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Ecosystem Health and Ecological Engineering 
 

Robert COSTANZA, Ph.D. 

University Professor of Sustainability and Director, Institute for Sustainable Solutions (ISS),  

Portland State University, Portland, OR  97201 
 

 

Abstract 

Ecosystem health is a desired endpoint of environmental management and should be a 

primary design goal for ecological engineering.  This paper describes ecosystem health as a 

comprehensive, multiscale, measure of system vigor, organization and resilience. Ecosystem 

health is thus closely linked to the idea of sustainability, which implies the ability of the 

system to maintain its structure (organization) and function (vigor) over time in the face of 

external stress (resilience). To be truly successful, ecological engineering should pursue the 

broader goal of designing healthy ecosystems, which may be novel assemblages of species 

that perform desired functions and produce a range of valuable ecosystem services.  It this 

way Ecological Engineering can achieve its goals, embedded in its definition as the “design 

of sustainable ecosystems that integrate human society with its natural environment for the 

benefit of both.” It allows the benefits of Ecological Engineering practices „to both humans 

and the rest of nature‟ to be assessed in an integrated and consistent way that will allow us to 

build a sustainable and desirable future. 

 

 

Ecosystem Health 
 A basic question in ecosystem management is: “management for what goal?”  or 

“what do we mean by a healthy ecosystem?” The default endpoint has often been restoration 

to a past state in which there was presumably little or no human influence on the ecosystem.  

For example, the National Research Council‟s (1992) definition of restoration as “returning a 

system to a close approximation of its condition prior to disturbance, with both the structure 

and function of the system recreated” implies that the state “before disturbance” is the 

preferred state.  This default definition of ecosystem health (while appealing due to its 

apparent conceptual simplicity) has proven to be both unrealistic and unworkable (Rapport 

1989a, b, Costanza et al. 1992, Rapport et al. 1998a,b). 

 Humans have been important components of ecosystems for millennia, and they (like 

any large and abundant omnivore) have always radically altered the systems of which they 

have been components (Flannery 1994). For example, the original Australian aborigines 

caused the extinction of many species of megaherbivores and replaced (in many areas) what 

was originally a high diversity closed woodland ecosystem which did not burn and where 

most nutrient cycling was through herbivores, with a lower diversity open woodland 

ecosystem which cycled nutrients through almost annual fires, which were set and controlled 

by the aboriginal humans (Flannery 1994).  What is the “natural” or “pre-disturbance” system 

to serve as the restoration endpoint in this case? The pre-aboriginal closed woodland or the 

post-aboriginal open, fire-adapted woodland, which existed for 10,000 years, or some other 

state?  This question is not answerable from a purely “objective” point of view, and must also 

include consideration of social goals (Costanza et al 1992).  

 Societal goals for ecosystem management have come to focus on the concepts of 

health, ecosystem services, and sustainability (Lubchenco et al 1991).  How do we harvest 
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from, and otherwise utilize ecosystems, while maintaining their health and integrity and the 

array of non-use services that they also provide (Costanza et al. 1997) into the indefinite 

future?  This does not mean that all ecosystems should (or could) have high levels of direct 

human interaction.  A sustainable system at the landscape and larger scales will most likely 

involve a range of human interactions from very intense agro and urban systems to highly 

protected areas.  Determining the optimal structure of this mix is one of the most important 

ongoing research problems facing us today. 

 Social goals for sustainable ecosystem management are thus centered on maintaining 

the “ecological health” of the system. Ecosystem Health is a new approach to environmental 

management (Costanza et al, 1992). The concept of health implies "well-functioning" and 

clearly the well-functioning of the Earth's ecosystems is a major concern and a major societal 

goal (Belsky, 1995). The goal of finding the means to protect the health and integrity of the 

Earth's ecosystems was one of the major principles to emerge from the United Nation 

Conference on Economic Development and Environment (United Nations, 1992). A healthy 

ecosystem may be defined in terms of three main features: vigor, resilience, and organization 

(Costanza 1992, Mageau et al, 1995). In terms of benefits to the human community, a healthy 

ecosystem is one that provides the ecosystem services supportive of the human community, 

such as food, fiber, the capacity for assimilating and recycling wastes, potable water, clean 

air, and so on. 
 

