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A CHARACTERIZATION OF HYBRIDIZED MIXED METHODS FOR
SECOND ORDER ELLIPTIC PROBLEMS∗
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This paper is dedicated to Jim Douglas, Jr., on the occasion of his 75th birthday

Abstract. In this paper, we give a new characterization of the approximate solution given by
hybridized mixed methods for second order self-adjoint elliptic problems. We apply this characteri-
zation to obtain an explicit formula for the entries of the matrix equation for the Lagrange multiplier
unknowns resulting from hybridization. We also obtain necessary and sufficient conditions under
which the multipliers of the Raviart–Thomas and the Brezzi–Douglas–Marini methods of similar
order are identical.

Key words. mixed finite elements, hybrid methods, elliptic problems

AMS subject classifications. Primary, 54C40, 14E20; Secondary, 46E25, 20C20

DOI. 10.1137/S0036142902417893

1. Introduction. In this paper, we give a new characterization of hybridized
mixed methods. This characterization allows us to obtain an explicit formula for the
entries of the matrix equation for the so-called Lagrange multipliers. It also allows
comparison of hybridized versions of different mixed methods. For example, we give
conditions under which the multipliers of the Raviart–Thomas (RT) method and those
of the Brezzi–Douglas–Marini (BDM) method of comparable order coincide.

We consider the hybridized version [1] of the standard RT mixed method [13] for
the elliptic boundary value problem

−∇ · ( a∇u ) + d u = f in Ω ⊂ R2,(1.1)

u = g on ∂Ω,(1.2)

where a(x) is a symmetric positive definite matrix-valued function, d(x) is a nonneg-
ative function, and Ω is a polygonal domain in R2. We assume that a(x) and d(x)
are bounded. We consider this a simple setting for transparent presentation of the
main ideas. As will be clear later, our techniques can be applied to other hybridized
methods and more general second order elliptic problems.

Before describing the results, recall that mixed finite element methods seek ap-
proximations (qh, uh) to (−a∇u, u) in appropriate finite element spaces. They give
rise to a matrix equation of the form

(
A −Bt

B D

)(
Q

U

)
=

(
G

F

)
,

where Q and U are the vectors of coefficients of qh and uh with respect to their cor-
responding finite element basis, respectively. Since the system is not positive definite,
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284 BERNARDO COCKBURN AND JAYADEEP GOPALAKRISHNAN

solving for Q and U is not always easy. Although one can arrive at a positive definite
system by elimination of Q from the equations, this requires inverting A and main-
taining A−1, which is typically a full matrix. Fortunately, by “hybridizing” the mixed
method, this difficulty can be overcome. Let us now briefly recall the hybridization
procedure.

First, the so-called Lagrange multiplier λh is introduced. This gives rise to a
matrix equation of the form




A −Bt −Ct

B D 0
C 0 0








Q
U
Λ



 =




G
F
0



 ,(1.3)

where Λ is the vector of degrees of freedom associated to the multiplier λh. We will
precisely state the underlying finite element spaces later. As is now well known, the
new vectors of degrees of freedom Q and U actually define the same approximation
(qh, uh) as the original mixed method. Moreover, both Q and U can now be easily
eliminated to obtain an equation for the multiplier only, namely,

EΛ = H,

where E and H are given by

E = CA−1
(
A−Bt(BA−1Bt + D)−1B

)
A−1Ct,

H = Hg + Hf ,

Hg = −CA−1
(
A−Bt(BA−1Bt + D)−1B

)
A−1G,

Hf = −CA−1Bt(BA−1Bt + D)−1 F .

(1.4)

That the inverses taken above exist follows from the properties of the underlying
finite element spaces. Considering this matrix equation instead of the previous one
has several advantages: (i) the matrix E is symmetric and positive definite, so it can
be numerically inverted by using methods like the conjugate gradient method; (ii)
the number of degrees of freedom of the multiplier is remarkably smaller than the
number of degrees of freedom of the original mixed method; (iii) once Λ has been
obtained, both Q and U can be efficiently computed element by element; and (iv) the
multiplier λh can actually be used to improve the approximation to u by means of
a local postprocessing, as shown in [1]. This shows that the use of hybridized mixed
methods is indeed very advantageous; however, the complicated relation between the
matrices E and H, and the matrices A, B, C, F and G, can easily dissuade one from
basing an implementation on E and H.

