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EXECUTIVE SUMMARY 

Studies have revealed that among more than 50 roadway-related features, cross-sectional 

roadway elements are one of the most important in affecting road safety performance. 

Unfortunately, quantifying the safety for urban road cross-sectional features historically has not 

received as much attention as it has for rural roads. This report presents a study on the influences 

of select cross-sectional-related design elements, specifically median configurations and bicycle 

lanes. This research further focuses on the influence of crash severity/type as well as the 

associated driver headway or gap acceptance for turning maneuvers at midblock driveway 

locations on urban arterials. The primary goal of this proposed research is to better understand 

how the median and bicycle lane configurations can influence safety and operations at driveway 

locations.  

The research team utilized crash data, traffic data, and roadway information from driveway 

locations in Oregon, Arkansas, and Oklahoma. The project team supplemented the data with 

digital videos acquired during field studies of the sites.  The traffic videos helped the research 

team better understand how road features and traffic influenced driver behavior at selected urban 

arterial driveway locations. As part of this effort, the researchers conducted gap-acceptance 

studies to determine the critical gaps for driveway locations at arterial roads with and without 

bicycle lanes. This study evaluates four different critical gap analysis methods to estimate the 

driveway operations and noted potential procedural biases associated with two of the techniques. 

The report describes these field studies and summarizes how the gap acceptance varied at the 

different arterial driveway locations. The research team also performed additional operational 

analysis, using the micro-simulation tool CORSIM, to examine the influence that median type, 

traffic volume, and access density have on traffic operational performance. 
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1.0 INTRODUCTION 

In 2003, the Transportation Research Board (TRB) published the Access Management Manual, 

the first large-scale effort since the publication of Access Management for Streets and Highways 

(Flora and Keitt, 1982). Both documents provided guidance about how access management can 

be successfully accommodated in a way that can enhance safety as well as traffic operations. 

Many of the techniques included in these manuals were developed based on mature research, and 

the resulting recommendations and guidelines provided quantifiable information about how best 

to successfully provide access management. For example, these documents provided clear 

direction regarding the use and type of medians, and identified the expected effectiveness 

resulting from converting a road without a median to one that includes a median. The Access 

Management Manual (TRB, 2003) also includes substantial information that can help an agency 

establish an access management program and incorporate a wide variety of strategies into this 

program. In the manual, access points include the intersections of public roads as well as 

driveway locations; however, most of the supporting research for the spacing of driveways is 

based on simple human factors and geometric principles that are applied to standard highway 

design procedures. Driveway placement techniques have not been thoroughly evaluated for 

access spacing conditions based on a variety of road cross-section and functional-purpose 

configurations.  

This lack of robust research associated with quantifying the various conflicts at driveway 

locations has been due to a number of data collection limitations. There are numerous 

combinations of road features that may influence assess spacing, and identifying and studying 

these configurations is an onerous task. 

The primary goal of the research effort summarized in this report is to better understand how 

driveway spacing and the associated roadway cross-sectional features influence safety and 

operations. Since the separation of conflict points will generally improve safety, it is critical that 

the transportation industry understand how to balance access spacing decisions that 

accommodate the needs of the adjacent land use while also enhancing safety. This research 

effort, therefore, evaluated how drivers react to increased workload demands when navigating a 

corridor with a variety of driveways and varying geometric characteristics. This research effort 

used field analysis complemented by micro-simulation evaluations as a way to try to identify 

critical cross-sectional elements that must be included in consideration of access spacing 

decisions.  

The research team utilized crash data, traffic data, and roadway information from driveway 

locations in Oregon, Arkansas and Oklahoma. The researchers supplemented the data with 

digital videos acquired during field studies of the sites. The traffic videos helped the research 

team better understand how road features and traffic influenced driver behavior at selected urban 

arterial driveway locations. As part of this effort, the research team conducted gap-acceptance 

studies to determine the critical gaps for driveway locations at arterial roads with and without 

bicycle lanes. This analysis included an evaluation of four different critical gap analysis methods 
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and their potential procedural biases for estimating the driveway operational performance. The 

report describes these field studies and summarizes how the gap acceptance varied at the 

different arterial driveway locations.  

The research team also performed micro-simulation analysis, using CORSIM, to examine the 

influence that median type, traffic volume, and access density have on traffic operational 

performance.  

Chapter 1.0 of this report introduces the purpose of the project and the objectives of this research 

effort. Chapter 2.0 reviews literature that summarized previous research efforts and identifies 

common methodologies used to conduct gap acceptance analysis. These methodologies are more 

fully described in Chapter 4.0. Chapter 3.0 illustrates data collection procedures and data 

reduction procedures, with data analysis results presented in detail in Chapter 4.0. Chapter 5.0 

reviews the simulation procedure and results. Finally, Chapter 6.0 summarizes the conclusions 

and recommendations for the research effort. This report also includes a list of cited references 

(Chapter 7.0); a list of abbreviations (Appendix A); and geometric design features, traffic data 

and a detailed summary of data analysis results for each collection site (Appendix B).   
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2.0 LITERATURE REVIEW 

This research effort addresses driveway characteristics, based on gap analysis and micro-

simulation, and how select cross-sectional features such as median configuration and the 

presence of bicycle lanes can influence traffic operations. The reviewed literature explains a 

variety of critical gap procedures. Studies that utilized these various techniques are summarized 

in Section 2.1. Additional details as to how to conduct these procedures are included in Chapter 

4.0. Bicycle-lane sight distance in the vicinity of driveways is reviewed in Section 2.2.  

2.1 CRITICAL GAP 

The safe operation of intersections or driveways requires adequate sight distance to enable 

drivers to determine whether potential conflicting vehicles are present before entering the 

roadway safely. The primary definition for intersection sight distance has been provided by the 

American Association of State Highway and Transportation Officials (AASHTO) publication 

titled A Policy on Geometric Design for Streets and Highways (AASHTO, 2011), commonly 

known as the Green Book and referred to in this manner for the remainder of this document.  

Until 1994, the Green Book used a model that considered the acceleration behavior of the minor-

road vehicle and the deceleration behavior of a potentially conflicting major-road vehicle to 

determine intersection sight distance for stop-controlled intersections (AASHTO, 1994).  

Harwood et al. (1996), as presented in the National Cooperative Highway Research Program 

(NCHRP) Report 383, identified inconsistencies in the AASHTO model and recommended a 

revised model based on the gap-acceptance behavior of the minor-road driver. In more recent 

editions of the Green Book, the criteria for intersection sight distance for stop-controlled 

intersections have been fundamentally changed (AASHTO 2001, 2004, 2011). The updated 

method is based on the gap-acceptance behavior of the minor-road driver.  

Several researchers have performed field studies to measure gap acceptance as a means of 

assessing the intersection sight distance. Fitzpatrick et al. (1991) used field studies to obtain the 

gap-acceptance results for both right and left turns as shown in Table 2.1. The same research 

team also acquired gap-acceptance data at low volume and/or intersections as shown in Table 

2.2.   

Table 2.1: Gap-acceptance Field Study Results (Right and Left Turns) 

Probability of Accepting a Gap 

(%) 

Passenger Car 

(seconds) 

5-Axle Truck 

(seconds) 

50 6.5 8.5 

85 8.25 10.0 

Source: Fitzpatrick et al. (1991) 
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Table 2.2: Gap-acceptance Field Study Results (Right and Left Turns - Low Volume) 

Probability of Accepting a Gap 

(%) 

Passenger Car 

(seconds) 

5-Axle Truck 

(seconds) 

85 10.5 15.0 

Source: Fitzpatrick et al. (1991) 

Prior to 2001, the California Department of Transportation (CALTRANS) required that a vehicle 

must be visible for 7.5 seconds to determine the corner sight distance at unsignalized 

intersections. This threshold was assumed to be adequate for crossing and turning maneuvers. 

For left-turning vehicles on two-lane roadways, this approach resulted in some slowing of the 

vehicle on the major facility. For left-turning vehicles on four-lane facilities, a 7.5 second time 

for sight distance to the outside lane (i.e., the near lane) provides increased sight distance for left-

turning vehicles to clear oncoming vehicles in the inside lane. CALTRANS did not apply the 

corner sight distance requirements to urban driveways.  

A 7.0-second gap is supported by the 1984 and 1990 Green Book, the field studies from the 

Fitzpatrick et al. effort, and as the standard used by Michigan. The 1990 Green Book states that 

“a minimum of seven seconds should be available to the driver of a passenger vehicle crossing 

the through lanes” of a local road or street. Also, the “sight distance should be sufficient to 

permit a vehicle in the minor leg of the intersection to cross the travel way without requiring the 

approaching through traffic to slow down” (AASHTO, 1990). 

Some field studies have identified the minimum gap as 6.5 seconds. Two states, Michigan and 

California, used gap acceptance measures for intersection sight distance at stop-controlled 

intersections. The 85th percentile gap of 8.25 seconds applied to both right- and left-turning 

vehicles for moderate- to high-volume intersections. An 85th percentile gap of 10.5 seconds 

occurred at intersections with low volumes. 

Lerner et al. (1995) performed a field study of gap-acceptance evaluations that assessed older 

and younger drivers for through, right-turning, and left-turning maneuvers. Without actually 

executing turns or crossing maneuvers, test subjects seated in a stationary vehicle were asked to 

identify gaps that they would and would not accept. The critical gap for which 50 percent of 

drivers across all age groups indicated they would accept was approximately 7.0 seconds. This 

feedback did not include any significant differences based on time of day or site configuration or 

location. Gaps that would be accepted by male drivers were found to be approximately one 

second less than those female drivers would accept during the day time.  

Kyte et al. (1996) conducted an extensive field study of gap-acceptance behavior as part of a 

larger effort to develop capacity and level-of-service procedures for inclusion in the unsignalized 

intersections chapter in the Highway Capacity Manual (HCM) (TRB, 1994). Kyte et al. (1996) 

used the maximum likelihood method through a procedure developed by Troutbeck (1992) to 

analyze the gap-acceptance data collected at 44 unsignalized intersections in the United States. 

The research results are as shown in Table 2.3. 