 While the concept of health applied to the level of ecosystems and landscapes is of 

relatively recent origin (Rapport et al. 1981, 1989, 1998a,b) it has become a guiding 

framework in many areas, particularly in the evaluation of the large-marine ecosystems 

(Sherman, 1995), agroecosystems (Gallopin, 1995, Wichert and Rapport 1998), desert 

ecosystems (Whitford, 1995) and others (Rapport 1989 a,b). 

 To appreciate the ecosystem health concept, one must begin by acknowledging that 

humans are a major component organism in many (if not most) ecosystems today – although 

the degree of human interaction varies widely. The human part of the ecosystem includes the 

humans themselves, their artifacts and manufactured goods (economies), and their institutions 

and cultures.  It is both this larger ecosystem (including humans) whose health we need to 

assess and the smaller scale subsystems of which it is composed.   

 Based on a survey of health concepts in many fields, Costanza (1992) developed the 

following three general categories of performance that are usually associated with "well-

functioning" in any complex living system at any scale (Figure 1):   
 

1. The vigor of a system is a measure of its activity, metabolism or primary productivity.  

Examples include metabolic rate in organisms, gross and net primary productivity in 

ecological systems, and gross national product in economic systems. 

2. The organization of a system refers to the number and diversity of interactions between 

the components of the system.  Measures of organization are affected by the diversity of 

species, and also by the number of pathways and patterns of material and information 

exchange between the components.  

3. The resilience of a system refers to its ability to maintain its structure and pattern of 

behavior in the presence of stress (Holling 1973).  A healthy system is one that possess 

adequate resilience to survive various small scale perturbations.   The concept of system 

resilience has two main components: 1.  the length of time it takes a system to recover 

from stress (Pimm 1982); and 2. the magnitude of stress from which the system can 

recover, or the system‟s specific thresholds for absorbing various stresses (Holling 1973) 

Figure 1 shows these two components combined into an overall definition of resilience as 

the ratio of the maximum stress the system can withstand without flipping to a new state 

(MS) divided by the return time. 
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Ecosystem health has thus been defined as (Costanza et al 1992): 

 

An ecological system is healthy and free from "distress syndrome" if it is stable and 

sustainable, ie. if it is active and maintains it organization and autonomy over time, 

and is resilient to stress 

 

 This definition is applicable to all complex systems from cells to ecosystems to 

economic systems (i.e. it is comprehensive and multiscale) and allows for the fact that 

systems may be growing and developing as a result of both natural and cultural influences. 

 

One possible overall system health index (H) based on these ideas has also been proposed 

(Costanza 1992 – Figure 2): 

  

H = V*O*R 

 

where: H = system health index, also a measure of sustainability 

 V = system vigor, a cardinal measure of system activity, metabolism, 

or primary productivity 

 O = system organization index, a 0 - 1 index of the relative degree of 

organization of the system, including its diversity and 

connectivity 

 R = system resilience index, a 0 - 1 index of the relative degree of 

resilience of the system 

 

 This formulation allows a comprehensive index incorporating the three major 

components outlined above.  In essence, it is the system vigor or activity weighted by indices 

for relative organization and resilience.  In this context, eutrophication is unhealthy in that it 

usually represents an increase in metabolism that is more than outweighed by a decrease in 

organization and resilience.  Artificially eutrophic systems tend toward lower species 

diversity, shorter food chains, and lower resilience.  Naturally eutrophic systems have 

developed higher diversity and organization along with higher metabolism and are therefore 

healthier. 