In this paper, we show that the entries of the matrices E and H can be expressed
as a weighted L2-inner product of some discontinuous auxiliary functions, the weights
being nothing but the matrix a−1 and the function d. These auxiliary functions are
easily constructed in terms of the geometry of the mesh, the matrix a, the function
d, and the spaces of the hybridized mixed finite element method. Their definition
induces a natural decomposition of the approximate solution (qh, uh) of the form

(qh, uh) = (qh, uh)λh + (qh, uh)g + (qh, uh)f ,

where (qh, uh)λh is a lifting of the Lagrange multiplier λh and (qh, uh)g and (qh, uh)f
can be computed locally only in terms of the data. The introduction of other discrete
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lifting operators has proved useful in another context earlier, namely, the analysis of
discontinuous Galerkin methods for elliptic problems [2, 7, 8].

We then present two applications of this result. As a first application, we present
a technique to assemble the matrix of the Lagrange multiplier equation using simple
local element matrices. Next, we compare the matrices E and H of the RT method
with those of the BDM method of similar order and give necessary and sufficient
conditions for the multipliers to be exactly the same. This happens, for example,
when d = 0 and f = 0, a case that occurs in many situations of practical interest.

The paper is organized as follows. In section 2, we introduce the hybridized version
of the mixed method of Raviart and Thomas and then state, discuss, and prove the
characterization result, Theorem 2.1. In section 3, we show how to assemble the
matrices for the multipliers, and in section 4, we compare the matrices of the RT
method with those of the BDM method of similar order. Finally, in section 5, we end
with some concluding remarks.

2. The main result. We begin this section by introducing the classical mixed
method of Raviart and Thomas [13]; then, following [1], we hybridize the method.
Finally, we state, discuss, and prove the main result, Theorem 2.1.

2.1. The hybridized mixed method. Given a triangulation of Ω, Th, made
of triangles, the mixed method seeks an approximation (qh, uh) to the solution (q, u)
of the model problem

c q = −∇u in Ω,(2.1)

∇ · q + d u = f in Ω,(2.2)

u = g on ∂Ω,(2.3)

where c = a−1. The approximation (qh, uh) is sought in the finite element space
Vh × Wh given by

Vh = {v ∈ H(div,Ω) : v|K ∈ P k(K) × P k(K) + xP k(K) for all K ∈ Th},
Wh = {w ∈ L2(Ω) : w|K ∈ P k(K) for all K ∈ Th},

where P k(K) denotes the space of polynomials on K of degree at most k, k ≥ 0, and
is defined by requiring that, for all (v, w) ∈ Vh ×Wh,

∫

Ω
c qh · v dx−

∫

Ω
uh∇ · v dx = −

∫

∂Ω
g v · n ds,(2.4)

∫

Ω
w∇ · qh dx +

∫

Ω
d uh w dx =

∫

Ω
f w dx.(2.5)

It is easy to see that the above weak formulation gives rise to a system of equations
of the form

(
A −Bt

B D

)(
Q

U

)
=

(
G

F

)
.

We can try to solve this equation by first eliminating Q from the equations and then
solving the resulting equation for U, namely,

(
B A−1Bt + D

)
U = F + B A−1G.
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Unfortunately, the matrix A is not easy to invert since the elements of Vh, being
functions in H(div,Ω), have their normal components continuous across element in-
terfaces. If qh were totally discontinuous, A would be block-diagonal and hence easily
invertible. The idea of the hybridized mixed methods is to relax this continuity con-
straint to render A block-diagonal.

Indeed, it was Fraejis de Veubeque [10], back in 1965, who realized that this can
be achieved by introducing additional unknowns λh, associated to element interfaces,
called Lagrange multipliers. Let Ei,h denote the set of edges of the mesh Th that are in
the interior of the domain Ω. The multipliers are then nothing but approximations to
the trace of u on each e ∈ Ei,h. As we show next, their introduction allows elimination
of both qh and uh and reduction of the system to a single matrix equation for the
multipliers.

In our particular case, the hybridized mixed method seeks an approximation
(qh, uh, λh) to (q, u, u|Ei,h) in the finite element space Vh ×Wh ×Mh given by

Vh = {v ∈ L2(Ω) × L2(Ω) : v|K ∈ P k(K) × P k(K) + xP k(K) for all K ∈ Th},
Wh = {w ∈ L2(Ω) : w|K ∈ P k(K) for all K ∈ Th},
Mh = {µ ∈ L2(Ei,h) : µ|e ∈ P k(e) for all e ∈ Ei,h}.

