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QUASIOPTIMALITY OF SOME SPECTRAL MIXED METHODS

JAYADEEP GOPALAKRISHNAN AND LESZEK F. DEMKOWICZ

Abstract. In this paper we construct a sequence of projectors into certain polyno-
mial spaces satisfying a commuting diagram property with norm bounds independent
of the polynomial degree. Using the projectors we obtain quasioptimality of some spec-
tral mixed methods, including the Raviart-Thomas method and mixed formulations of
Maxwell equations. We also prove some discrete Friedrichs type inequalities involving
curl.

1. Introduction

In this paper we show how one can use properties of certain regular right inverses of
grad, curl , and div given by the classical Poincaré lemma in proving quasioptimality of
some spectral mixed methods. We introduce the right inverses, establish their properties
by elementary arguments, and discuss applications to the mixed methods.

For a large class of Galerkin methods, quasioptimality is immediate. Often the solution
of a boundary value problem lies in a real Hilbert space V , its approximation un defined
by a numerical method lies in a closed subspace Vn ⊂ V , and both are characterized by

a(u, v) = F (v), a(un, vn) = F (vn),

for all v ∈ V and all vn ∈ Vn. When a(·, ·) is a symmetric, coercive and continuous
bilinear form on V and F (·) is a continuous functional on V , the approximation un is a
projection of u in a norm equivalent to the norm on V (which we denote by ‖ · ‖V ), so
there exists a constant C independent of Vn such that

‖u− un‖V ≤ C inf
vn∈Vn

‖u− vn‖V ,

i.e., the method is quasioptimal. Thus, the error analysis of the method immediately
reduces to a question in approximation theory.

However, such a reduction is usually not so immediate for mixed systems. The
Babuška-Brezzi theory of mixed systems provides two conditions under which one can
obtain quasioptimality. Suppose W is a Hilbert space, Wn is a closed subspace of W ,
and a(·, ·) and b(·, ·) are continuous bilinear forms on V × V and V ×W , respectively.
Suppose further that the exact solution u ∈ V, z ∈ W and the approximate solution
un ∈ Vn, zn ∈ Wn solve the mixed systems

a(u, v) + b(v, z) = F (v), a(un, vn) + b(vn, zn) = F (vn),

b(u, w) = G(w), b(un, wn) = G(wn),

for all v ∈ V, w ∈ W, vn ∈ Vn, and wn ∈ Wn, for some continuous functionals F and
G. The conditions under which the above equations have a unique solution are well
known [3]. It is shown in [3, Chapter II] that the quasioptimality estimate

(1.1) ‖u− un‖V + ‖z − zn‖W/W 0 ≤ Ca,b,α,β

(
inf

vn∈Vn

‖u− vn‖V + inf
wn∈Wn

‖z − wn‖W/W 0

)

1



QUASIOPTIMALITY OF SOME SPECTRAL MIXED METHODS 2

holds provided the following two conditions hold:

‖wn‖W/W 0 ≤ α sup
vn∈Vn

b(vn, wn)

‖vn‖V
, for all wn ∈ Wn,(1.2)

a(v, v) ≥ β ‖v‖2V , for all v ∈ V 0
n .(1.3)

Here
V 0

n = {v ∈ Vn : b(v, w) = 0 for all w ∈ Wn},

W 0 = {w ∈ W : b(v, w) = 0 for all v ∈ V }.

The constant Ca,b,α,β in (1.1) depends only on α, β, and the norms of the bilinear forms
a and b. Obviously, the estimate of (1.1) is interesting only if Ca,b,α,β is independent of
Vn and Wn. Therefore one needs to establish Conditions (1.2) and (1.3) with α and β
independent of Vn and Wn. In the case of the spectral mixed methods we shall consider,
the subspaces Vn and Wn will be polynomial spaces, so we will need to establish the
above inequalities with constants independent of the polynomial degree.

The main theoretical device that helps us establish such inequalities are certain regular
right inverses of the differential operators grad, curl , and div. These right inverses are
constructed by means of explicit formulae involving certain line integrals. The integrals
define appropriate vector and scalar potentials and are the same integrals that appear in
the well known Poincaré lemma in differential geometry. The relevance of such potential
mappings in the context of finite elements appears only to have been been noticed re-
cently [10]. It was later utilized to prove optimal p interpolation estimates for triangular
edge elements in [7]. The present work is motivated by the considerations in [7] and the
results presented here are extensions of the two dimensional results there.

The essential idea of construction of the right inverses can best be revealed by first
considering how one constructs a right inverse of the gradient operator. Given a smooth
irrotational vector field q on R

3, it is an elementary and well known result that one can
construct a scalar potential φ such that gradφ = q by integration along lines. In other
words, if we define the line integral of q from a fixed point a to x, namely

Gq(x) =

∫ �

�

q · dt,

then by the fundamental theorem of calculus, gradGq = q. Thus we have a right inverse
of the gradient map. Similar ideas allow one to construct right inverses of divergence
and curl in an elementary fashion.

We construct new projectors into spaces of certain polynomials using the right in-
verses. For example, we define a projector ΠQ

p into the Nédélec space which is well
defined on all functions in H(curl ,Ω). Note that in contrast, some of the standard
projectors into the Nédélec space can be applied only to functions in H(curl ,Ω) satis-
fying additional smoothness properties. Our main result concerning the projectors is a
commuting diagram property (see Theorem 3.1), whose fundamental importance in the
study of mixed methods has been clarified by many authors.

In Section 4, we consider the spectral Raviart-Thomas method for the Dirichlet prob-
lem on fairly general domains. We prove that the error of the method is equivalent to the
best approximation error with constants of equivalence independent of the degree of poly-
nomials. We prove this by establishing the appropriate Babuška-Brezzi inequality (1.2)
with constant independent of polynomial degree p using one of our new projectors.
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In Section 5, we prove some discrete Friedrichs inequalities. These will be seen in Sec-
tion 6 to be useful in verifying the above mentioned condition (1.3) for a mixed method
arising from discretization of Maxwell and Stokes equations. We prove their quasiopti-
mality. In this application, we consider the case of homogeneous boundary conditions.
To study this case, we construct a regular right inverse of curl that maps functions with
zero normal traces to functions with zero tangential traces on the boundary. While
we have explicit formulae for the inverses in the case of no boundary conditions, the
construction of inverses that maintain boundary conditions is more subtle. In our con-
struction, we make use of several recent results on characterization of traces [4, 5] of
H(curl ,Ω) on polyhedral boundary ∂Ω, as well as an optimal polynomial extension
operator [13].