 Figure 2 shows these three system characteristics arrayed as a three-dimensional 

graph, with the planes associated with the absence of any one component labeled.  For 

example, systems with vigor and resilience but low organization would approach the 

“Eutropic plane” as described above.  Systems with low resilience would approach the 

“brittle plane” – they may be very organized and productive, but subject to collapse due to 

their lack of resilience.  A fire-climax forest that has been allowed to grow too dense due to 

fire suppression is one example.  Finally, systems with low vigor may be organized and 

resilient, but are close to the “crystallized plane” – approaching an abiotic system with little 

“life” involved. 

 A healthy living system in this framework is one that balances all three characteristics. 

A healthy system must also be defined in light of both its context (the larger system of 

which it is a part) and its components (the smaller subsystems that make it up – see below).  

Ecosystem health can and must be assessed for systems that both include and exclude 

humans.  

Ecosystem health as a design and management goal can be contrasted with the more 
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typical goal of ecological restoration - a return to some prior state of the system with lower 

human impact.  As we have discussed, the „prior state‟ goal is arbitrary and unrealistic, since 

humans have been an integral part of ecosystems for eons and the concept automatically 

precludes the possibility of a healthy ecosystem that includes humans.  It also does not 

necessarily lead to ecosystems that produce the range of goods and services valuable to 

humans. 

 

Defining Sustainability 
 There has been a huge amount of discussion in the literature over the years about how 

one “defines” sustainability, sustainable development, and related concepts (cf. Pezzey 1989; 

World Commission on Environment and Development 1987; Costanza 1991).  Many argue 

that the concept is useless because it cannot be “adequately defined.”  Most of this discussion 

is misdirected because it: (1) attempts to cast the problem as definitional, when in fact it is a 

problem of prediction, and (2) fails to take into account the many time and space scales over 

which the concept must apply (Costanza and Patten 1995).   

 Defining sustainability is actually quite easy: a sustainable system is one which 

survives for some specified (non-infinite) time.  The problem is that one only knows one has 

a sustainable system after the fact.  Thus, what usually pass for definitions of sustainability 

are actually predictions of what set of conditions will actually lead to a sustainable system.  

For example, keeping harvest rates below rates of natural renewal should, one could argue, 

lead to a sustainable natural resource extraction system - but that is a prediction, not a 

definition.  We only know if the system actually is sustainable after we have had the time to 

observe whether the prediction holds.  Usually there is so much uncertainty in our ability to 

estimate natural rates of renewal and our ability to observe and regulate harvest rates that a 

simple prediction such as this is, as Ludwig et. al. (1993) correctly observe, always highly  

suspect.  

 Likewise, sustainable economic development can only be observed after the fact.  

Most “definitions” of sustainable development, encompassing elements of: (1) a sustainable 

scale of the economy relative to its ecological life support system; (2) a fair distribution of 

resources and opportunities between present and future generations, as well as between 

agents in the current generation, and (3) an efficient allocation of resources that adequately 

accounts for natural capital, are thus really “predictors” of sustainability and not really 

elements of a definition. Like all predictions, they are uncertain and are subject to much 

discussion and disagreement. 

 The second problem is that when one says a system has achieved sustainability, one 

does not mean an infinite lifespan, but rather a lifespan that is consistent with its time and 

space scale.  Figure 3 indicates this relationship by plotting a hypothetical curve of system 

life expectancy on the y axis vs. time and space scale on the x axis.  We expect a cell in an 

organism to have a relatively short life span, the organism to have a longer life span, the 

species to have an even longer life span, and the planet to have a longer life span.  But no 

system (even the universe itself in the extreme case) is expected to have an infinite lifespan.  

A sustainable system in this context is thus one that attains its full expected life span in the 

context of the systems it is related to in scale. 