It is defined by requiring that, for all (v, u, µ) ∈ Vh ×Wh ×Mh,

∫

Ω
c qh · v dx−

∑

K∈Th

∫

K
uh∇ · v dx +

∑

e∈Ei,h

∫

e
λh [[v]] ds = −

∫

∂Ω
g [[v]] ds,(2.6)

∑

K∈Th

∫

K
w∇ · qh dx +

∫

Ω
d uh w dx =

∫

Ω
f w dx,(2.7)

∑

e∈Ei,h

∫

e
µ [[qh]] ds = 0,(2.8)

where [[v]] = v · n on ∂Ω and [[v]] = v+
e · n+

e + v−
e · n−

e on e ∈ Eh. Here, n denotes
the outward unit normal to Ω, n+

e = −n−
e is an arbitrary unit vector normal to the

e ∈ Ei,h, and v±
e (x) = limε↓0 v(x − ε n±

e ).

2.2. Two local mappings. Next, we introduce two mappings in terms of which
the characterization result will be expressed. They are defined using (2.6) and (2.7).

The first mapping lifts functions on edges of the triangulation Th to functions on
Ω. Let Eh be the set of all edges of the triangulation Th. Notwithstanding a slight
abuse of notation, we shall denote the set of all square integrable functions on the
union of all edges of Eh by L2(Eh). The lifting associates to each m ∈ L2(Eh) the pair
of functions (qh, uh)m ≡ (qh,m, uh,m) ∈ Vh ×Wh defined by requiring that

∫

Ω
c qh,m · v dx−

∑

K∈Th

∫

K
uh,m∇ · v dx = −

∑

e∈Eh

∫

e
m [[v]] ds,(2.9)

∑

K∈Th

∫

K
w∇ · qh,m dx +

∫

Ω
d uh,m w dx = 0(2.10)

hold for all (v, w) ∈ Vh ×Wh.
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The second mapping associates to the function f ∈ L2(Ω) the element (qh, uh)f ≡
(qh,f , uh,f ) ∈ Vh ×Wh and is defined by requiring that

∫

Ω
c qh,f · v dx−

∑

K∈Th

∫

K
uh,f∇ · v dx = 0,(2.11)

∑

K∈Th

∫

K
w∇ · qh,f dx +

∫

Ω
d uh,f w dx =

∫

Ω
f w dx(2.12)

hold for all (v, w) ∈ Vh ×Wh.
Note that these mappings can be computed in an element-by-element fashion.

Indeed, they are uniquely defined on each element because of the surjectivity of the
map (∇·) : Vh (→ Wh restricted to an element. Moreover, on each element K ∈ Th,
the lifting (qh, uh)m can be thought of as a result of a one element discretization of
the boundary value problem

c qm = −∇um in K,

∇ · qm + d um = 0 in K,

um = m on ∂K,

and that the mapping (qh, uh)f is an approximation to the solution of

c qf = −∇uf in K,

∇ · qf + d uf = f in K,

uf = 0 on ∂K.

2.3. Characterization of the approximate solution. Before stating the re-
sult, let us introduce the following convention: The extension by zero of the function
η ∈ L2(Fh), where Fh is a subset of Eh, to Eh is also denoted by η. In this way, if
m = λh on Ei,h and m = g on ∂Ω, we simply write m = λh + g; as a consequence we
also write

(qh, uh)m = (qh, uh)λh + (qh, uh)g.

We now have all that is needed to state the main result.
Theorem 2.1 (characterization of (qh, uh, λh)). Let (qh, uh, λh) be the solution

of the hybridized RT method (2.6), (2.7), and (2.8). Then

(qh, uh) = (qh, uh)λh + (qh, uh)g + (qh, uh)f .

The Lagrange multiplier λh ∈ Mh is the unique solution of

ah(λh, µ) = bh(µ) for all µ ∈ Mh,(2.13)

where

ah(λh, µ) =

∫

Ω
c qh,λh

· qh,µ dx +

∫

Ω
d uh,λh uh,µ dx

and

bh(µ) =

∫

∂Ω
g [[qh,µ]] ds +

∫

Ω
f uh,µ dx.
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Remark 2.1. Although the normal components of the functions qh,g, qh,f (which
can be computed locally only in terms of the data) and qh,λh

are not necessarily con-
tinuous across interelement boundaries, the normal components of their sum, namely,
qh, are. Marini [12] pointed out this fact for the lowest order RT method when d = 0
and a is a piecewise-constant scalar function.

Remark 2.2. Just as for classical finite element methods, the variational formula-
tion (2.13) gives rise to a matrix equation for the degrees of freedom of the multiplier
Λ of the form

E Λ = H.

Thus the entries of the matrices E and H are obtained as a weighted L2-inner product
of discontinuous functions, as claimed in the introduction.

We end this section with a proof of Theorem 2.1.