2. Regular right inverses of grad, curl , and div

Let Ω be an open bounded set in R
3 that is star shaped with respect to some point

a in Ω or on its boundary. In the examples we have in mind, Ω will be a single “finite
element”, usually a simplex, a cube, or a prism. We assume that Ω has Lipschitz
boundary. Since Ω is simply connected with connected boundary, it is well known that
the following sequence is exact:

(2.1) 0 −−−→ H1(Ω)/R
grad
−−−→ H(curl ,Ω)

curl
−−−→ H(div,Ω)

div
−−−→ L2(Ω) −−−→ 0.

In this section we will define bounded linear operators that traverse the sequence in
the reverse order. Let D(Ω) denote the set of infinitely differentiable functions that are
compactly supported on Ω and let D(Ω) denote the collection of vector functions that
are restrictions to Ω of infinitely differentiable compactly supported functions from R

3

to R
3. For ψ ∈ D(Ω), v ∈D(Ω), and q ∈D(Ω), define

Dψ(x) =
2

3
(x− a)

∫ 1

0

t ψ(t2/3(x− a) + a) dt,(2.2)

Kv(x) = −2(x− a)×

∫ 1

0

t3v(t2(x− a) + a) dt(2.3)

Gq(x) = (x− a) ·

∫ 1

0

q(t(x− a) + a) dt.(2.4)

Note that a change of variable shows that Dψ(x) = (x−a)
∫ 1

0
t2 ψ(t(x−a)+a) dt, and

Kv(x) = −(x− a)×
∫ 1

0
tv(t(x− a) + a) dt, but as we shall see, the expressions (2.2)

and (2.3) are more convenient for estimation. We emphasize that these maps are identical
to the maps of the classical Poincaré lemma (expressed usually in terms of differential
forms as in [6, 10]).

As the estimates of our next theorem show, the maps defined by (2.2)–(2.4) extend
as continuous linear operators between adjacent Sobolev spaces in (2.1). Moreover, the
operators are such that div D, curlK, and gradG are all identity maps on appropriate
spaces. More precisely, letting

H(div 0,Ω) = {v ∈H(div,Ω) : div v = 0} and

H(curl 0,Ω) = {q ∈H(curl ,Ω) : curl q = 0},

we have the following theorem.
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Theorem 2.1. The maps D, K, and G defined by (2.2)–(2.4) uniquely extend as con-
tinuous linear operators on the Sobolev space domains shown below:

H1(Ω)/R
G
←−−− H(curl ,Ω)

�
←−−− H(div,Ω)

�
←−−− L2(Ω),

i.e., there are positive constants KD, KK and KG such that

‖Dψ‖ � (div,Ω) ≤ KD‖ψ‖0,Ω, for all ψ ∈ L2(Ω),(2.5)

‖Kv‖ � (curl ,Ω) ≤ KK‖v‖ � (div,Ω) for all v ∈H(div,Ω),(2.6)

‖Gq‖H1(Ω)/ � ≤ KG‖q‖ � (curl ,Ω), for all q ∈H(curl ,Ω).(2.7)

Moreover, for all ψ ∈ L2(Ω), v ∈H(div 0,Ω), and q ∈H(curl 0,Ω),

div Dψ = ψ,

curlKv = v,

gradGq = q.

The proof of this theorem will follow from some intermediate results we now present.
We begin with three well known identities. They are usually proved using differential
forms, but to emphasize their elementary nature, we prove one.

Proposition 2.1. The following identities hold:

div Dψ = ψ for all ψ ∈ D(Ω).

curlKv = v −D div v for all v ∈D(Ω).

gradGq = q −Kcurlq for all q ∈D(Ω).

Proof. All three identities can be verified by elementary calculations. For example,
setting yt = t2(x − a) + a and employing (temporarily) the summation convention
together with the permutation symbol (εijk), we have for any v ≡ (vm) ∈D(Ω),

−
1

2
[curl (Kv)]i = εijk

∂

∂xj
εklm(xl − al)

∫ 1

0

t3vm(yt) dt

= (δilδjm − δimδjl)

(
δjl

∫ 1

0

t3vm(yt) dt + (xl − al)

∫ 1

0

t3
∂

∂xj

vm(yt) dt

)

= −2

∫ 1

0

t3vi(yt) dt− (xj − aj)

∫ 1

0

t3
∂

∂xj

vi(yt) dt+ (xi − ai)

∫ 1

0

t3
∂

∂xj

vj(yt) dt,

where δ denotes Kronecker delta. Since dvi/dt = 2t(x−a)·grady vi, (where the subscript
in grady indicates differentiation with respect to components of yt), we find that

−
1

2
[curl (Kv)]i = −2

∫ 1

0

t3vi(yt) dt−
1

2

∫ 1

0

t4
dvi

dt
dt+

1

2
[D div v]i.

Now an integration by parts shows that curlKv = v −D div v. �

Lemma 2.1. For all ψ ∈ D(Ω), v ∈D(Ω), and q ∈D(Ω), we have

‖Dψ‖0,Ω ≤ CD‖ψ‖0,Ω, with CD = 2hΩ/3,(2.8)

‖Kv‖0,Ω ≤ CK‖v‖0,Ω, with CK = 2hΩ, and(2.9)

‖Gq‖H1(Ω)/� ≤ CG‖q‖ � (curl ,Ω),(2.10)

with some constant CG independent of q. Here hΩ denotes the diameter of Ω.
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Proof. To prove the first inequality of the lemma, let yt = t2/3(x − a) + a and Ωt =
{t2/3(x− a) + a : x ∈ Ω}. Then,

‖Dψ‖20,Ω =

∫

Ω

4

9
|x− a|2

( ∫ 1

0

tψ(t2/3(x− a) + a) dt

)2

dx

≤
4

9
h2

Ω

∫ 1

0

∫

Ω

t2 ψ(yt)
2 dx dt =

4

9
h2

Ω

∫ 1

0

t2
∫

Ωt

ψ(yt)
2 t−2dyt dt

Since Ωt ⊆ Ω, we have

‖Dψ‖20,Ω ≤
4

9
h2

Ω

∫ 1

0

∫

Ωt

ψ(yt)
2dyt dt

≤
4

9
h2

Ω

∫ 1

0

‖ψ‖20,Ω dt =
4

9
h2

Ω ‖ψ‖
2
0,Ω.