7 

 

Table 2.3: Unsignalized Intersection Critical Gap Values 

a Heavy-vehicle adjustment is +1 second for single-lane sites and +2 seconds for multilane sites 

Source: Kyte et al. (1996) 

Harwood et al. (2000) developed and quantified an alternative intersection sight-distance model 

based on gap acceptance. This study used the Raff method (Raff and Hart, 1950) and logistic 

regression analysis to determine the critical gaps appropriate for use in intersection sight-distance 

design. The data analysis results are shown in Table 2.4. This research recommended that the 

sight distance along the major road for a passenger car at a stop-controlled intersection be based 

on a distance equal to 7.5 seconds of time for vehicles traveling at the design speed of the major 

road. Longer sight distances were recommended for minor-road approaches with sufficient truck 

volumes to warrant consideration of a truck as the design vehicle (see Table 2.5). Based on the 

analyses, Harwood et al. (2000) indicated that gap acceptance appears to be an appropriate basis 

for intersection sight-distance criteria for both passenger cars and trucks. The values shown in 

Table 2.5 also represent the current Green Book time-gap recommendations for left turns from a 

stop at locations where the minor road is stop-controlled and the major road is not (AASHTO, 

2011). 

Table 2.4: Major Road Critical Gaps (Right and Left Turns on a Major Road) 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Harwood et al. (2000) 

Geometry 

Maneuver 

Right turn 

from minor 

road 

Left turn 

from minor 

road 

Crossing 

maneuver from 

minor road 

Left turn 

from major 

road 

Base critical gap value for 

passenger cars at single-lane sites 

(seconds) 

6.2 7.1 6.5 4.1 

Multilane adjustment (seconds) 0.7 0.4 0.5 - 

Heavy-vehicle adjustment a 

(seconds) 

1-2 

Adjustment for minor-road grade 

(seconds/percent) 
0.1 0.2 0.1 - 

Adjustment for three-leg site 

(seconds) 
- - - -0.7 

Vehicle Type 
Travel time at design speed of major speed (seconds) 

Raff method Logistic method 

Right-turn maneuvers   

Passenger car 6.3 6.5 

Single-unit truck 8.4 9.5 

Combination truck 10.7 11.3 

Left-turn maneuvers   

Passenger car 8.0 8.2 

Single-unit truck 9.8 10.8 

Combination truck 10.0 12.2 
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Table 2.5: Recommended Travel Times for Determining Sight Distance for Left and Right Turns onto the 

Major Road at Stop-controlled Intersections 

 

 

 

 

 

 

 

 

Source: Harwood et al. (2000) 

 

Note that the recommended gap-acceptance values by Harwood et al. have been based on the 

critical gap with a probability of acceptance by the minor-road driver of 50 percent. Harwood et 

al. (2000) compared gap-acceptance results from various studies, as summarized in Table 2.6. 

 
Table 2.6: Comparison of Gap-acceptance Field Study Results from Various Studies 

Source: Harwood et al. (2000) 

As defined in the Highway Capacity Manual (TRB, 2000), the critical gap, tc, is the minimum 

time interval for the major-street traffic stream that allows intersection entry for one minor-street 

vehicle. For a two-way, stop-controlled intersection, base values for the critical gaps are shown 

in Table 2.7. The critical gaps for left turns from a major roadway are shown to be 4.1 seconds 

for both two-lane major streets and four-lane major streets. The critical gaps for right turns from 

a minor street are 6.2 seconds for two-lane major streets and an additional 0.7 seconds for four-

lane major streets. Base values for the critical gap for a six-lane major street are assumed to be 

the same as those for a four-lane major street. Adjustments are needed for these values to 

account for the presence of heavy vehicles, approach grade, T-intersections, and two-stage gap 

acceptance. 

As shown in Table 2.7, the critical gaps range from 4.1 to 7.5 seconds. Research has shown that 

critical gaps durations decrease as volume on the major facility increases. This decreased 

acceptable gap observation also corresponds to an increased waiting time for an entering vehicle 

or at locations where a two-way left-turn lane (TWLTL) is present.  

Vehicle Type Travel time at design speed of major speed (seconds) 

Passenger car 7.5 

Single-unit truck 9.5 

Combination truck 11.5 

Note: For left turns onto two-way highways with more than two lanes, add 0.5 s for passenger cars or 

0.7 s for trucks for each additional lane to be crossed.  

Maneuver 

Critical gap (seconds) 

Current study 

Raff Method 
Logistic 

Regression 
Lerner et al. (1995) Kyte et al. (1996) 

Right turn from minor road 6.3 6.5 7.0 6.2 

Left turn from minor road 8.0 8.2 7.0 7.0 

Note: Based on data for turns from stop-controlled intersections onto a two-lane major road 
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Table 2.7: Base Critical Gap for Two-way, Stop-controlled Intersection 

Vehicle Movement 
Base Critical Gap, tc (seconds) 

Two-lane Major Street Four-lane Major Street 

Left turn from major 4.1 4.1 

Right turn from minor 6.2 6.9 

Through traffic on minor 6.5 6.5 

Left turn from minor 7.1 7.5 

Source: Highway Capacity Manual (TRB, 2000) 

The most recent publication of the Highway Capacity Manual (TRB, 2010) has updated a few 

items associated with the critical gap at two-way, stop-controlled intersections, but has retained 

the basic approach. “Critical gap” has been replaced by the term “critical headway,” where a gap 

represents the distance from the rear of the first vehicle to the front of a second vehicle and 

headway represents the distance from the front of the first vehicle to the front of a second 

vehicle. Critical headways for six-lane major streets have been added as shown in Table 2.8. 

Table 2.8: Base Critical Gap for Two-way, Stop-controlled Intersection 

Vehicle Movement 

Base Critical Gap, tc (seconds) 

Two-lane 

Major Street 

Four-lane 

Major Street 

Six-lane 

Major Street 

Left turn from major 4.1 4.1 5.3 

Right turn from minor 6.2 6.9 7.1 

Through traffic on minor 6.5 6.5 6.5 

Left turn from minor 7.1 7.5 6.4 

Source: Highway Capacity Manual (TRB, 2010) 

In the Green Book (AASHTO, 2011), the intersection sight distance is based on a gap-acceptance 

concept. It assumes that drivers on the major road do not need to reduce their initial speed by 

more than 30 percent (so less than 70 percent of the initial speed is expected to be maintained). 

The intersection sight distance is determined from the size of acceptable gap required for a driver 

to enter the roadway. This distance is depicted by Equation 2-1. 

                                                             d 1.47 m cV t                                                              (2-1) 

Where,  

d = required intersection sight distance along a major road, ft; 

Vm = design speed for the major road, mph;  

tc = gap that drivers will accept for entering roadway, sec. 

For vehicles turning right from a minor road to a major road, the required acceptable gaps are 

provided in Table 2.9. Adjustments for approach grade and for number of lanes are shown in the 

footnotes of the table. The required intersection sight distance for crossing a roadway from a stop 

is shown in Table 2.10.  
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Table 2.9: Time Gap for Case B2-Right Turn from Stop and Case B3-Crossing Maneuver 

Design Vehicle Travel time at design speed of major speed * (seconds) 

Passenger car 6.5 

Single-unit truck 8.5 

Combination truck 10.5 

*Base conditions: 

Two-lane highways with no median and grades ≤  3 percent; 

*Adjustment for multilane highways: 

For crossing a major road with more than two lanes, add 0.5 seconds for 

passenger cars and 0.7 seconds for trucks for each additional lane to be crossed 

and for narrow medians that cannot store the design vehicle; 

*Adjustment for multilane highways: 

If the approach grade on the minor road is an upgrade that exceeds 3 percent, 

add 0.1 seconds per percent grade; 

 

Source: Green Book (AASHTO, 2011) 

  
Table 2.10: Design Intersection Sight Distance - Case B2,  

Right Turn from Stop and Case B3, Crossing Maneuver (U.S. Customary) 

Design Speed 

(mph) 

Stopping Sight Distance 

(feet) 

Right-turn Lanes and 

Crossing-intersection Sight 

Distance for Passenger 

Cars (feet) 

20 115 195 

25 155 240 

30 200 290 

35 250 335 

40 305 385 

45 360 430 

50 425 480 

55 495 530 

60 570 575 

65 645 625 

70 730 670 

Source: Adapted from the Green Book (AASHTO, 2011) 

The required intersection sight distance for left turns from the major road is the distance traveled 

by an approaching vehicle at the design speed of the major roadway for the distances shown in 

Table 2.11. Generally, there is not a need to perform a separate check for this condition where 

sight distance for stop-controlled intersections and for yield-controlled intersections is provided. 

It is helpful, however, to confirm this information at three-legged intersections, at midblock 

approaches or driveways, and at locations on horizontal curves or with sight obstructions present 

in the median. 
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Table 2.11: Time Gap for Case F, Left Turns from the Major Road 

Design Vehicle Travel Time (sec) at Design Speed of Major Road* (seconds) 

Passenger Car 5.5 

Single-Unit Truck 6.5 

Combination Truck 7.5 
*Adjustment for multilane highways: 

For left turns that must cross more than one apposing lane, add 0.5 seconds for 

passenger cars and 0.7 seconds for trucks for each additional lane to be crossed. 

Source: Green Book (AASHTO, 2011) 

In Transportation and Land Development (Stover and Koepke, 2002), the intersection sight 

distances for left turns from a major roadway are longer than distances that are based on the gap-

acceptance criteria in the 2001 edition of the Green Book. The intersection sight distances shown 

were based on evaluations of the perception-reaction time and the maneuver time of passenger 

vehicle drivers making left turns from two-lane roadways (Micsky and Mason, 1996). They 

found an average perception-reaction time of 6.3 to 7.0 seconds, a value that is longer than the 

5.5 gap size indicated in the 2001 AASHTO criteria. They also noted that the 85th percentile 

time ranged from 6.8 to 8.5 seconds, with a turning maneuver of approximately 4.2 seconds 

(Micsky and Mason, 1996). 