 



 5 

Natural Capital and Ecosystem Services 
 “Ecosystem services” (ES) are the ecological characteristics, functions, or processes 

that directly or indirectly contribute to human well-being – the benefits people derive from 

functioning ecosystems (Costanza et al. 1997a, MEA 2005). Ecosystem processes and 

functions may contribute to ecosystem services but they are not synonymous.  Ecosystem 

processes and functions describe biophysical relationships and exist regardless of whether or 

not humans benefit (Boyd and Banzhaf 2007, Granek et al. 2010).  Ecosystem services, on 

the other hand, only exist if they contribute to human well-being and cannot be defined 

independently.     

The ecosystems that provide the services are sometimes referred to as “natural 

capital,” using the general definition of capital as a stock that yields a flow of services over 

time (Costanza and Daly 1992).  In order for these benefits to be realized, natural capital 

(which does not require human activity to build or maintain) must be combined with other 

forms of capital that do require human agency to build and maintain. These include: (1) built 

or manufactured capital; (2) human capital; and (3) social or cultural capital (Costanza et al. 

1997b).   

These four general types of capital are all required in complex combinations to 

produce any and all human benefits. Ecosystem services thus refer to the relative 

contribution of natural capital to the production of various human benefits, in 

combination with the three other forms of capital. These benefits can involve the use, non-

use, option to use, or mere appreciation of the existence of natural capital. 

The following categorization of ecosystem services has been used by the Millennium 

Ecosystem Assessment (MEA 2005):  
a) Provisioning services – ecosystem services that combine with built, human, and social 

capital to produce food, timber, fiber, or other “provisioning” benefits. For example, fish 

delivered to people as food require fishing boats (built capital), fisher-folk (human 

capital), and fishing communities (social capital) to produce. 

b) Regulating services - services that regulate different aspects of the integrated system.  

These are services that combine with the other three capitals to produce flood control, 

storm protection, water regulation, human disease regulation, water purification, air 

quality maintenance, pollination, pest control, and climate control. For example, storm 

protection by coastal wetlands requires built infrastructure, people, and communities to be 

protected. These services are generally not marketed but have clear value to society.  

c) Cultural services – ecosystem services that combine with built, human, and social capital 

to produce recreation, aesthetic, scientific, cultural identity, sense of place, or other 

“cultural” benefits.  For example, to produce a recreational benefit requires a beautiful 

natural asset (a lake), in combination with built infrastructure (a road, trail, dock, etc.), 

human capital (people able to appreciate the lake experience), and social capital (family, 

friends and institutions that make the lake accessible and safe). Even “existence” and 

other “non-use” values” require people (human capital) and their cultures (social and built 

capital) to appreciate. 

d) Supporting “services” - services that maintain basic ecosystem processes and functions 

such as soil formation, primary productivity, biogeochemistry, and provisioning of 

habitat. These services affect human well-being indirectly by maintaining processes 

necessary for provisioning, regulating, and cultural services. They also refer to the 

ecosystem services that have not yet, or may never be intentionally combined with built, 

human, and social capital to produce human benefits but that support or underlie these 

benefits and may sometimes be used as proxies for benefits when the benefits cannot be 

easily measured directly.  For example, net primary production (NPP) is an ecosystem 

function that supports carbon sequestration and removal from the atmosphere, which 
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combines with built, human, and social capital to provide the benefit of climate 

regulation.  Some would argue that these “supporting” services should rightly be defined 

as ecosystem “functions”, since they may not yet have interacted with the other three 

forms of capital to create benefits.  We agree with this in principle, but recognize that 

supporting services/functions may sometimes be used as proxies for services in the other 

categories. 

This categorization suggests a very broad definition of services, limited only by the 

requirement of a contribution to human well-being. Even without any subsequent valuation, 

explicitly listing the services derived from an ecosystem can help ensure appropriate 

recognition of the full range of potential impacts of a given policy option.  This can help 

make the analysis of ecological systems more transparent and can help inform decision 

makers of the relative merits of different options before them.   