To prove (2.9), let yt now denote t2(x − a) + a and Ωt = {t2(x − a) + a : x ∈ Ω}.
Then

‖Kv‖20,Ω ≤

∫

Ω

4|x− a|2
∫ 1

0

t6|v(t2(x− a) + a)|2 dt dx

≤ 4h2
Ω

∫ 1

0

t6
∫

Ω

|v(yt)|
2 dx dt

= 4h2
Ω

∫ 1

0

t6
∫

Ωt

|v(yt)|
2t−6 dyt dt = 4h2

Ω

∫ 1

0

‖v‖20,Ωt
dt

≤ 4h2
Ω‖v‖

2
0,Ω.

Finally, to prove (2.10), we use Friedrichs inequality, which asserts the existence of a
constant CFr > 0, depending on Ω, such that

(2.11) ‖φ‖L2(Ω)/ � = inf
c∈�
‖φ− c‖0,Ω ≤ CFr‖ gradφ‖0,Ω, for all φ ∈ H1(Ω).

Together with the third identity of Proposition 2.1 and (2.9), this implies that

‖Gq‖L2(Ω)/ � ≤ CFr‖ gradGq‖0,Ω = CFr‖q −Kcurl q‖0,Ω

≤ CFr(‖q‖0,Ω + 2hΩ‖curlq‖0,Ω),

from which (2.10) follows. �

Remark 2.1. Although Theorem 2.1 only asserted the continuity of K : H(div,Ω) 7→
H(curl ,Ω), note that Lemma 2.1 gives a stronger result: the boundedness of K on
L2(Ω)3. The map D is also L2-bounded. However, the map G is not well defined on all
L2(Ω)3. Indeed, on any domain Ω ⊂ R

3 containing the origin, the function q(x) = x/|x|2

is in L2(Ω)3, but the integral in the definition of Gq does not exist.

Proof of Theorem 2.1. By Lemma 2.1 and Proposition 2.1,

‖Dψ‖2� (div,Ω) = ‖ div Dψ‖20,Ω + ‖Dψ‖20,Ω ≤ (1 + C
2
D)‖ψ‖20,Ω,

‖Kv‖2� (curl ,Ω) = ‖v −D div v‖20,Ω + ‖Kv‖20,Ω

≤ 2‖v‖20,Ω + 2C2
D‖ div v‖0,Ω + C

2
K‖v‖

2
0,Ω,
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for all ψ ∈ D(Ω) and v ∈D(Ω). An analogous estimate forG is also given by Lemma 2.1.
Now, it follows that the maps D, K, and G are well defined on the Sobolev spaces
asserted by the theorem because of the density of D(Ω) in L2(Ω) and the density of
D(Ω) in H(curl ,Ω) and H(div,Ω) proved in [9, Chapter I]. Inequalities (2.5)–(2.7) are
thus proved.

It remains to show the equalities of the theorem. To prove that K is a right inverse
of curl , let v ∈ H(div,Ω) and choose a sequence vn ∈ D(Ω) that converges to v in
H(div,Ω)–norm. By Proposition 2.1,

curlKvn = vn −D div vn.

The right hand side of this equality converges to v −D div v because of (2.5), while
the left hand side converges to curlKv because of (2.6). Thus curlKv = v for all
v ∈H(div 0,Ω). Proofs of the other identities are similar. �

Remark 2.2. Observe that the divergence and gradient maps remain at the tail and
front end of (2.1), respectively, in any space dimension. However, there are more than
one intermediate members in the sequence when N > 3. For simplicity, we shall not
discuss construction of inverses for analogues of curl in more than three dimensions. But
the definitions of right inverses of divergence and gradient have natural extensions to
N -dimensional vector fields. Indeed, if D is defined in N -dimensions by

Dψ(x) =
2

N
(x− a)

∫ 1

0

t ψ(t2/N (x− a) + a) dt,

then div Dψ = ψ for all ψ ∈ L2(Ω) and (2.8) holds provided we redefine

CD =
2

N
hΩ.

Similarly, the equality gradGq = q continues to hold in N dimensions provided we
choose q in

{q ≡ (qi) ∈ L
2(Ω)N : ∂qj/∂xi − ∂qi/∂xj = 0 for all i, j = 1, 2, . . . , N, i 6= j},

instead of in H(curl 0,Ω).

3. Commuting projections

In this section we define projectors into certain polynomial spaces and establish a
commuting diagram property. The polynomial spaces we shall consider are the Raviart-
Thomas [15] and Nédélec spaces [14]. Let Pp denote the set of all polynomials of degree
at most p and Pp denote the set of all vector polynomials whose three components are
in Pp. Define Rp = {r ∈ P p+1 : r = xp+q for some scalar polynomial p ∈ Pp and some
vector polynomial q ∈ Pp} and Qp = {q ∈ Pp+1 : q = q̃ + qp for some homogeneous
vector polynomial q̃ of degree p+1 such that q̃ ·x = 0 and some qp ∈ Pp}. These spaces
are well known to possess the exact sequence property

(3.1) 0 −−−→ Pp+1/R
grad
−−−→ Qp

curl
−−−→ Rp

div
−−−→ Pp −−−→ 0,

in analogy with (2.1).
Let Πp denote the L2(Ω) orthogonal projection into Pp, ΠR0

p denote the L2(Ω)3 or-
thogonal projection into

(3.2) R0
p = {r ∈ Rp : div r = 0},
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ΠQ0
p denote the L2(Ω)3 orthogonal projection into

Q0
p = {q ∈ Qp : curlq = 0},

and ΠW0w = meas(Ω)−1
∫
Ω
w dx. Define

ΠR
p v = ΠR0

p v + (I −ΠR0
p )D(Πp div v),(3.3)

ΠQ
p q = ΠQ0

p q + (I −ΠQ0
p )K(ΠR0

p curlq),(3.4)

ΠW
p w = ΠW0w + (I −ΠW0)G(ΠQ0

p gradw).(3.5)

Our main result concerning these projectors is Theorem 3.1 given later in this section.
But first, let us prove that the above operators are indeed projectors into the polynomial
spaces introduced above. This is immediately seen from the following result.