2.2 BICYCLE LANES AND ON-STREET PARKING 

In urban areas, interactions between vehicles at driveways and on-street parked cars, motorized 

vehicles, bicycles and pedestrians create complicated roadway operations and increase the 

likelihood of collisions. Dixon et.al (2009) evaluated the required sight distance needed for 

motor vehicles at locations with and without bicycle lanes and on-street parking. The researchers 

also analyzed the appropriate design geometry needed to provide adequate sight distance for 

safety at driveways with and without bicycle lanes. Table 2.12 presents the different longitudinal 

parking setbacks for the left approach (S1) and the right approach (S2) on urban streets with 

vehicle lane widths of 12 feet and parking, buffer, and sidewalk widths of eight and six feet, 

respectively. The parking setbacks were developed based on two different perception-reaction 

time assumptions, 1.5 seconds and 2.0 seconds, respectively.  
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Table 2.12: Parking Setback Requirements for Typical Urban Street 

Speed 

(mph) 

Perception-Reaction Time of 1.5 seconds Perception-Reaction Time of 2.5 seconds 

S1 (feet) 

S2 -- Two 

Lanes (feet) 

S2 – Four 

Lanes (feet) S1 (feet) 

S2 -- Two 

Lanes (feet) 

S2 – Four 

Lanes (feet) 

Bike Lane Present 

20 34 29 20 55 45 33 

25 55 45 33 83 66 50 

30 83 66 50 114 89 68 

35 110 87 66 149 115 89 

40 145 113 87 187 144 112 

45 180 139 108 225 173 135 

50 218 167 131 270 206 162 

No Bike Lane 

20 44 34 24 68 52 37 

25 68 52 37 100 75 55 

30 100 75 55 136 101 76 

35 132 98 74 177 130 99 

40 173 127 96 221 162 124 

45 213 157 119 265 194 149 

50 257 188 144 318 232 178 

Note: Values shown are based on 12-ft lane widths, 5-ft bicycle lane widths (where applicable), 8-ft wide on-street 

parking, a 6-ft landscape buffer, and a 6-ft sidewalk. Shaded regions represent required longitudinal parking 

setbacks from the curb return that are greater than 120 ft. 

Source: Dixon et al. (2009) 

 

Dixon et al. concluded that adding a bicycle lane between the motor vehicle lanes and on-street 

parking provides additional sight distance and, as a result, enables better visibility of driveway 

operations. The use of a landscape buffer between the curb and the sidewalk helps to separate 

pedestrians from road operations, and provides additional space to enable vehicles that are 

exiting a driveway that does not have adequate sight distance to drive forward without 

encroaching on the operations of the bicycle lane or the sidewalk.  
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3.0 DATA COLLECTION AND REDUCTION PROCEDURES 

The goal of the data collection effort was to evaluate safety and operational performance at a 

variety of commercial driveways characterized by different traffic volume and cross-section 

configurations. To achieve this objective, members of the research team recorded the arrival and 

departure times of vehicles approaching the driveway (as they exit the site or approach on the 

adjacent street) in preparation for evaluating driveway operations and the associated gap 

acceptance. This chapter provides an overview of the driveway site selection, data collection, and 

data reduction procedures for driveway analysis.  

3.1 DATA COLLECTION PROCESS 

To assess driveway safety and operations (through the use of gap-acceptance studies), the 

research team collected data at five Oregon sites, two Arkansas sites, and one Oklahoma 

location, as summarized in Table 3.1. The eight study sites were located along urban and 

suburban commercial corridors. The data collection effort incorporated video-based technology 

as a method to collect vehicle arrival and departure time data at different locations and for 

varying time periods for the study sites. This type of traffic data enabled the research team to 

obtain high-quality, accurate traffic-operational information, including specific arrival and 

departure times. 

3.1.1 Data Collection Site Selection 

Driveway locations vary by configuration, traffic volume, vehicle speeds, collision history, and a 

variety of other characteristics. In an effort to eliminate the effect of the various roadway 

features, the researchers established the following criteria for selection of candidate data 

collection sites: 

a) Data collected at unsignalized retail driveways in urban/suburban areas; 

b) Through roadway with four standard travel lanes with either a TWLTL, turn lane in 

median, or median without an opening; 

c) Through roadway has a daily traffic volume greater than 20,000 veh/day; 

d) Through roadway is characterized by relatively straight and flat geometry (good sight 

distance); 

e) Driveway intersects through roadway at what appears to be close to a 90 degree angle; 

f) Driveway is straight and not steep (vertical slope less than 9 percent) for minimum of 40 

feet from right edge of through lane; and 

g) Driveway edge is at least 500 feet from edge of nearest signalized intersection. 
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Table 3.1: Data Collection Site Characteristics 

State Date Site 
Land Use  

Accessed 

Video 

Length 

(hours) 

ADT 

(vpd) 

Roadway 

Design 

Posted 

Speed 

(mph) 

Oregon 

(Bicycle Lanes, 

TWLTL) 

9/15/2011 1 Office Supply 3 22,000 
4 lanes + 

TWLTL 
35 

9/21/2011 2 
Large Size 

Commercial #1 
3 28,430 

4 lanes + 

TWLTL 
35 

11/01/2011 3 
Large Size 

Commercial #2 
3 31,850 

4 lanes + 

TWLTL 
35 

11/08/2011 4 
Large Size 

Commercial #3 
3 30,470 

4 lanes + 

TWLTL 
35 

Oregon 

(Bicycle Lanes, 

Nontraversable 

Median) 

11/10/2011 5 
Medium Size 

Commercial 
3 37,700 

4 lanes + 

nontraversable 

median 

45 

Arkansas (No 

Bicycle Lanes, 

TWLTL) 

6/24/2011 6a 
Restaurant #1 – 

Day 1  
0.5 34,000 

4 lanes + 

TWLTL 
50 

6/29/2011 6b 
Restaurant #1 – 

Day 2 
1.5 34,000 

4 lanes + 

TWLTL 
50 

6/2/2011 7a 

Large Size 

Commercial #4 – 

Day 1 

1 38,000 
4 lanes + 

TWLTL 
45 

7/25/2011 7b 

Large Size 

Commercial #4 – 

Day 2 

1 38,000 
4 lanes + 

TWLTL 
45 

Oklahoma (No 

Bicycle Lanes, 

Nontraversable 

Median) 

8/4/2011 8 Restaurant #2 1.8 28,000 

4 lanes + 

nontraversable 

median 

45 

 

3.1.2 Data Collection Sites 

By applying the site selection criteria identified in Section 3.1.1, the research team identified 

eight candidate sites located adjacent to urban and suburban commercial corridors. The five 

Oregon sites included bicycle lanes while the two Arkansas sites and one Oklahoma site did not 

have bicycle lanes. As shown in Table 3.1, video data collection for each of the five Oregon sites 

extended for a three-hour period. In Arkansas and Oklahoma, the members of the research team 

collected traffic video during five separate time periods spanning three sites, with each video 

lasting between 0.5 and 1.8 hours. In an effort to study a variety of available traffic gaps, all data 

collection occurred at non-peak time periods.  

A gap can be defined as the space between the back of a leading car and the front of a trailing car, 

while space headway is the distance between common locations (say the front bumper) on 

subsequent vehicles and includes the length of the vehicle in the overall measurement. Though 

the purpose of this assessment is to evaluate acceptable gaps, the analysis typically is based on 

headway data as this information is more straightforward to acquire. 

In total, the final study sites included four Oregon locations and two Arkansas locations 

characterized by four lanes plus a TWLTL. In addition, the data collection included information 
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for one Oregon location and one Oklahoma location with four lanes plus a nontraversable 

median. Figure 3.2 shows an example of one of the Oregon data collection sites.  

 
 

 
 

 Source:  Google Earth 
Figure 3.1: Data Collection Site Example 
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Table 3.2 provides a sample data collection summary form for one of the study sites. Site 

information includes basic location, traffic, speed, and geometric design characteristics.  

Table 3.2: Detailed Site Information 

Location Information 

Address 5250 Commercial Street Southeast 

City Salem 

State OR 

Traffic Information 

ADT (vehicles/day) 30,470 

Posted Speed (mph) 35 

Field Speed Mean (mph) 36.1 

Cumulative Speed Distribution Curve  

 

Geometric Design Information – Roadway in Vicinity of Driveway 

Width of Roadway (ft)  

Number of Lanes 4 lanes + TWLTL 

Lane Width (ft) 12 

Present of Bicycle Lane Yes 

Present of Sidewalk Yes 

Driveway Spacing from Upstream Access 

Connection (ft) 
NA 

Driveway Spacing from Downstream Access 

Connection (ft) 
NA 

Geometric Design Information – Driveway 

Width of Driveway (ft) 40 

Number of Lanes 3 

Lane Width (ft) 12,12,16 

Median in Driveway None 

Distance to Nearest Upstream Signal 672 

Data Collection Information 

Date Nov 8th & 11th, 2011 

Duration of Traffic Videos 3 hours 

Weather Cloudy 

Pavement Surface Condition Dry 
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3.1.3 Data Collection Protocol 

Consistent data collection protocols help to ensure that the acquired data can be compared across 

sites without concerns regarding differences in measurement and analysis techniques. The 

following seven steps demonstrate the data collection protocol established for this effort. 

1. Record the posted speed limit. 

2. Measure the distance from the left edge of the left (inner) through lane to the right edge 

of the right (outer) through lane. 

3. Collect a 100-vehicle sample of the speeds of through vehicles opposing the left-turn 

entry into the driveway.  

4. Place stakes at intervals of 50 feet from near edge of driveway. In addition, place 

pavement tape in roadway at this location (see Figure 3.2). 

5. Position one video recorder at a distance 250 feet in advance of the near edge of the 

driveway; orient the video recorder perpendicular to the street so as to monitor upstream 

gaps in traffic. Position the second video recorder 50 feet further upstream of the other 

camera, and orient this second camera so as to capture the vehicles entering and exiting 

the driveway. Synchronize the cameras so that a common item is visible in both fields of 

view and the clocks start at the same time. 

6. Record gaps for passenger cars only (exclude vehicles that are pulling a trailer). Be sure 

to indicate if a vehicle is turning left into the driveway or right out of driveway (where 

applicable). 

7. At each driveway, record a minimum of 60 gap acceptances and 60 rejections.  

 

 

Figure 3.2: Video Camera Orientation 

250 ft 

Mark 50 ft intervals with pavement tape,   
stakes, etc., align stakes on a taper 

50 ft 

Pavement tape 
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3.1.4  Data Reduction 

Following data collection, team members merged the video acquired in the field so that both 

camera views would be visible in a blended video file prior to data reduction (see Figure 3.3). 

The video image shown at the top left corner demonstrates observed gaps in traffic. The merged 

video also included a time code with an accuracy of one frame. Members of the research team 

then reduced the large sample size of the through traffic gap data to assess the arrival and 

departure times for individual vehicles. Figure 3.4 shows an example of data reduction using an 

excel data sheet. This resulting spreadsheet was then the source of information for subsequent 

data analysis tasks (see Chapter 4.0). 

