i(BxQxlJ f3o) 

(A3) 

S = (Sxlr + Gx + HxQxlr/ f3o) + i(Sxli + HxQxld f3o) , 
", 2x (Ax + BxQxlr/ f3o) + i(BxQxld f3o) 

(A4) 

iwhere each of the quantities in parentheses is real. If 
'we take the real and imaginary parts of these equations 
and use the relations 

Sx2i d xa2 = ---, 
Qx2i 

d 
Sx2r 

2 = ---, 
xp Qx2r 

d~a2 = ~:2 (dxa2 - d xp2 ) , 

it follows after some algebra that 

d 
' BxGx - AxHx 

d xa2 = Ax xal + Bxdxal + f30 

(A5) 

(A6) 

(A7) 

(A8) 

Taking a z derivative of this equation and making use of 
the definitions of Gx [Eq. (35)] and Hx [Eq. (36)], we can 
see that 

d ' C d D d' DxGx - CxHx (A ) 
xa2 = x xal + x xal + f30 9 

These equations may be put into ray matrix form as 

where 

Ex = (BxGx - AxHx)/ f30 , 

Fx = (DxGx - CxHx)/ f30 . 

(AlO) 

(All) 

(A12) 

Equation (AlO) is a conventional generalized ray ma­
trix. Thus the relationship between the ray formalism 
and the generalized beam matrix formalism is identi­
fied in Eqs. (All) and (A12). For purposes of reference, 
Eqs. (All) and (A12) may be inverted as 

Gx = f3o(AxFx - CxEJ, 

Hx = f3o(Bx Fx - DxEx) , 

(A13) 

(A14) 

where the unimodularity condition has been assumed. 
If the matrix element definitions [Eqs. (35) and (36)] 

are used along with the definition of the displacement of 
the refraction index axis [Eq. (8)], then the ray matrix 
elements [Eqs. (All) and (A12)] for a curved reallenslike 
medium are 

Ex = Yx Jo
z 

d,ax(z)sin[yx(z - z')]dz', (A15) 

(A16) 
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where 

( )

1/2 

Yx == ~: (A17) 

This special case result [Eqs. (A15)-(A17)] is in agree­
ment with that of Hardy.5 
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