Proposition 3.1.

(1) For all r ∈H(div,Ω), ΠR
p r ∈ Rp. Moreover, if r ∈ Rp then ΠR

p r = r.
(2) For all q ∈H(curl ,Ω), ΠQ

p q ∈ Qp. Moreover, if q ∈ Qp then ΠQ
p q = q.

(3) For all w ∈ H1(Ω), ΠW
p w ∈ Pp+1. Moreover, if w ∈ Pp+1 then ΠW

p w = w.

Proof. To prove the first statement, note that whenever ψ ∈ Pp the integral
∫ 1

0

t ψ(t2/3(x− a) + a) dt

also yields a function in Pp. Since Πp div v ∈ Pp, we have that DΠp div v ∈ Rp for all
v ∈ H(div,Ω), so it follows that ΠR

p v ∈ Rp. Now consider an r ∈ Rp. We need to
show that ΠR

p r ∈ Rp. Decompose r as

r = ΠR0
p r + (I −ΠR0

p )r.

Since div r is in Pp,

ΠR
p r = ΠR0

p r + (I −ΠR0
p )D div r.

Therefore,

(3.6) r −ΠR
p r = (I −ΠR0

p )(r −D div r).

By Theorem 2.1, div(I −ΠR0
p )(r −D div r) = div(r −D div r) = 0. Hence r −ΠR

p r

is simultaneously in the range of ΠR0
p and I −ΠR0

p , so must vanish.
To prove the statement about the operator ΠQ

p , we again note that since v ≡
ΠR

p curl q ∈ Rp, the integral

k =

∫ 1

0

t3v(t2(x− a) + a) dt

is a polynomial in Rp. Let q̃p be the homogeneous polynomial of degree p such that
k = xq̃p + qp with qp ∈ Pp. Then

Kv = −2(x− a)× k = −2(x× qp + 2a× xq̃p) + 2a× qp.

Since x · (x× qp + 2a× xq̃p) = 0 and 2a× qp ∈ Pp we find that Kq ∈ Qp, so ΠQ
p v is

in Qp. To prove that ΠQ
p q = q for all q ∈ Qp we proceed as in the previous case: Since

q −ΠQ
p q = (I −ΠQ0

p )(q −Kcurl q),
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we find from Theorem 2.1 that curl (q −ΠQ
p q) = curl (q −Kcurl q) = 0. Therefore

q −ΠQ
p q is in the range of ΠQ0

p and at the same time in the range of I −ΠQ0
p . Hence

q −ΠQ
p q = 0.

The final statement of the proposition is proved similarly. �

Remark 3.1. It is possible to compute the projections defined in (3.3)–(3.5) without using
the right inverse maps. Indeed, ΠR

p v equals the unique function π in Rp satisfying

(π, r0) = (v, r0) for all r0 ∈ R0
p, and

(div π, div r) = (div v, div r) for all r ∈ Rp,

where (·, ·) denote the L2(Ω) or L2(Ω)3 innerproduct. To see this it is enough to observe
that the second equation above implies that

div(π −ΠR
p v) = 0

while the first equation implies that π −ΠR
p v is orthogonal to R0

p. Thus, π −ΠR
p v

is in R0
p as well as its orthogonal complement, so vanishes. In the same way, ΠQ

p q is
characterized as the unique function in Qp satisfying

(ΠQ
p q, z0) = (q, z0) for all z0 ∈ Q0

p, and

(curlΠQ
p q, curlz) = (curl q, curl z) for all z ∈ Qp.

A similar characterization holds for ΠW
p as well.

Theorem 3.1. The following diagram commutes:

(3.7)

H1(Ω)/R
grad
−−−→ H(curl ,Ω)

curl
−−−→ H(div,Ω)

div
−−−→ L2(Ω) −−−→ 0yΠW

p

y
� Q

p

y
� R

p

yΠp

Pp+1/R
grad
−−−→ Qp

curl
−−−→ Rp

div
−−−→ Pp −−−→ 0

Moreover, the norms of all the projectors above are bounded independently of p:

‖ΠR
p v‖2� (div,Ω) ≤ (1 + C

2
D)‖v‖2� (div,Ω) for all v ∈H(div,Ω),

‖ΠQ
p q‖2� (curl ,Ω) ≤ (1 + C

2
K)‖q‖2� (curl ,Ω) for all q ∈H(curl ,Ω),

‖ΠW
p w‖2H1(Ω) ≤ (1 + C

2
G)‖w‖2H1(Ω) for all w ∈ H1(Ω).

Proof. To prove that

div ΠR
p q = Πp div q,

we use Theorem 2.1:

div(ΠR
p v) = div(ΠR0

p v) + div(I −ΠR0
p )DΠp div v

= div DΠp div v = Πp div v.

Proofs of

curlΠQ
p q = ΠR

p curl q and gradΠW
p φ = ΠQ

p gradφ

proceed similarly using the other identities of Theorem 2.1.
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To prove the norm bound on ΠR
p we use Theorem 2.1 again. Since norms of orthogonal

projectors equal one,

‖ΠR
p v‖20,Ω = ‖ΠR0

p v‖20,Ω + ‖(I −ΠR0
p )DΠp div v‖20,Ω

≤ ‖v‖20,Ω + ‖DΠp div v‖20,Ω

≤ ‖v‖20,Ω + C
2
D‖ div v‖20,Ω, and

‖ div ΠR
p v‖20,Ω = ‖Πp div v‖20,Ω ≤ ‖ div v‖20,Ω.

This proves that
‖ΠR

p v‖2� (div,Ω) ≤ (1 + C
2
D)‖v‖2� (div,Ω).