 

Figure 3.3: Site Videos with Time Stamp 
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Figure 3.4: Example of Excel Spreadsheet and Associated Data Reduction 
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4.0 FIELD DATA ANALYSIS AND FINDINGS 

The field data analysis for this effort included a summary statistics evaluation of available crash 

data for the study sites, as well as an operational analysis of the observed gap-acceptance 

thresholds based on road cross-section configurations. The gap-acceptance analysis focused on 

gap acceptance for left turns from the major street onto the driveway and for right turns from the 

driveway onto the major street. Chapter 4 summarizes this field data analysis and is further 

complemented by the simulation analysis presented in Chapter 5.  

4.1 CRASH ANALYSIS 

The research team was able to acquire historic crash data for a period of five years for the five 

Oregon sites and a four-year crash history at the two Arkansas locations. Unfortunately, crash 

data was not available for the Oklahoma nontraversable median location. The crash data acquired 

included corridor crash information, exclusive of the upstream and downstream signalized 

intersection crashes. In many instances, the exact crash location is not clear due to common crash 

data reporting and measurement inefficiencies.  

Upon initial inspection, the most common midblock crash types that occurred at the sites 

included turning / angle crashes and rear-end collisions. As shown in Figure 4.1, the Oregon and 

the Arkansas TWLTL sites also experienced a variety of other crash types including sideswipe, 

head-on, single vehicle, and (in Oregon) bicycle and pedestrian crashes. By contrast, the Oregon 

site with a nontraversable median experienced only rear-end collisions (at 86 percent) and turn / 

angle crashes (at 14 percent). Though this observation represents a very small sample of 

corridors, it does indicate that traffic operations in the vicinity of driveways appear to have fewer 

conflicts at locations with restrictive medians.  Of course, the construction of a median prohibits 

left-turn maneuvers into a driveway, and so the change in collision distributions may be simply 

due to the elimination of this movement. 

Upon closer examination of Figure 4.1(a) and Figure 4.1(b), the Oregon sites appear to have a 

larger percentage of the turn / angle crashes than the Arkansas sites. In addition, the 5 percent 

bicycle crashes at the Oregon sites were also associated with turning maneuvers for motor 

vehicles and straight maneuvers for bicycles.  

The Arkansas crash data did not include any bicycle crashes, nor did the Arkansas sites have 

bicycle lanes. From the knowledge members of the research team have of the area, it is likely 

that bicycle use in this environment is less than that in Oregon, and those choosing the bicycle 

mode would avoid the study corridors and find a more suitable route. 
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(a) Oregon Corridor Collision Types -- TWLTL 

& Bike Lanes (2007-2011) 

(b) Arkansas Corridor Collision Types --  

TWLTL & No Bike Lanes (2008-2011) 

 
(c) Oregon Corridor Collision Types -- Non-Traversable Median & Bike Lanes (2007-2011) 

Figure 4.1: Distribution of Collision Types along Oregon and Arkansas Study Corridors 

 

Typically, the number of crashes is also an important consideration as it reflects the magnitude of 

the crash problem. Since the study corridors have varying lengths and multiple driveways, 

linkage of a specific crash to a candidate driveway was not possible. Consequently, the research 

summary does not include the total number of crashes for each site since this corridor-specific 

information may not be directly applicable to a solitary driveway along the corridor. 

Due to the limited amount of information available through the use of the crash data, the research 

team also evaluated the gap-acceptance behavior of drivers to determine if the added space 

provided by the bicycle lane would influence accepted gaps. The driver acceptance of very small 

gaps can provide useful operational information, and also help identify locations where the 

drivers may be subjected to potentially riskier maneuvers due to these shorter gaps. This gap 

analysis is reviewed in the following section. 
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4.2 OPERATIONAL (GAP) ANALYSIS 

As previously indicated, to assess the operations and safety of the driveway locations included in 

this study and their associated roadway cross-section configuration, the research team evaluated 

the critical gaps at each site to determine if any differences were readily apparent. Critical gap 

values demonstrate the smallest gap in traffic for which a driver is willing to execute a turn 

maneuver. This value can be influenced by the road cross section (how many lanes they must 

traverse), available sight distance, and traffic volume levels. Most drivers can be expected to 

accept a larger-size gap (e.g., 15 seconds) because their perceived risk diminishes as the gap time 

increases. As a result, larger size gaps do not provide meaningful information regarding drivers’ 

gap-acceptance behavior during more congested conditions. 

Previous gap-acceptance studies have used various gap-exclusion thresholds with 12 seconds 

identified as a common value used to exclude data from the gap-analysis data set. For this study, 

the research team specifically defined the maximum accepted gap value for each driveway site 

depending on each site’s unique data set rather than using 12 seconds as a general threshold for 

all the sites. As shown in Figure 4.2, the observed maximum accepted gaps are depicted in 

contrast to the generally accepted 12-second value. For left-turn maneuvers into the driveway, 

the maximum accepted gap values were all less than 12 seconds. This observation would suggest 

that including data with gaps greater than 12 seconds for left-turn maneuvers into the driveway 

has the possibility to suggest a greater critical gap value than is actually experienced by most 

drivers. In fact, the maximum rejected gap is likely to provide more powerful information than 

the maximum accepted gap, as this value may simply be an artifact of the available gaps in the 

traffic stream. The right-turn maneuver out of the driveway can usually be expected to have a 

larger gap since the vehicle is entering the traffic stream and needs to accelerate without 

substantially affecting traffic. As shown by the square symbols in Figure 4.2, the maximum 

accepted gap by drivers turning right out of a driveway fluctuated between 6 and 14.5 seconds, 

with the values of 6 and 7.5 seconds specifically associated with raised median locations.  

 
Figure 4.2: Maximum Accepted Gap Values per Site 
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The published literature suggests a number of alternative modeling techniques for evaluating the 

critical gap. For this analysis, the research team evaluated the Greenshields, cumulative 

acceptance, Raff, and logit methods. Unfortunately, these various approaches can provide 

substantially different results. Consequently, the following sections briefly review each of the 

four methods and a sample application to this study. The previously identified maximum 

accepted gap values were used as an upper boundary for truncating the gap data for these 

analyses, thereby excluding excessively long gap data. 

4.2.1 Greenshields Method 

The Greenshields Method defines a critical gap as the gap time with the same number of 

acceptances and rejections at a location. If there is not a gap-time category with the exact same 

number of acceptances and rejections, then the time category with the closest number of 

acceptances and rejections should be used as the critical gap-time category. The mid-point of this 

critical gap-time category is then referred to as the critical gap. Small sample sizes may affect 

and distort this analysis (Mason et al., 1990).  

For this study, the research team developed a histogram depicting the total number of 

acceptances and rejections for each 0.5-second increment time category. Figure 4.3 represents an 

example histogram for the gap-acceptance data for the left-turning maneuvers into the driveway 

at the large commercial site #1 in Oregon. For this example site, the resulting critical gap, per the 

Greenshields method, had a value of 5.5 seconds. This method is particularly sensitive to the 

value used for the maximum accepted gap and, if the data is not truncated appropriately, could 

introduce a bias resulting in a higher critical gap than appropriate. As shown in Figure 4.3a and 

contrasted to Figure 4.3b, it is also possible that, for large sample sizes, the truncated values will 

provide similar results. Due to the potential procedural biases, the research team chose to remove 

the Greenshields Method during the final analysis stage of this research effort. 

4.2.2 Cumulative Acceptance Method 

The goal of the Cumulative Acceptance Method is to identify the gap that would be acceptable to 

85 percent of the drivers. To apply this method, the cumulative acceptance percentage is 

calculated for each particular gap-time category. The critical gap is then identified as the gap 

length where the cumulative percentage is greater than or equal to 15 percent (suggesting the 

remaining 85 percent of drivers would accept the value).  

For the left-turning gap data at the large commercial site #1 in Oregon, Figure 4.4 demonstrates 

that the 15-percent cumulative value occurs for a gap length of 7.25 seconds, the assumed critical 

gap. If the gap data is truncated and the upper boundary is limited to a maximum accepted gap of 

9.5 seconds, the resulting critical gap would then change to a value of 5.75 seconds. 

Consequently, the Cumulative Acceptance Method suffers in a manner similar to that of the 

Greenshields Method in that it is very sensitive to sample size and acceptable gap truncation 

values. As a result, the Cumulative Acceptance Method results were also excluded during the 

final project analysis stages. 
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(a) Greenshields Method – Left Turns (All Gaps) 

 

 

(b) Greenshields Method – Left Turns (Only Gaps ≤ 9.5 seconds) 

Figure 4.3: Example Greenshields Method Left-Turn Gap Acceptance at Large Commercial Site #1 
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(a) Cumulative Acceptance Method – Left Turns (All Gaps) 

 

 
 

(b)  Cumulative Acceptance Method – Left Turns (Only Gaps ≤ 9.5 seconds) 

Figure 4.4: Example Cumulative Acceptance Method Approach at Large Commercial Site #1 
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4.2.3 Raff Method 

The Raff Method, first proposed in the late 1940s, is one of the most commonly used analysis 

methods to determine critical gap. It is both conceptually logical and computationally simple to 

apply. Using the Raff approach, the critical gap occurs where the accumulated acceptance 

percentage equals the accumulated rejection percentage. The accumulated acceptance percentage 

is obtained by determining the total number of acceptances for a particular overall gap range and 

other smaller gap ranges, and then dividing this value by the total number of acceptances. The 

rejection percentage is obtained by accumulating the total number of rejections for a particular 

gap-range interval or larger. Graphically, this method can be represented as a Y-axis plot of the 

accumulated acceptance percentage and rejection percentage against an X-axis plot of the gap-

time interval category. The intersection of the acceptance and rejection curves corresponds to the 

critical gap value. 

Figure 4.5 shows the acceptance and rejection curves with left-turning gap data collected at the 

large commercial site #1 in Oregon. The resulting critical gap value is 5.0 seconds (based on an 

upper gap of 9.5 seconds), as determined by the Raff Method. 
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(a) Raff Method – Left Turns (All Gaps) 

 

 
(b)  Raff Method – Left Turns (Only Gaps ≤ 9.5 seconds) 

Figure 4.5:  Raff Method Approach at Large Commercial Site #1 

 

4.2.4 Logit Method 

The use of logit models for estimating probability has been widely accepted in traffic operations 

research for many years. For assessment of the critical gap the Logit Method, also known as the 

logistic regression method, is basically a weighted linear regression model. It can be used to 

estimate the probability that an event will occur (i.e., driver will accept a gap). For this analysis, 

the independent variable has a binary value of either zero or one (or no versus yes). The basic 

logistic regression model is shown below: 
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(4-1) 

 

Where,  

         p = probability of accepting a gap. 