Scientists and economists have discussed the general concepts behind natural capital, 

ecosystem services, and their value for decades, with some early work as far back as the 

1920‟s. However, the first explicit mention of the term “ecosystem services” was in Ehrlich 

and Mooney (1983). More than 2,400 papers have been published on the topic of ecosystem 

services since then
1
.  The first mention of the term “natural capital” was in Costanza and 

Daly (1992)   

 One of the first studies to estimate the value of ecosystem services globally was 

published in Nature entitled „The value of the world‟s ecosystem services and natural 

capital.‟ (Costanza et al., 1997a). This paper estimated the value of 17 ecosystem services for 

16 biomes to be in the range of US$16–54 trillion per year, with an average of US$33 trillion 

per year, a figure larger than annual GDP at the time.
2
 

In this study, estimates of global ecosystem services were derived from a synthesis of 

previous studies that utilized a wide variety of techniques to value specific ecosystem 

services in specific biomes
3.

  This technique, called “benefit transfer” uses studies that have 

been done at other locations or in different contexts, but can be applied with some 

modification.  Such a methodology, although useful as an initial estimate, is just a first cut 

and much progress has been made since then (cf. Boumans et al. 2002, USEPA Science 

Advisory Board, 2009) 

More recently the concept of ecosystem services gained attention with a broader 

academic audience and the public when the Millennium Ecosystem Assessment (MEA) was 

published (MEA 2005).  The MEA was a 4-year, 1,300 scientist study commissioned by the 

United Nations in 2005.  The report analyzed the state of the world‟s ecosystems and 

provided recommendations for policymakers.  It determined that human actions have 

depleted the world‟s natural capital to the point that the ability of a majority of the globe‟s 

ecosystems to sustain future generations can no longer be taken for granted.   

 In 2008, a second international study was published on The Economics of Ecosystems 

and Biodiversity (TEEB), hosted by United Nations Environment Programme (UNEP).  

TEEB‟s primary purpose was to draw attention to the global economic benefits of 

biodiversity, to highlight the growing costs of biodiversity loss and ecosystem degradation, 

and to draw together expertise from the fields of science, economics, and policy to enable 

                                                 
1 According to a search of the Institute for Scientific Information “web of science” database, accessed 

Feb 22, 2011.  This database includes only a subset of scientific journals and no books, so it 

represents only a subset of the literature on this topic. 

2 Some have argued that global society would not be able to pay more than their annual income for 

these services, so a value larger than global GDP does not make sense.  However, not all benefits 

are picked up in GDP and many ecosystem services are non-marketed, so GDP does not represent a 

limit on real benefits (Costanza et al. 1998).  

3 See Costanza (1998) for a collection of commentaries and critiques of the methodology. 
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practical actions moving forward.  The TEEB report was picked up extensively by the mass 

media, bringing ecosystem services to a broad audience. 

Natural capital and ecosystem services are key concepts that are changing the way we 

view, value, and manage the natural environment.  They are changing the framing of the issue 

away from “jobs vs. the environment” to a more balanced assessment of all the assets that 

contribute to human well-being.  Significant transdisciplinary research has been done in 

recent years on ecosystem services, but there is still much more to do and this will be an 

active and vibrant research area for the coming years, because better understanding of 

ecosystem services is critical for creating a sustainable and desirable future. Placing credible 

values on the full suite of ecosystem services is key to improving their sustainable 

management. Hundreds of projects and groups are currently working toward better 

understanding, modeling, valuation, and management of ecosystem services and natural 

capital. The new Ecosystem Services Partnership (ESP - http://www.es-partnership.org/) is a 

global network that helps to coordinate these activities and build consensus.   

 

Engineering Healthy Ecosystems 
Ecological engineering has been defined as “the design of sustainable ecosystems that 

integrate human society with its natural environment for the benefit of both”
(Mitsch and 

Jorgensen, 1989). Based on the foregoing discussion, a version of this definition might read: 

“The design of healthy ecosystems, which may be novel assemblages of species that perform 

desired functions and produce a range of valuable ecosystem services.”  