The remaining estimates are proved similarly. �

Remark 3.2. Observe that the norm bounds of Theorem 3.1 imply quasioptimality of
the projectors, i.e., the error in projection is bounded by a constant times the best
approximation error. For example, for any r ∈ Rp,

‖v −ΠR
p v‖ � (div,K) = ‖(v − r)−ΠR

p (v − r)‖ � (div,K)

≤ (1 + ‖ΠR
p ‖ � (div,K))‖v − r‖ � (div,K)

≤ C1‖v − r‖ � (div,K),

where C1 = (1 + (1 + C2
D)1/2). Thus,

inf
�

p∈
�

p

‖v − rp‖ � (div,K) ≤ ‖v −ΠR
p v‖ � (div,K) ≤ C1 inf

�
p∈

�
p

‖v − rp‖ � (div,K).

Similar equivalences hold for the other projectors as well. Thus, to obtain p-error es-
timates for these projectors, it suffices to estimate the best approximation error as a
function of p.

Remark 3.3. We used two critical properties of the right inverses in obtaining the results
of this section, namely (i) their continuity as given by the bounds (2.5)–(2.7) and (ii) the
fact that they map a polynomial space in (3.1) into its adjacent left one:

(3.8) Pp+1/R
G
←−−− Qp

�
←−−− Rp

�
←−−− Pp.

The projectors defined by (3.3)–(3.5) remain unchanged if, in their definition, we re-
place our right inverses by any other right inverses satisfying the above mentioned two
properties (see also Remark 3.1).

Remark 3.4. Right inverses of the divergence map have been constructed by other meth-
ods earlier [1, 16]. These constructions satisfy one or the other of the two properties
mentioned in Remark 3.3, but not both in general.

Remark 3.5. It is possible to extend our results to tensor product polynomials. Let
P

�

l,m,n denote the set of polynomials in x ≡ (x1, x2, x3) that are of degree at most

l, m, and n in x1, x2, and x3, respectively. Let Q
�

p = P
�

p−1,p,p × P
�

p,p−1,p × P
�

p,p,p−1,

R
�

p = P
�

p,p−1,p−1×P
�

p−1,p,p−1×P
�

p−1,p−1,p. Then analogous to (3.1) and (2.1), the sequence

0 −−−→ P
�

p,p,p/R
grad
−−−→ Q

�

p
curl
−−−→ R

�

p
div
−−−→ P

�

p−1,p−1,p−1 −−−→ 0

is exact. It is an easy matter to verify that the right inverses map a polynomial space
in the above sequence into its adjacent left one:

P
�

p,p,p/R
G
←−−− Q

�

p

�
←−−− R

�

p

�
←−−− P

�

p−1,p−1,p−1.
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Consequently, if the L2-orthogonal projections in the definitions (3.3)–(3.5) are replaced
by L2-orthogonal projections into the tensor product spaces, then the norm estimates of
Theorem 3.1 hold without change and diagram (3.7), after substitution with the tensor
product spaces, commutes. It is also possible to extend such results to the sequence
starting with P

�

p1,p2,p3
/R where the degrees pi in different directions are not necessarily

equal.

4. Application to the Raviart-Thomas mixed method

In this section we prove the quasioptimality of the spectral Raviart-Thomas mixed
method for the Dirichlet problem. We will consider general Lipschitz domains Ω in R

N

which are merely assumed to be star-shaped with respect to a ∈ Ω. In practical compu-
tations, the class of domains of interest is generally much smaller as one would need to
get a computable basis convenient for computation and approximate the integrals over
Ω required by the method in an efficient manner.

By means of the interpolant ΠR
p , we will show that the problem of error estima-

tion of the p-Raviart-Thomas method reduces to a problem of best approximation. As
indicated in Remark 2.2, the definition of ΠR

p and its properties extends verbatim to
N dimensions (with the exception of the change in value of CD).

Let q and u solve the following Dirichlet problem on Ω:

c(x)q + grad u = 0, on Ω,(4.1)

div q = f on Ω,(4.2)

u = g on ∂Ω,(4.3)

where c(x) is a uniformly positive definite N×N matrix function on Ω with components
in L∞(Ω). Now consider the following mixed method that provides numerical approxi-
mations qp and up for the exact solution components q and u respectively. The spectral
Raviart-Thomas mixed method defines (qp, up) ∈ Rp × Pp by

(c qp, r)− (up, div r) = −

∫

∂Ω

g r · nds, for all r ∈ Rp(4.4)

(v, div qp) =

∫

Ω

fv dx, for all v ∈ Pp.(4.5)

To prove the quasioptimality of the method, we need to verify (1.2) and (1.3). Con-
dition (1.3) obviously holds for this problem. Verification of (1.2) is done in the next
theorem.

Theorem 4.1. There exists a positive constant C2 independent of p such that

(4.6) ‖v‖0,Ω ≤ C2 sup
�

p∈
�

p

(v, div rp)Ω

‖rp‖ � (div,Ω)

, for all v ∈ Pp.

Proof. To prove the inf-sup condition (4.6), let v ∈ Pp and consider wv ∈ H1
0 (Ω) that

solves
−∆wv = v.

Then, by Poincaré inequality,

‖ gradwv‖
2
0,Ω = (v, wv) ≤ CPr‖v‖0,Ω‖ gradwv‖0,Ω.
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Therefore, r ≡ − gradwv satisfies

‖r‖2� (div,Ω) = ‖ gradwv‖
2
0,Ω + ‖∆wv‖

2
0,Ω ≤ (C2

Pr + 1)‖v‖20,Ω,

div r = v.

As a consequence of the commuting diagram of Theorem 3.1, div ΠR
p r = Πp div r = v,

so

sup
�
∈

�
p

(v, div rp)

‖rp‖ � (div,Ω)

≥
(v, div ΠR

p r)

‖ΠR
p r‖ � (div,Ω)

≥
‖v‖20,Ω

(1 + C2
D)1/2‖r‖ � (div,Ω)

≥
‖v‖20,Ω

(1 + C2
D)1/2(1 + C2

Pr)
1/2‖v‖0,Ω

=
1

C2

‖v‖0,Ω.

Thus the inf-sup condition follows. �

The general technique of using the exact solution of a boundary value problem to
prove an inf-sup condition employed in the proof above is standard (cf. [3, Proposi-
tion 2.8, Chapter II]). The new ingredient above is the use of a p optimal projector. The
quasioptimality estimate for the method now follows (cf. (1.1)).