The logit of the logistic regression model is then shown as: 

 

                                                                             

(4-2) 

Where,  

         β0, β1= regression coefficient; 

          x = gap size or gap length.  

According to the logit model, the critical gap is the x-value when p is equal to 0.5.  

Figure 4.6 presents the gap acceptance probability over gap size. By substituting a p value of 0.5, 

the critical gap size determined using the logit method is 5.66 seconds for the large commercial 

site #1 in Oregon. 

 
Figure 4.6: Logit Model Approach 
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4.3 RESULTS 

For comparison purposes, the research team considered four common gap-acceptance 

techniques; however, ultimately the more stable Raff and Logit methods were used for the final 

critical gap assessment of the individual sites. Since the two methods use very different 

approaches, the critical gaps determined using these methods are expected to differ. 

Based on the Raff and Logit critical gap methods, the data analysis for the right turn out of the 

driveway maneuver determined that the critical gap values of the nontraversable median sites (#5 

and #8) experienced the shortest time gaps based on the Logit method and, with only one 

exception at Site 6b, were the shortest time gaps for the Raff Model. This observation suggests 

that at roadway locations that do not have left-turn movements into driveways, the right-turning 

drivers appear willing to accept smaller gaps. Though it would be helpful to evaluate additional 

sites, this finding suggests that different cross-sectional roadway design (i.e., median versus 

TWLTL) may influence the right-turning gap acceptance behavior at the driveway locations.  

 
Figure 4.7: Critical Gap Comparison of Right Turns at Study Driveways 

 

Sites #1-5 represent the Oregon study locations where bicycle lanes are present. Sites #6a – 7b 

and Site #8 represent the Arkansas and Oklahoma sites, respectively, where bicycle lanes were 

not present. There is no clear evidence that the presence of a bicycle lane influenced the critical 

gap since the values appear similar for both configurations. 
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Table 4.1: Critical Gap Values for Study Driveways 

State Site 
Land Use 

Accessed 

Left-Turn Critical Gap Right-Turn Critical Gap 

Raff 

Method 

(sec) 

Logit 

Method 

(sec) 

Sample 

Size 

(turns) 

Raff 

Method 

(sec) 

Logit 

Method 

(sec) 

Sample 

Size 

(turns) 

Oregon 

(Bicycle Lanes, 

TWLTL) 

1 Office Supply 4.25 6.00 341 5.50 7.20 259 

2 
Large Size 

Commercial #1 
4.25 5.72 896 5.75 6.14 379 

3 
Large Size 

Commercial #2 
3.75 4.97 1351 5.00 6.24 395 

4 
Large Size 

Commercial #3 
5.00 5.67 127 5.25 6.00 457 

Oregon 

(Bicycle Lanes, 

Nontraversable 

Median) 
5 

Medium Size 

Commercial 

Not Applicable (Nontraversable 

Median) 
4.50 5.74 563 

Arkansas (No 

Bicycle Lanes, 

TWLTL) 

6a 
Restaurant #1 – 

Day 1  
5.40 5.77 66 5.00 7.00 12 

6b 
Restaurant #1 – 

Day 2 
4.00 6.45 546 4.25 7.80 229 

7a 

Large Size 

Commercial #4 – 

Day 1 

3.00 6.20 537 6.25 6.16 168 

7b 

Large Size 

Commercial #4 – 

Day 2 

3.50 6.00 361 6.25 7.50 131 

Oklahoma (No 

Bicycle Lanes, 

Nontraversable 

Median) 

8 Restaurant #2 
Not Applicable (Nontraversable 

Median) 
4.75 5.42 75 

 

Table 4.1 summarizes the critical gap values for all study locations. For the Arkansas sites where 

data collection occurred across multiple days, the critical gap is provided for each day since 

traffic volume and time-of-day characteristics could contribute to critical gap values. As 

previously noted, the observed critical gaps for right-turn maneuvers does not appear to 

substantially differ for facilities with and without bicycle lanes.  

Table 4.1 also includes the calculated critical gap values for vehicles turning left from the 

TWLTL into the study driveways. Since the Oregon locations have a bicycle lane present, initial 

inspection indicates that the vehicle traverses an additional five to six feet during the turning 

maneuver. It may also be the case, however, that vehicle drivers are simply trying to clear the far 

side of the oncoming lane and do not directly consider the bicycle lane unless a cyclist is present. 

One could hypothesize that the additional distance that the left-turning vehicle must traverse 

would require additional time, resulting in a larger critical gap. However, by inspection of the 

values shown in this table and as graphically depicted in Figure 4.8, the presence of a bicycle 

lane does not appear to extend the critical gap value. The locations with bicycle lanes have a 

similar average critical gap value as those locations that do not have bicycle lanes. Sites #5 and 
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#8 are not included in Figure 4.8 because these are the two sites with nontraversable medians, 

and so no vehicles are permitted to turn left into the driveway at these locations. 

 

 
Figure 4.8: Critical Gap Comparison of Left Turns into Study Driveways 
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5.0 SIMULATION ANALYSIS 

Studies have shown that access density (total number of access points per mile in both travel 

directions) may directly influence safety and operational performance for through traffic along a 

corridor. The number of crashes generally has an increasing relationship with access density, as 

closely spaced access points create more complex traffic conflicts. The published literature 

indicated that road geometric characteristics (e.g., median type) influence safety performance. 

According to NCHRP Report 420 (Gluck et al., 1999), the crash rates on roadways with a 

nontraversable median are much lower than for a roadway with a TWLTL. Numerous studies 

have recommended that strategic access management applications can help improve the roadway 

operational performance. Analysis in the HCM further indicates that each access point would 

reduce the free-flow speed by 0.15 mph (TRB, 2010). The HCM employs the access density as 

one of the adjustment factors for determining level of service.  

The primary purpose of this study is to investigate the influence that access density (access 

spacing) and the roadway cross-sectional features of medians and bicycle lanes can have on 

traffic performance. Previous sections of this report reviewed the observed crash history and 

driveway critical gaps. To further assess how the driveway density may directly influence delay 

and travel time along the corridor, the project team used micro-simulation for this operational 

analysis.  

5.1 METHODOLOGY FOR ANALYSES 

5.1.1 Simulation Models 

For the simulation analysis, the research team created hypothetical one-mile corridor models in 

the micro-simulation program CORSIM. Each corridor included an equal numbers of driveways 

on both sides of the road. For one scenario, referred to as aligned, the driveways were located 

directly opposite of each other so that their centerlines lined up. For the second scenario, referred 

to as staggered for the remainder of this report, the driveways were not located opposite to each 

other and were offset by known values. Figure 5.1 shows an example of aligned driveways and 

staggered driveways for a total number of 40 driveways combined for both sides of the road. 

The project team then varied the access density for the aligned and staggered scenarios as a 

means of determining how driveway placement combined with density may influence traffic 

operations at driveways. In this study, the research team evaluated access density for 20 aligned 

and 40 staggered driveways. This analysis also included a scenario with 60 driveways for the 

aligned configuration, but the 60-driveway configuration could not be achieved for the staggered 

orientation. The driveway configurations were then evaluated for the two different median 

treatments (i.e., raised median and TWLTL) and for four levels of traffic volume for the major 

street (i.e., 1,000, 1,500, 2,000, and 2,500 vehicles per hour for each travel direction). Overall, 

the simulation task evaluated a total of 40 alternative driveway scenarios [aligned (3 driveway 
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densities x 2 median treatments x 4 traffic volume thresholds) + staggered (2 driveway densities 

x 2 medians x 4 traffic volume thresholds)].  

 

 

(a) Aligned driveways 

 

(b) Staggered driveways 

 

Figure 5.1: Screen Shot of Driveway Layout 

 

Due to the hypothetical nature of this simulation and the goal to maintain some consistency 

between the various driveway configurations, the research team assigned a traffic volume 

distribution at the driveways along the TWLTL median treatment corridors as 30 percent turning 

left and 70 percent turning right. This assumption of 70 percent right-turn vehicles was based on 

field observations during the gap analysis study. At study locations with raised medians, left 
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turns are not permitted except at intersection and median break locations, so all of the vehicles 

exiting a driveway were required to turn right. To maintain a balanced network (as many 

vehicles leaving as entering the roadway), the traffic volume distribution on the major street was 

based on the overall major street volume, driveway volume, and number of driveways in each 

scenario. The research team used a threshold that assumed the volume of vehicles exiting the 

node was within a 5 percent standard deviation of vehicles entering the node. For all simulated 

corridors, the travel speed was assumed to be 40 mph along the corridor and 20 mph at the 

driveways.  

5.1.2 Number of Simulation Runs and Time  

A single simulation can provide a variety of results that are strongly influenced by the unique 

random seed number used to generate the vehicles and driver types. Therefore, multiple runs of 

each scenario are recommended so that average conditions can be identified for each 

configuration. For each alternative model, the research team simulated the traffic conditions five 

times, each time using different random seeds so as to eliminate the impact of the stochastic 

nature of CORSIM. So that comparisons could be made between the different roadway 

scenarios, the research team used the same set of five random seeds for all alternatives. This 

approach helped to minimize any possible anomalies associated with a single random seed value, 

and also helped to ensure the differences among all alternatives were associated with the 

alternatives themselves (Holm et al., 2007). For each simulation run, the team established an 

initialization period of 30 minutes to ensure that the overall system reached an equilibrium 

condition before evaluation of performance measures. The duration of each measured simulation, 

following completion of the initialization, lasted for 7,200 seconds (the maximum approximate 

time expected for a vehicle to traverse the entire corridor during constrained traffic conditions).  

As a result of the simulation activities, the research team acquired traffic performance data 

(delay and travel time) along the corridor, and used this information as the measurement of 

effectiveness (MOE) for data analysis so that the various scenarios could be compared. These 

MOE values are reviewed and contrasted in the following section. 

5.2 FINDINGS   

The individual MOE values for varying traffic volumes are depicted in Table 5.1 (aligned 

driveways with a raised median); Table 5.2 (aligned driveways with a TWLTL); Table 5.3 

(staggered driveways with a raised median); and Table 5.4 (staggered driveways with a TWLTL). 