What does this mean in practice?  It represents a significant change in the usual goals 

of ecological restoration, for example, away from “restoration to some prior state untouched 

by humans” to “restoration to a new, possibly unique, state that is healthy in a broader sense 

of having an optimal balance of vigor, organization and resilience, and that may include a 

broad range of human interactions”.  There is growing recognition that many current 

ecosystems are “novel” and require novel approaches to their management (Seastedt et al. 

2008) 

This certainly opens up a range of research questions in the combined fields of 

ecosystem health, ecosystem services, and ecological engineering.  Some potential research 

areas include: 

1. Development of several alternative operational indicators of the three major components 

of ecosystem health – vigor, organization, and resilience (VO&R) – preferably ones that 

can be sensed remotely and/or mapped spatially (Mageau et al. 1995, 1998) 

2. Development of better tools and models for measuring, valuing  and mapping ecosystem 

services of value to human society (Costanza et. al. 1997). 

3. Testing the hypothesis that a healthy ecosystem in terms of its VO&R is one which also 

produces high levels of ecosystem services using (1) statistical analysis of sites for which 

we have measured both VO&R and ecosystem services and (2) integrated landscape 

simulation models at several scales which include both indicators of VO&R and 

ecosystem services 

4. Development of measures of system sustainability based on relative longevity (Costanza 

and Patten 1995). 

5. Testing the hypothesis that a healthy ecosystem in terms of its VO&R is one which is 

more sustainable.  Since sustainability is inherently a temporal measure that implies 

longevity three complementary approaches may be necessary: long-term historical 

analysis, integrated landscape simulation models (that are capable of exhibiting 



 8 

unsustainable behavior), and mesocosm experiments.  While all of these approaches have 

limitations in testing the ecosystem health - sustainability hypothesis, taken together they 

provide a powerful suite of tests. 

 


 

Conclusions 
• Ecosystem health, as described here, can serve as a design goal for ecological engineering 

at multiple scales.  This approach is comprehensive and multi-scale and can motivate the 

protection, restoration and design of ecosystems that contribute to human well-being in a 

sustainable way.  

• Healthy ecosystems provide a range of sustainable ecosystem services.  A focus on the 

protection, restoration, and design of healthy ecosystems will help provide the ecosystem 

services that underlie all human well-being. 

• We have to design a new socio-ecological system to create a sustainable and desirable 

future. Our current socio-ecological regime and its set of interconnected worldviews, 

institutions, and technologies all support the goal of unlimited growth of material 

production and consumption as a proxy for quality of life. However, abundant evidence 

shows that, beyond a certain threshold, further material growth no longer significantly 

contributes to improvement in quality of life. Not only does further material growth not 

meet humanity‟s central goal, there is mounting evidence that it creates significant 

roadblocks to sustainability through increasing resource constraints (i.e., peak oil, water 

limitations) and sink constraints (i.e., climate disruption). Overcoming these roadblocks 

and creating a sustainable and desirable future will require an integrated, systems level 

redesign of our socio-ecological regime focused explicitly and directly on the goal of 

sustainable quality of life rather than the proxy of unlimited material growth (Beddoe et 

al. 2009). This transition, like all cultural transitions, will occur through an evolutionary 

process, but one that we, to a certain extent, can control and direct.  We cannot predict the 

future, but we can design and create a more sustainable and desirable future.  Ecological 

engineering based on the concepts of ecosystem health, ecosystem services and 

sustainability can and must play a significant role in that evolution. 
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Figure 1. The two components of resilience (return time - RT, and 
Maximum Stress - MS, and how they can be integrated into a single 
quantitative measure(from Mageau, M., R. Costanza, and R. E. 
Ulanowicz. 1995)

Figure(s)



Figure 2. Hypothetical relationship between vigor, organization, and resilience (from 

Costanza 1992)



Figure 3. Hypothetical relationship between sustainability (as longevity) 

and scale  (from Costanza, R. and B. C. Patten. 1995)
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