5. Discrete Friedrichs type inequalities

In this section we prove inequalities of the type

‖q‖0,Ω ≤ C‖curlq‖0,Ω

for q in appropriate spaces. Obviously such inequalities cannot hold in spaces with
gradient vector fields. It is also obvious from the exactness of sequence (2.1) that such
an inequality holds for all functions in the orthogonal complement of H(curl 0,Ω) in
H(curl ,Ω). Similarly, by the exactness of (3.1), the inequality also holds in the or-
thogonal complement of Q0

p in Qp, but in this case we cannot conclude merely from
the exactness that the constant C is independent of p. We will prove that C is indeed
independent of p. Inequalities proved here are useful in a full hp analysis of Maxwell
discretizations [8] and in the next section.

Theorem 5.1. Let Q⊥

p = {q ∈ Qp : (q, gradw) = 0 for all w ∈ Pp+1}. Then,

‖q‖0,Ω ≤ CK‖curl q‖0,Ω for all q ∈ Q⊥

p ,

where CK is as in (2.9).

Proof. Since q ∈ Q⊥

p ,

‖q‖0,Ω = inf
w∈Pp+1

‖q − gradw‖0,Ω.

Furthermore, since curl (q−Kcurl q) = 0, by the exactness of the sequence (3.1), there
exists a w ∈ Pp+1 such that gradw = q −Kcurl q. Therefore,

‖q‖0,Ω ≤ ‖q − (q −Kcurlq)‖0,Ω

≤ CK‖curlq‖0,Ω.

�
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Remark 5.1. A similar inequality (with constant independent of polynomial degree) is
proved in [12] for the hexahedral Nédélec space (in fact more generally for an hp Nédélec
space based on a hexahedral mesh). The approach taken there is quite different: One
proves a p approximation estimate and then uses it to obtain the discrete Friedrichs
type inequality. In view of Remark 3.5, our approach gives an alternate proof of the
inequality for the tensor product Nédélec space.

To prove a similar inequality involving spaces with boundary conditions, namely

Q̊p = {q ∈ Qp : n× q = 0 on ∂Ω},

P̊p+1 = {q ∈ Pp+1 : q = 0 on ∂Ω},

we find that the above simple proof does not apply because K does not preserve
homogeneous boundary conditions. We will need to first define an analogue of K :
H(div 0,Ω) 7→H(curl ,Ω), namely

K̊ : H̊(div 0,Ω) 7→ H̊(curl ,Ω),

where

H̊(div 0,Ω) = {v ∈H(div 0,Ω) : v · n = 0},

H̊(curl ,Ω) = {q ∈H(curl ,Ω) : n× q = 0 on ∂Ω}.

Here n denotes the outward unit normal on ∂Ω.
We now need to assume that Ω is a tetrahedron because we use a polynomial extension

result currently available on tetrahedra. To describe this result, let Tp(∂Ω) = {v : v is
continuous on ∂Ω and v is a polynomial of degree at most p on each face of the tetra-
hedron Ω}. It is proved in [13] that there exists an extension operator E : H1/2(∂Ω) 7→
H1(Ω) such that

(1) the trace of Ev on ∂Ω coincides with v,
(2) there is a constant Cext independent of v such that

(5.1) ‖Ev‖H1(Ω) ≤ Cext‖v‖H1/2(∂Ω) for all v ∈ H1/2(∂Ω),

(3) and whenever v ∈ Tp(∂Ω) the extension Ev ∈ Pp.

In the proof of the next theorem where we construct the required K̊, we denote the
tangential component of any vector field q on ∂Ω by q � , i.e., q � = q − (q · n)n. The
same subscript will distinguish tangential differential operators on ∂Ω. For definitions
of surface gradient, curl(s), divergence, etc., on nonsmooth surfaces see [4]. Let R̊p =
{r ∈ Rp : r · n = 0 on ∂Ω}.

Theorem 5.2. Let Ω be a tetrahedron. Then there exists an operator K̊ on H̊(div 0,Ω)
with the following properties:

(1) curl K̊v = v for all v ∈ H̊(div 0,Ω).

(2) n× K̊v = 0 on ∂Ω for all v ∈ H̊(div 0,Ω).

(3) There exists a constant C̊K > 0 independent of v such that

(5.2) ‖K̊v‖0,Ω ≤ C̊K‖v‖0,Ω for all v ∈ H̊(div 0,Ω).

(4) Whenever v is in R̊p, the function K̊v is in Q̊p.
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Proof. We will construct K̊v by subtracting an appropriate gradient field from Kv. In
order to find out what gradient field is appropriate, note first that since K is a right
inverse of curl and v ∈ H̊(div 0,Ω),

n · (curlKv) = n · v = 0 on ∂Ω.

Since n · (curlKv) = div � (Kv × n), by the Hodge decomposition on ∂Ω established
in [5], we find that Kv × n = curl � φ � for some φ � ∈ H1/2(∂Ω). In other words, since
curl � φ � = grad � φ � × n,

n× (Kv × n) = n× (grad � φ � × n) = grad � φ � ,

or equivalently, the tangential component of Kv satisfies

(5.3) (Kv) � = grad � φ � on ∂Ω.

Define
K̊v = Kv − gradEφ � .

By construction, we immediately see that Statements (1) and (2) of the theorem hold.
To prove Statement (3), we use (5.1). Since the extension operator E preserves con-

stants, it follows that for any constant c ∈ R, we have ‖ gradEφ � ‖0,Ω = ‖ gradE(φ � −
c)‖0,Ω ≤ ‖φ � − c‖H1/2(∂Ω), so

‖ gradEφ � ‖0,Ω ≤ Cext‖φ � ‖H1/2(∂Ω)/� .