Each of these tables has companion figures (Figure 5.2 through Figure 5.5) that graphically 

illustrate the relationship between the delay per vehicle and the travel time contrasted to the 

traffic volume. The lines in the graphic then represent the driveway density condition for each 

strategy. Upon initial inspection, it can be noted that there is a similar trend across all scenarios. 

The delay and travel time increased as traffic volumes on the major street increased. Similarly, 

an increasing density in driveway spacing resulted in greater observed delay and travel time 

along the corridor.  

A close examination of the trend lines and the values across all scenarios reveals that the 

increasing rates and the values of MOE vary based on the specific configuration. The geometric 
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design of the corridor, the level of traffic volume, and access density appear to collectively 

influence the MOE output values.  

For Scenario 1 (aligned driveways and major street medians), Figure 5.2 demonstrates that even 

though the values associated with delay and travel time increased with higher traffic volume and 

increasing access density, the delay and travel time for each access spacing option remain 

reasonably similar (characterized by flatter lines in the figure). This could be explained by the 

simplicity of the geometric design. With driveways aligned across the road and a raised median 

installed along the length of the corridor, the traffic conflicts are largely simplified. Vehicles 

cannot execute left-turning maneuvers from a driveway to the major street or from the major 

street to the driveway. It can be seen that for the lowest traffic volume threshold (i.e., 1,000), the 

delay values for all measured levels of access density were similar. As traffic volume increased, 

however, more vehicles interact with each other, resulting in an increase in the delay and travel 

time for the more densely spaced driveway configurations.  

Table 5.1: MOE Values for Scenario 1 

Scenario 1: Aligned Driveways - Raised Median on Major Street 

MOE (second per vehicle) 
Major volume 

1,000 1,500 2,000 2,500 

Delay per Vehicle (AD=20) 4.73 4.85 4.80 5.27 

Delay per Vehicle (AD=40) 4.77 5.24 5.81 6.65 

Delay per Vehicle (AD=60) 4.82 5.50 6.12 7.44 

Travel Time per Vehicle (AD=20) 222.21 221.16 225.15 231.18 

Travel Time per Vehicle (AD=40) 233.19 230.05 233.13 239.87 

Travel Time per Vehicle (AD=60) 235.36 232.52 236.72 246.82 
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Figure 5.2: Scenario 1- Aligned Driveways with a Raised Median on Major Street 

 

Table 5.2 and Figure 5.3 show the simulation results for Scenario 2 (aligned driveways and a 

TWLTL). The trend lines for travel time appear to increase at a reasonably constant rate. The 

observed delay substantially increased when the access density and traffic volume increased. 

Comparing the two aligned driveway configurations (Scenario 1 and Scenario 2) demonstrates 

that delay and travel time are considerably greater at locations with a TWLTL than for the raised 

median configurations. This observation can be expected for higher-volume locations and more 

densely spaced access points since the left-turn option is not available at the median sites, 

resulting in smoother traffic flow and less delay along the median corridors. Similarly, corridors 

with a TWLTL that accommodate these left turns understandably have more vehicle conflicts at 

the higher volumes. These additional conflicts contribute to additional delay and travel time. 
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Table 5.2: MOE Values for Scenario 2 

Scenario 2: Aligned Driveways - TWLTL on Major Street 

MOE (second per vehicle) 
Major volume 

1,000 1,500 2,000 2,500 

Delay per Vehicle (AD=20) 19.90 26.75 29.28 34.65 

Delay per Vehicle (AD=40) 21.30 30.85 41.53 49.67 

Delay per Vehicle (AD=60) 25.37 31.57 42.51 50.75 

Travel Time per Vehicle (AD=20) 234.31 240.49 245.45 258.28 

Travel Time per Vehicle (AD=40) 243.97 249.89 263.25 274.74 

Travel Time per Vehicle (AD=60) 249.97 257.74 276.20 287.63 

 

 

 

Figure 5.3: Scenario 2 - Aligned Driveways with a TWLTL on Major Street 
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In Scenario 3 (staggered driveways and a raised median) and Scenario 4 (staggered driveways 

and a TWLTL), the research team assessed the additional impact that driveways that are not 

aligned with other driveways could add to the travel time and delay for a vehicle. The research 

team repeated the comparison previously described for Scenarios 1 and 2 for these additional 

staggered configurations. As previously indicated, the simulation tool limited the number of 

staggered driveways that could be positioned in the one-mile corridor, so only the 20 and 40 

access point options are included in this staggered assessment. 

As observed in Table 5.3 and Table 5.4 and shown in Figure 5.4 and Figure 5.5, the staggered 

configurations demonstrate a trend similar to that observed for the aligned configurations. Higher 

traffic volume on the major street and increasingly dense access spacing contribute to additional 

delays and travel times.  

The simulation comparisons can also be extended to assessing how the aligned versus staggered 

driveway orientations contribute to observed traffic operations. For example, corridors with 

staggered driveway placement experienced considerably greater delay per vehicle when 

compared to their aligned driveway counterparts. In many cases, the observed travel times for the 

lower-volume 1,000 vph were similar for all configurations (ranging from 210 up to 234 seconds 

per vehicle for an access density of 20). However, these values vary more dramatically as traffic 

volume and access density increase. 

 
Table 5.3: MOE Values for Scenario 3 

Scenario 3: Staggered Driveways – Raised Median on Major Street 

MOE (second per vehicle) 
Major volume 

1,000 1,500 2,000 2,500 

Delay per Vehicle (AD=20) 44.03 49.42 56.22 64.80 

Delay per Vehicle (AD=40) 51.75 56.78 62.37 71.59 

Travel Time per Vehicle (AD=20) 223.59 228.98 235.79 244.37 

Travel Time per Vehicle (AD=40) 231.34 236.38 241.97 251.19 
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Figure 5.4: Scenario 3 - Staggered Driveways with a Raised Median on Major Street 

 

Table 5.4: MOE Values for Scenario 4 

Scenario 4: Staggered Driveways – TWLTL on Major Street 

MOE (second per vehicle) 
Major volume 

1,000 1,500 2,000 2,500 

Delay per Vehicle (AD=20) 40.62 45.80 55.02 81.29 

Delay per Vehicle (AD=40) 56.65 64.38 75.28 91.79 

Travel Time per Vehicle (AD=20) 210.20 215.38 224.59 250.88 

Travel Time per Vehicle (AD=40) 236.25 243.98 254.88 271.38 
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Figure 5.5: Scenario 4 - Staggered Driveways with a TWLTL on Major Street 

 

Generally, the simulation study demonstrated that locations with raised medians are 

characterized by less delay and improved travel times when compared to locations with a 

TWLTL. The delays and travel times tend to increase with increased traffic volume and 

driveway density. The orientation of driveways on opposing sides of the streets also have some 

influence on increased delays for vehicles along the corridor; however, this influence is not as 

substantial as the increasing traffic volume and driveway density characteristics. 
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6.0 CONCLUSIONS AND RECOMMENDATIONS 

This study evaluated crashes, critical gaps, and traffic operations (based on micro-simulation) for 

a variety of driveway configurations. Field study sites were located in Oregon, Arkansas and 

Oklahoma and included arterial corridor sites with and without bicycle lanes as well as corridors 

with a raised median or a TWLTL. The research team evaluated the influence the bicycle 

facilities and median treatments had on driveway and corridor operations.  

For the crash analysis, the research team acquired road characteristic and historic crash 

information for driveway study sites, and noted that the Oregon location with a raised median 

experienced only rear-end and angle crashes at the midblock driveway locations. Though the 

research team expected the percentage of angle crashes to be reduced and the percentage of rear-

end crashes to increase, it appears that the presence of the median also minimized other crash 

types including sideswipe crashes at the study sites. Though this study only includes a limited 

sample of driveways and crash data was not available for all locations, these findings suggest 

that the presence of a median will help to reduce a variety of crashes associated with midblock 

driveway locations.  

The research team then evaluated critical gap values at the study locations. Initial analysis 

included four gap-acceptance methods. Ultimately, the research team used the Raff and the Logit 

methods to compare the estimated critical gap values and found that they varied widely, in some 

cases even for the same location on different days or based on different critical gap-assessment 

techniques. As expected, the right-turning critical gaps were generally greater than left-turning 

critical gaps at the same locations (often by differences ranging from 0.5 to 1.5 seconds). In a 

comparison of critical gap values between Oregon (where bicycle lanes were present) and 

Arkansas or Oklahoma (where bicycle lanes were not present), there were no indications that the 

presence of a bicycle lane adversely affects the critical gap value for left-turning vehicles.  

The comparison of right-turn critical gap values at locations with raised medians when compared 

to locations with TWLTLs indicated that the right-turn critical gap values are generally lower at 

driveway locations with medians than at those without. One likely explanation of this finding is 

that the workload for the driver may be decreased at these locations. In other words, even though 

a left-turning vehicle into the driveway should not adversely influence the execution of a right 

turn out of the driveway, locations where the road has a raised median enable the driver to focus 

more directly on approaching vehicles from the left. This results in what appears to be shorter 

critical gap values for right-turn maneuvers out of the driveways. 

Initially, the research team expected that the results of this study could potentially suggest that 

the presence of a bicycle lane does not adversely affect corridor operations and safety at 

driveway locations. Due to the cross sections of the arterials in this study, the presence of a 

median more dramatically influenced the corridor operations and subsequent safety. The bicycle 

lane provides additional sight-distance visibility, but also requires vehicles turning left into the 
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driveway to traverse an additional distance. Based on the findings from this analysis, these 

factors associated with the bicycle lane seem to offset each other. As a result, the presence of a 

bicycle lane does not adversely influence gap-acceptance behavior at driveway locations. Based 

on the available crash data, however, the presence of bicycles in a bicycle lane are in direct 

conflict with driveway maneuvers and a small number of bicycle-related crashes can be expected 

to occur. It is important to note that the project team did not observe any bicycles at the Arkansas 

or Oklahoma sites yet saw several bicycles at the Oregon locations. Consequently, the presence 

of the bicycle lanes at the Oregon locations encouraged the selection of the corridors by 

bicyclists and their presence, with the possible exception of turning maneuvers. This did not 

adversely influence corridor operations at these locations. The research team recommends future 

in-depth studies that individually focus on the influence of bicycle lanes at driveway locations.  

The research team also performed simulation analysis in order to examine the influence that 

median type, traffic volume, and access density have on traffic operational performance. By 

comparing the results from strategically designed simulation model alternatives, the analysis 

demonstrated that a higher level of traffic volume on the street and more densely spaced 

driveways (i.e., driveways located more closely to each other) would result in increased delay 

and travel time along the corridor. The study also confirmed that replacing a raised median with 

a TWLTL would create more traffic conflicts, and cause longer delay and travel times at higher 

traffic-volume thresholds. The simulation output also contrasted aligned and staggered driveway 

configurations. Aligned driveways provided a somewhat option in terms of delay and travel time.  

The observations from this study clearly indicate that traffic volume, driveway density, and 

driveway orientation (to other driveways) collectively play a role in the safety and operations 

along a corridor. In addition, the bicycle analysis suggested that additional crashes may be 

expected between turning vehicles and bicycles, but the extent of this presumed safety influence 

was limited. Operationally, the presence of the bicycle lane did not increase gap-acceptance 

behavior by drivers turning left into a driveway (from a TWLTL). Though the vehicles traversed 

a longer path, the drivers had the benefit of additional site distance due to the presence of the 

bicycle lane. A future study that focuses more on the influence of vehicles turning right out of a 

driveway at locations with and without bicycle lanes is recommended.  
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Table A.1: Abbreviation Summaries 

Acronym Definition 

AASHTO American Association of State Highway and Transportation Officials 

ADT Average Daily Traffic 

CALTRANS California Department of Transportation 

HCM Highway Capacity Manual 

MOE Measurement of Effectiveness 

NCHRP National Cooperative Highway Research Program 

OTREC Oregon Transportation Research and Education Consortium 

TWLTL Two-Way Left-Turn Lane 
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APPENDIX B. DETAILED DRIVEWAY 

INFORMATION 
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The following section will provide detailed information for each data collection driveway 

location, including location information, traffic information, geometric design information, aerial 

photos, and gap-acceptance analysis results.  

Driveway Site 1: Office Supply 

OfficeMax, 9th St, Corvallis, OR 

Location Information 

Address 1900 NW 9th St 

City Corvallis 

State OR 

Traffic Information 

ADT (vehicles/day) 22,000 

Posted Speed (mph) 35 

Field Speed Mean (mph) 32.65 

Cumulative Speed Distribution Curve  

 

Geometric Design Information – Roadway in Vicinity of Driveway 

Width of Roadway (ft) 62 

Number of Lanes 4 lanes + TWLTL 

Lane Width (ft) 12 

Present of Bicycle Lane Yes 

Present of Sidewalk Yes 

Geometric Design Information - Driveway 

Width of Driveway (ft) 24 

Number of Lanes 2 

Lane Width (ft) 12 

Median in Driveway No 

Distance to Nearest Upstream Signal 958 

Data Collection Information 

Date Sept 15th, 2011 

Duration of Traffic Videos 3 hours 

Weather Sunny 

Pavement Surface Condition Dry 
 

Figure B.1: Driveway Site 1 - Road and Traffic Data 
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 Aerial Photos: 

 

 
Source: Google Earth 

Figure B.2:  Driveway Site 1 - Aerial Photos 

 

Gap-acceptance Results:  

Table B.1: Driveway Site 1 – Gap-acceptance Study Results 

Analysis Methods 
Critical Gap (sec) 

Left Turn Right Turn 

Greenshield Method 5.75 5.75 

Raff Method 4.75 6.00 

Cumulative Acceptance Method 4.75 5.75 

Logit Method 6.00 7.20 
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Gap-acceptance Analysis for Left Turns: 

 

 

 
Figure B.3: Driveway Site 1 – Gap-acceptance Analysis for Left Turns 
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Gap-acceptance Analysis for Right Turns: 

 

 

 
Figure B.4: Driveway Site 1 – Gap-acceptance Analysis for Right Turns 
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Driveway Site 2:  Large-size Commercial #1 

 Wal-Mart, Lancaster Dr, Salem, OR 

Location Information 

Address 3025 Lancaster Drive Northeast  

City Salem 

State OR 

Traffic Information 

ADT (vehicles/day) 28,430 

Posted Speed (mph) 35 

Field Speed Mean (mph) 33.18 

Cumulative Speed Distribution Curve  

 

Geometric Design Information – Roadway in Vicinity of Driveway 

Width of Roadway (ft) 67 

Number of Lanes 4 lanes + TWLTL 

Lane Width (ft) 11 

Present of Bicycle Lane Yes 

Present of Sidewalk Yes 

Geometric Design Information - Driveway 

Width of Driveway (ft) 40 

Number of Lanes 3 

Lane Width (ft) 12,12,16 

Median in Driveway None 

Distance to Nearest Upstream Signal 593.69 

Data Collection Information 

Date Sep 21st, 2011 

Duration of Traffic Videos 3 hours 

Weather Sunny 

Pavement Surface Condition Dry 
 

Figure B.5: Driveway Site 2 - Road and Traffic Data 
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Aerial Photos: 

 

 
Source: Google Earth 

Figure B.6: Driveway Site 2 - Aerial Photos 

 

Gap-acceptance Results:  

Table B.2: Driveway Site 2 – Gap-acceptance Study Results 

Analysis Methods 
Critical Gap (sec) 

Left Turn Right Turn 

Greenshield Method 5.75 5.75 

Raff Method 4.25 5.75 

Cumulative Acceptance Method 4.70 6.25 

Logit Method 5.72 6.14 
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Gap-acceptance Analysis for Left Turns: 

 

 

 
Figure B.7: Driveway Site 2 – Gap-acceptance Analysis for Left Turns 
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Gap-acceptance Analysis for Right Turns: 

 

 

 
Figure B.8: Driveway Site 2 – Gap-acceptance Analysis for Right Turns 
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Driveway Site 3:  Large-size Commercial #2:  

Fred Meyer, Commercial St SE, Salem, OR 

Location Information 

Address 3450 Commercial Street Southeast  

City Salem 

State OR 

Traffic Information 

ADT (vehicles/day) 31,850 

Posted Speed (mph) 35 

Field Speed Mean (mph) 30.42 

Cumulative Speed Distribution Curve  

 

Geometric Design Information – Roadway in Vicinity of Driveway 

Width of Roadway (ft) 80 

Number of Lanes 4 lanes + TWLTL 

Lane Width (ft) 12 

Present of Bicycle Lane Yes 

Present of Sidewalk Yes 

Geometric Design Information - Driveway 

Width of Driveway (ft) 40 

Number of Lanes 3 

Lane Width (ft) 12,12,16 

Median in Driveway None 

Distance to Nearest Upstream Signal 518 

Data Collection Information 

Date Nov 1st, 2011 

Duration of Traffic Videos 3 hours 

Weather Sunny 

Pavement Surface Condition Dry 
 

Figure B.9: Driveway Site 3 - Road and Traffic Data  
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Aerial Photo:  

 

 
Source: Google Earth 

Figure B.10: Driveway Site 3 - Aerial Photos 

 

Gap-acceptance Results:  

Table B.3: Driveway Site 3 – Gap-acceptance Study Results 

Analysis Methods 
Critical Gap (sec) 

Left Turn Right Turn 

Greenshield Method 4.75 6.75 

Raff Method 3.75 5.00 

Cumulative Acceptance Method 4.83 5.37 

Logit Method 4.97 6.24 
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Gap-acceptance Analysis for Left Turns: 

 

 

 
Figure B.11: Driveway Site 3 – Gap-acceptance Analysis for Left Turns 
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Gap-acceptance Analysis for Right Turns: 

 

 

 
Figure B.12: Driveway Site 3 – Gap-acceptance Analysis for Right Turns 
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Driveway Site 4:  Large-size Commercial #3 

Walmart, Commercial St SE, Salem, OR 

Location Information 

Address 5250 Commercial St SE, Salem, OR  

City Salem 

State OR 

Traffic Information 

ADT (vehicles/day) 30470 

Posted Speed (mph) 35 

Field Speed Mean (mph) 36.1 

Cumulative Speed Distribution Curve  

 

Geometric Design Information – Roadway in Vicinity of Driveway 

Width of Roadway (ft) 80 

Number of Lanes 4 lanes + TWLTL 

Lane Width (ft) 12 

Present of Bicycle Lane Yes 

Present of Sidewalk Yes 

Geometric Design Information - Driveway 

Width of Driveway (ft) 40 

Number of Lanes 3 

Lane Width (ft) 12,12,16 

Median in Driveway None 

Distance to Nearest Upstream Signal 718 ft 

Data Collection Information 

Date Nov 8st and 10th, 2011 

Duration of Traffic Videos 3 hours 

Weather Cloudy 

Pavement Surface Condition Dry 
 

Figure B.13: Driveway Site 4 - Road and Traffic Data 
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Aerial Photo:  

 

 
Source: Google Earth 

Figure B.14: Driveway Site 4 - Aerial Photos 

 

Gap-acceptance Results:  

Table B.4: Driveway Site 4 – Gap-acceptance Study Results 

Analysis Methods 
Critical Gap (sec) 

Left Turn Right Turn 

Greenshield Method 5.50 6.75 

Raff Method 5.00 5.25 

Cumulative Acceptance Method 5.75 5.00 

Logit Method 5.67 6.00 
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Gap-acceptance Analysis for Left Turns: 

 

 

 
Figure B.15: Driveway Site 4 - Gap-acceptance Analysis for Left Turns 
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Gap-acceptance Analysis for Right Turns: 

 

 

 
Figure B.16: Driveway Site 4 – Gap-acceptance Analysis for Right Turns 
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Driveway Site 5:  Medium-size Commercial 

Albertsons, Pacific Hwy, Tigard, OR 

Location Information 

Address 16200 Southwest Pacific Highway(M.P.11.51) 

City Tigard 

State OR 

Traffic Information 

ADT (vehicles/day) 37,700 

Posted Speed (mph) 45 

Field Speed Mean (mph) 42.93 

Cumulative Speed Distribution Curve  

 

Geometric Design Information – Roadway in Vicinity of Driveway 

Width of Roadway (ft) 128 

Number of Lanes 4 lanes + unprotected median + auxiliary right-turn lane 

Lane Width (ft) 12 

Present of Bicycle Lane Yes 

Present of Sidewalk Yes 

Geometric Design Information - Driveway 

Width of Driveway (ft) 28 

Number of Lanes 2 

Lane Width (ft) 14,14 

Median in Driveway None 

Distance to Nearest Downstream Signal 423.79 

Data Collection Information 

Date Nov 10th, 2011 

Duration of Traffic Videos 3 hours 

Weather Sunny 

Pavement Surface Condition Dry 
 

Figure B.17: Driveway Site 5 - Road and Traffic Data 
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Aerial Photos:  