Hence

‖K̊v‖0,Ω ≤ ‖Kv‖0,Ω + ‖ gradEφ � ‖0,Ω

≤ CK‖v‖0,Ω + Cext‖φ � ‖H1/2(∂Ω)/ � .(5.4)

Now, by the exact sequence property of boundary spaces established in [5], we find that

grad � : H1/2(∂Ω)/R 7→H
−1/2
⊥

(∂Ω)

is an injective operator whose range is closed in H
−1/2
⊥

(∂Ω). (The space H
−1/2
⊥

(∂Ω) and
its norm is as defined in [5].) Hence there exists a constant Cgrad such that

‖φ‖H1/2(∂Ω)/� ≤ Cgrad‖grad � φ‖ � −1/2

⊥
(∂Ω)

for all φ ∈ H1/2(∂Ω).

Using this in (5.4), we now have that

‖K̊v‖0,Ω ≤ CK‖v‖0,Ω + CextCgrad‖grad � φ � ‖ � −1/2

⊥
(∂Ω)

.

which, by virtue of (5.3), implies that

(5.5) ‖K̊v‖0,Ω ≤ CK‖v‖0,Ω + CextCgrad‖(Kv) � ‖ � −1/2

⊥
(∂Ω)

.

To complete the proof of Statement (3), we need a final ingredient: It is proved in [4,
Theorem 3.10] that there exists a constant Ctrace independent of q such that

‖q � ‖ � −1/2

⊥
(∂Ω)
≤ Ctrace‖q‖ � (curl ,Ω), for all q ∈H(curl ,Ω).

This result together with (5.5) yields

‖K̊v‖0,Ω ≤ CK‖v‖0,Ω + CextCgradCtrace‖Kv‖ � (curl ,Ω)

≤ (CK + (C2
K + 1)1/2

CextCgradCtrace)‖v‖0,Ω,
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where we have also used the fact that K is a right inverse of curl. Thus the proof of (5.2)
is complete.

It now only remains to prove Statement (4) of the theorem. It suffices to prove that
φ � ∈ Tp+1(∂Ω) because, it then follows, by the nature of the extension operator, that
gradEφ � ∈ Pp. Let e be a face of the tetrahedron Ω. We will now show that φ� is a
polynomial of degree at most p+ 1 on e. By (5.3), φ � is a polynomial of degree at most

p + 2 on e. To compare the highest order terms in (5.3), let φ
(p+2)

� denote the sum of

terms in φ � of degree equal to p+ 2 in the components of x � and let (Kv)(p+1)
� denote

the sum of terms in (Kv) � of degree p+ 1. Since v is in R̊p, the integral

k(x) =

∫ 1

0

t3v(t2(x− a) + a) dt

defines a function that can be decomposed as k = (x−a)q̃p +qp for some homogeneous

polynomials q̃p and some qp ∈ P p. Hence, denoting q
( � )
p = n(qp · n), we have

−
1

2
Kv = (x− a)× ((x− a)q̃p + qp)

= x � × q( � )
p − a � × q( � )

p + (x− a) � × (qp) � + (n× qp)(x− a) · n

Since (x− a) · n is constant on e and (x− a) � × (qp) � is in the n-direction, we have

(Kv)(p+1)
� = −2x � × q( � )

p , on e.

By (5.3),

grad � φ(p+2)
� = −2x � × q( � )

p , on e.

Taking the innerproduct of both sides of the above equation with x � and using Euler’s
identity

(p+ 2) x � · grad � φ(p+2)
� = φ(p+2)

� ,

we find that φ
(p+2)

� = 0. Consequently, φ� is a polynomial of degree at most p+ 1 on e.
The above argument applies to every face of Ω, so we have proved that φ� restricted

to each face of Ω is a polynomial of degree at most p + 1. Since we also know that
φ � ∈ H1/2(∂Ω), it is easy to see from the integrals defining the H1/2(∂Ω)-seminorm that
φ � is continuous on ∂Ω. Thus φ� ∈ Tp+1(∂Ω). �

Theorem 5.3. Let Q̊⊥

p = {q ∈ Q̊p : (q, grad v) = 0 for all v ∈ P̊p+1}. Then,

‖q‖0,Ω ≤ C̊K‖curlq‖0,Ω, for all q ∈ Q̊⊥

p ,

where C̊K is the constant in (5.2).

Proof. The proof proceeds just like the proof of Theorem 5.1, but using K̊ in place
of K. �
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6. Application to Maxwell equations

We now apply the results of the previous section to two mixed variational problems
arising from systems of the type

(6.1)
curlµ−1curlE = J on Ω,

div E = 0 on Ω.

Such equations arise when computing vector potentials in magnetostatics. Here µ is
a positive bounded function in L∞(Ω) satisfying µ ≥ µ0 for some µ0 > 0 and J ∈
H(div 0,Ω). For the purposes of analysis we assume that Ω is a tetrahedron throughout
this section. Among the usually occurring boundary conditions, the simplest is

n×E = 0 on ∂Ω.(6.2)

A well known mixed variational formulation [11] of (6.1) and (6.2) is obtained by in-

troducing a Lagrange multiplier ψ ∈ H1
0 (Ω): Find E ∈ H̊(curl ,Ω) and ψ ∈ H1

0 (Ω)
satisfying

(µ−1curlE, curlq)− (gradψ, q) = (J , q),(6.3)

(gradw,E) = 0,(6.4)

for all q ∈ H̊(curl ,Ω) and w ∈ H1
0 (Ω). Note that the second term in (6.3) makes the

formulation symmetric. Clearly, this term is zero because div J = 0.
Another mixed formulation for (6.1) can be obtained by incorporating the divergence

free condition of (6.1) into the polynomial spaces [2] . It is motivated by the following
first order reformulation of (6.1):

H = µ−1curlE, curlH = J .

If we impose the magnetic symmetry wall boundary condition

(6.5) n× µ−1curlE = 0 on ∂Ω,

the mixed formulation is to find H ∈ H̊(curl ,Ω) and E ∈ H̊(div 0,Ω) satisfying

(µH, q)− (E, curlq) = 0,(6.6)

(r, curlH) = (J , r),(6.7)

for all q ∈ H̊(curl ,Ω) and all r ∈ H̊(div 0,Ω). In the case of the boundary condi-
tion (6.2), the same equations hold on analogous spaces without boundary conditions.
(An analysis simpler than the ensuing one holds for analogous formulations on spaces
without boundary conditions, but we shall not discuss it.) The following are spectral
discretizations of these variational formulations:

Problem 6.1. Find (Ep, ψp) ∈ Q̊p × P̊p+1 (p ≥ 3) such that

(µ−1curlEp, curl qp)− (gradψp, qp) = (J , qp), for all p ∈ Q̊p,

(gradwp,Ep) = 0, for all wp ∈ P̊p+1.

Problem 6.2. Find (Hp,Ep) ∈ Q̊p × R̊0
p such that

(µHp, q)− (Ep, curlq) = 0, for all q ∈ Q̊p,

(r, curlHp) = (J , r), for all r ∈ R̊0
p,
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where R̊0
p = {r ∈ R0

p : r · n = 0 on ∂Ω}.

While Problem 6.1 discretizes (6.3)–(6.4), Problem 6.2 discretizes (6.6)–(6.7). We will
now prove the quasioptimality of the two methods. To analyze Problem 6.1, as before,
we need to verify two conditions. The first condition, namely

‖wp‖H1(Ω) ≤ C sup
�

p∈
˚�

p

(gradwp, qp)

‖q‖ � (curl ,Ω)

for all wp ∈ P̊p+1,

follows from the imbedding

grad P̊p+1 ⊂ Q̊p,

and the Poincaré inequality. Condition (1.3) follows from Theorem 5.3. Thus we obtain a
quasioptimality estimate. Moreover, since ψp approximates the zero Lagrange multiplier
ψ, we have the following corollary.

Corollary 6.1. If E satisfies (6.3)–(6.4) and E̊p solves Problem 6.1, there is a constant
C independent of p such that

‖E − E̊p‖ � (curl ,Ω) ≤ C inf
�

p∈
˚�

p

‖E − qp‖ � (curl ,Ω).

Finally, we discuss Problem 6.2. Condition (1.3) is trivial in this case. The required
inf-sup condition can be proved using a projector similar to ΠQ

p . Let Π̊Q0
p and Π̊R0

p de-

note the L2-orthogonal projectors into Q̊0
p = {q ∈ Q̊p : curl q = 0} and R̊0

p, respectively.
Define

(6.8) Π̊Q
p q = Π̊Q0

p q + (I − Π̊Q0
p )K̊(Π̊R0

p curlq).

Then we have the following inf-sup condition.

Theorem 6.1. There exists a positive constant C independent of p such that

(6.9) ‖zp‖0,Ω ≤ C sup
�

p∈
˚�

p

(zp, curl qp)

‖qp‖ � (curl ,Ω)

, for all zp ∈ R̊0
p,

Proof. For any given zp ∈ R0
p, let q be unique the solution of the following div-curl

problem:

curl q = zp, on Ω

div q = 0, on Ω

q × n = 0, on ∂Ω.

Then, by [9, Lemma 3.4], there exists a constant Ccurl (independent of zp) such that

(6.10) ‖q‖0,Ω ≤ Ccurl‖curlq‖0,Ω.

Moreover, by Theorem 3.1,

curl (Π̊Q
p q) = ΠR

p curlq = zp.
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Hence,

sup
�
∈˚�

p

(zp, curl qp)

‖qp‖ � (curl ,Ω)

≥
(zp, curl (Π̊Q

p q))

‖Π̊Q
p q‖ � (curl ,Ω)

≥
‖zp‖

2
0,Ω

(1 + C̊2
K)1/2‖q‖ � (curl ,Ω)

,

≥
‖zp‖

2
0,Ω

(1 + C̊2
K)1/2(1 + C2

curl)
1/2‖curl q‖0,Ω

=
‖zp‖0,Ω

(1 + C̊2
K)1/2(1 + C2

curl)
1/2
.

Thus, the inf-sup condition (6.9) follows. �

Quasioptimality of Problem 6.2 now follows from Theorem 6.1.

7. Concluding remarks

We have constructed projectors that satisfy the commutativity properties important
for mixed methods with norm bounds independent of p and discussed their applications
to spectral mixed methods. The critical ingredients were the right inverse maps D,K,
and G.

During the analysis of the two mixed problems with homogeneous tangential boundary
conditions in Section 6, we also used another right inverse of curl, namely K̊, which has
the additional property that n× K̊v = 0 on ∂Ω whenever v ·n = 0 on ∂Ω. As we saw,
this map can also be used to define a projector (namely Π̊Q

p ; see (6.8)) on H̊(curl ,Ω)
that preserves zero tangential traces.

It is natural to ask if we can construct projectors analogous to Π̊Q
p for the remaining

spaces, say Π̊R
p and Π̊W

p , that preserves appropriate zero traces and satisfies the anal-
ogous commutativity and norm bound properties. The latter is easy: Fix a ∈ ∂Ω and
define

Π̊W
p w = GΠ̊Q0

p gradw, for all w ∈ H1
0 (Ω).

Then Π̊W
p w ∈ P̊p+1, because the function q = Π̊Q0

p gradw is irrotational, so the value
of line integral that defines G, namely

∫ �

�

q · dt,

remains unchanged if we carry out the integration along any other path from a to x. In
particular, if x ∈ ∂Ω, we may choose to integrate along a curve lying entirely on the ∂Ω
where w = 0, so Π̊W

p w = 0 on ∂Ω whenever w vanishes on ∂Ω.
However, the construction of Π̊R

p appears to be more difficult. We would like to

construct a bounded linear map D̊ : L2(Ω)/R 7→ H̊(div,Ω) that is a right inverse of

divergence along the lines of our construction of K̊. But an analogue of the extension

operator E, namely a uniformly bounded polynomial extension operator from H
−1/2
⊥

(∂Ω)
into H(curl ,Ω), is missing.

We established several inf-sup conditions independent of p. We also established two
discrete Friedrichs type inequalities involving curl in Theorems 5.1 and 5.3. These in-
equalities are not only important for the analysis of the spectral mixed methods we
considered, but are also the first step in a full hp-analysis of finite element discretiza-
tions for Maxwell equations. Although the right inverses introduced map polynomials
into polynomials, they do not map piecewise polynomial spaces, such as p-finite elements
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spaces on fixed grids with more than one element, or hp finite element spaces, into sim-
ilar spaces. Hence an hp analysis does not immediately follow from our projectors, but
additional results needed are being explored [8].
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