 

 
Source: Google Earth 

Figure B.18: Driveway Site 5 - Aerial Photos 

 

Gap-acceptance Results:  

Table B.5: Driveway Site 5 – Gap-acceptance Study Results 

Analysis Methods 
Critical Gap (sec) 

Left Turn Right Turn 

Greenshield Method NA 6.75 

Raff Method NA 4.50 

Cumulative Acceptance Method NA 4.70 

Logit Method NA 5.74 
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Gap-acceptance Analysis for Right Turns: 

 

 

 
Figure B.19: Driveway Site 5 – Gap-acceptance Analysis for Right Turns 
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Driveway Site 6a: Restaurant #1 - Day 1 

McAllister's, Walton Blvd, Bentonville, AR 

Location Information 

Address 900 SE Walton Blvd 

City Bentonville 

State AR 

Traffic Information 

ADT (vehicles/day) 34000 

Posted Speed (mph) 50 

Field Speed Mean (mph) 36.45 

Cumulative Speed Distribution Curve  

 

Geometric Design Information – Roadway in Vicinity of Driveway 

Width of Roadway (ft) 58 

Number of Lanes 4 lanes + TWLTL 

Lane Width (ft) 12 

Present of Bicycle Lane No 

Present of Sidewalk Yes 

Geometric Design Information - Driveway 

Width of Driveway (ft) 22 

Number of Lanes 2 

Lane Width (ft) 11 

Median in Driveway No 

Distance to Nearest Upstream Signal (ft) 699 

Data Collection Information 

Date June 28th, 2011 

Duration of Traffic Videos 0.5 hour 

Weather Sunny 

Pavement Surface Condition Dry 
 

Figure B.20: Driveway Site 6a - Road and Traffic Data 

 

 

 



B-23 
 

Aerial Photos: 

 

 
Source: Google Earth 

Figure B.21: Driveway Site 6a - Aerial Photos 

 

Gap-acceptance Results:  

Table B.6: Driveway Site 6a – Gap-acceptance Study Results 

Analysis Methods 
Critical Gap (sec) 

Left Turn Right Turn 

Greenshield Method 6.75 5.25 

Raff Method 5.40 5.00 

Cumulative Acceptance Method 5.60 NA 

Logit Method 5.77 7.00 
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Gap-acceptance Analysis for Left Turns: 

 

 

 
Figure B.22: Driveway Site 6a – Gap-acceptance Analysis for Left Turns 

 



B-25 
 

Gap-acceptance Analysis for Right Turns: 

 

 
Figure B.23: Driveway Site 6a – Gap-acceptance Analysis for Right Turns 
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Driveway Site 6b: Restaurant #1 - Day 2 

McAllister's, Walton Blvd, Bentonville, AR 

Location Information 

Address 900 SE Walton Blvd 

City Bentonville 

State AR 

Traffic Information 

ADT (vehicles/day) 34000 

Posted Speed (mph) 50 

Field Speed Mean (mph) 36.45 

Cumulative Speed Distribution Curve  

 

Geometric Design Information – Roadway in Vicinity of Driveway 

Width of Roadway (ft) 58 

Number of Lanes 4 lanes + TWLTL 

Lane Width (ft) 12 

Present of Bicycle Lane No 

Present of Sidewalk Yes 

Geometric Design Information - Driveway 

Width of Driveway (ft) 22 

Number of Lanes 2 

Lane Width (ft) 11 

Median in Driveway No 

Distance to Nearest Upstream Signal (ft) 699 

Data Collection Information 

Date June 29th, 2011 

Duration of Traffic Videos 1.5 hours 

Weather Sunny 

Pavement Surface Condition Dry 
 

Figure B.24: Driveway Site 6b - Road and Traffic Data 
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Aerial Photos: 

 

 
Source: Google Earth 

Figure B.25: Driveway Site 6b - Aerial Photos 

 

Gap-acceptance Results:  

Table B.7: Driveway Site 6b – Gap-acceptance Study Results 

Analysis Methods 
Critical Gap (sec) 

Left Turn Right Turn 

Greenshield Method 5.75 7.75 

Raff Method 4.00 4.25 

Cumulative Acceptance Method 3.75 2.00 

Logit Method 6.45 7.80 
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Gap-acceptance Analysis for Left Turns: 

 

 

 
Figure B.26: Driveway Site 6b  - Gap-acceptance Analysis for Left Turns 
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Gap-acceptance Analysis for Right Turns: 

 

 

 
Figure B.27: Driveway Site 6b – Gap-acceptance Analysis for Right Turns 
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Driveway Site 7a – Large-size Commercial #4 - Day 1 

 

Wal-Mart in Fayetteville, AR 

Location Information 

Address 2875 Martin Luther King Jr Blvd 

City Fayetteville 

State AR 

Traffic Information 

ADT (vehicles/day) 38,000 

Posted Speed (mph) 45 

Field Speed Mean (mph) 35.61 

Cumulative Speed Distribution Curve  

 

Geometric Design Information – Roadway in Vicinity of Driveway 

Width of Roadway (ft) 58 

Number of Lanes 4 lanes + TWLTL 

Lane Width (ft) 12 

Present of Bicycle Lane No 

Present of Sidewalk Yes 

Geometric Design Information - Driveway 

Width of Driveway (ft) 36 

Number of Lanes 3 

Lane Width (ft) 12 

Median in Driveway No 

Distance to Nearest Upstream Signal (ft) 845 

Data Collection Information 

Date June 2nd, 2011 

Duration of Traffic Videos 1 hour 

Weather Cloudy - Sunny 

Pavement Surface Condition Dry 
 

Figure B.28: Driveway Site 7a - Road and Traffic Data 
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Aerial Photos: 

 

 
Source: Google Earth 

Figure B.29: Driveway Site 7a - Aerial Photos 

 

Gap-acceptance Results:  

Table B.8: Driveway Site 7a - Gap-acceptance Study Results 

Analysis Methods 
Critical Gap (sec) 

Left Turn Right Turn 

Greenshield Method 6.50 6.75 

Raff Method 3.00 6.25 

Cumulative Acceptance Method 2.75 6.30 

Logit Method 6.20 6.16 
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Gap-acceptance Analysis for Left Turns: 

 

 

 
Figure B.30: Driveway Site 7a – Gap-acceptance Analysis for Left Turns 
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Gap-acceptance Analysis for Right Turns: 

 

 

 
Figure B.31: Driveway Site 7a – Gap-acceptance Analysis for Right Turns 
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Driveway Site 7b: Large Commercial #4 - Day 2 

Wal-Mart in Fayetteville, AR 

Location Information 

Address 2875 Martin Luther King Jr Blvd 

City Fayetteville 

State AR 

Traffic Information 

ADT (vehicles/day) 38,000 

Posted Speed (mph) 45 

Field Speed Mean (mph) 35.61 

Cumulative Speed Distribution Curve  

 

Geometric Design Information – Roadway in Vicinity of Driveway 

Width of Roadway (ft) 58 

Number of Lanes 4 lanes + TWLTL 

Lane Width (ft) 12 

Present of Bicycle Lane No 

Present of Sidewalk Yes 

Geometric Design Information - Driveway 

Width of Driveway (ft) 36 

Number of Lanes 3 

Lane Width (ft) 12 

Median in Driveway No 

Distance to Nearest Upstream Signal (ft) 845 

Data Collection Information 

Date July 25th, 2011 

Duration of Traffic Videos 1 hour 

Weather Sunny 

Pavement Surface Condition Dry 
 

Figure B.32: Driveway Site 7b - Road and Traffic Data 
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Aerial Photos: 

 

 
Source: Google Earth 

Figure B.33: Driveway Site 7b - Aerial Photos 

 

Gap-acceptance Results:  

Table B.9: Driveway Site 7b - Gap-acceptance Study Results 

Analysis Methods 
Critical Gap (sec) 

Left Turn Right Turn 

Greenshield Method 7.25 6.75 

Raff Method 3.50 6.25 

Cumulative Acceptance Method 4.10 6.70 

Logit Method 6.00 7.50 
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Gap-acceptance Analysis for Left Turns: 

 

 

 
Figure B.34: Driveway Site 7b – Gap-acceptance Analysis for Left Turns 



B-37 
 

Gap-acceptance Analysis for Right Turns: 

 

 

 
Figure B.35: Driveway Site 7b – Gap-acceptance Analysis for Right Turns 



B-38 
 

Driveway Site 8: Restaurant #2 

 

Panera Bread, Memorial Dr, Tulsa, AR 

Location Information 

Address 8922 S Memorial Dr 

City Tulsa 

State OK 

Traffic Information 

ADT (vehicles/day) 28,000 

Posted Speed (mph) 45 

Field Speed Mean (mph) 35.32 

Cumulative Speed Distribution Curve  

 

Geometric Design Information – Roadway in Vicinity of Driveway 

Width of Roadway (ft) 92 

Number of Lanes 4 lanes + raised median 

Lane Width (ft) 12 

Present of Bicycle Lane No 

Present of Sidewalk No 

Geometric Design Information - Driveway 

Width of Driveway (ft) 26 

Number of Lanes 2 

Lane Width (ft) 12 

Median in Driveway No 

Distance to Nearest Upstream Signal 560 ft 

Data Collection Information 

Date Aug 4th, 2011 

Duration of Traffic Videos 1.8 hours 

Weather Cloudy – Sunny 

Pavement Surface Condition Dry 
 

Figure B.36: Driveway Site 8 - Road and Traffic Data 
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Aerial Photos: 

 

 
Source: Google Earth 

Figure B.37: Driveway Site 8 - Aerial Photos 

 

Gap-acceptance Results:  

Table B.10: Driveway Site 8 – Gap-acceptance Study Results 

Analysis Methods 
Critical Gap (sec) 

Left Turn Right Turn 

Greenshield Method NA 4.75 

Raff Method NA 4.75 

Cumulative Acceptance Method NA 4.50 

Logit Method NA 5.42 
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Gap-acceptance Analysis for Right Turns: 

 

 

 
Figure B.38: Driveway Site 8 – Gap-acceptance Analysis for Left Turns 
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