2.4. Proof of Theorem 2.1. We prove this result in three steps. In the first,
we observe some identities that result from the equations of the method. In the next
step, we show that the continuity condition on the jumps of the fluxes results in a
variational equation for the Lagrange multiplier unknowns. In the last step, we collect
these two results and conclude.

2.4.1. Step 1.
Lemma 2.2 (elementary identities). We have, for any m, µ ∈ L2(Eh), and f ∈

L2(Ω),

(i) −
∑

e∈Eh

∫

e
µ [[qh,m]] ds =

∫

Ω
c qh,m · qh,µ dx +

∫

Ω
d uh,m uh,µ dx,

(ii)

∫

Ω
c qh,f · qh,m dx +

∫

Ω
d uh,f uh,m dx = 0,

(iii) −
∑

e∈Eh

∫

e
m [[qh,f ]] ds = −

∫

Ω
f uh,m dx.

Proof. Let us begin by proving the identity (i). First, take v = qh,µ in (2.9).
Then, replace m by µ in (2.10) and take w = uh,m. The identity (i) follows by simply
adding these two equations.

To prove (ii), simply take w = uh,f in (2.10) and v = qh,m in (2.11) and add the
equations.

Finally, to prove (iii), take v = qh,f in (2.9) and w = uh,m in (2.12) and add the
two equations to obtain

−
∑

e∈Eh

∫

e
m [[qh,f ]] ds = −

∫

Ω
f uh,m dx +Θ,

where

Θ =

∫

Ω
c qh,f · qh,m dx +

∫

Ω
d uh,f uh,m dx.

Thus (iii) follows from (ii). This completes the proof.
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2.4.2. Step 2. In the following lemma, we explore equivalent characterizations
of the continuity requirement on fluxes imposed by the method.

Lemma 2.3 (jump condition). Let (qh, uh, λh) be the solution of the hybridized
RT method (2.6), (2.7), and (2.8), and let m be an arbitrary member of Mh. Then
the following statements are equivalent:

1.
∑

e∈Ei,h

∫
e µ [[qh,m + qh,g + qh,f ]] ds = 0 for all µ ∈ Mh.

2. (qh, uh) = (qh, uh)m + (qh, uh)g + (qh, uh)f .
3. m = λh.
4. ah(m, µ) = bh(µ) for all µ ∈ Mh.

Proof. (1) =⇒ (2): Set

(q̃h, ũh) = (qh, uh)m + (qh, uh)g + (qh, uh)f .

Then, combining the equations defining the local mappings, we get that
∫

Ω
c q̃h · v dx−

∑

K∈Th

∫

K
ũh∇ · v dx +

∑

e∈Ei,h

∫

e
m [[v]] ds = −

∫

∂Ω
g [[v]] ds,

∑

K∈Th

∫

K
w∇ · q̃h dx +

∫

Ω
d ũh w dx =

∫

Ω
f w dx

for all (v, w) ∈ Vk × Wh. Therefore, whenever (1) holds, q̃h and ũh satisfy all the
equations of the hybridized RT method. By uniqueness of solutions of the method,
q̃h = qh and ũh = uh, so (2) follows.

(2) =⇒ (3): By linear superposition, qh = qh,λh
+ qh,g + qh,f . Moreover,∫

e µ[[qh]] ds = 0 for all e ∈ Ei,h. From the implication (1) =⇒ (2), it follows that

(qh, uh) = (qh, uh)λh + (qh, uh)g + (qh, uh)f .

Consequently, (2) implies that

(qh, uh)m−λh = 0,

from which it follows that m − λh = 0.
(3) =⇒ (4): Now we observe that the following identity holds for any m ∈ Mh:

−
∫

Ω
c qh,m · qh,µ dx−

∫

Ω
d uh,m uh,µ dx +

∫

∂Ω
g [[qh,µ]] ds +

∫

Ω
f uh,µ dx

=
∑

e∈Eh

∫

e
µ [[qh,m + qh,g + qh,f ]] ds for all µ ∈ Mh.

(2.14)

This equality follows from the identities of Lemma 2.2. Moreover, whenever m = λh,
the last equation of the hybridized mixed method asserts that the right-hand side
of (2.14) is zero. From the definition of the forms ah and bh in Theorem (2.1), we see
that (4) follows.

(4) =⇒ (1): We apply (2.14) again. Whenever (4) holds, the left-hand side
of (2.14) is zero. Therefore, (1) follows. This completes the proof.

2.4.3. Step 3. To conclude the proof of Theorem 2.1 observe that the first
assertion of the theorem follows from the equivalence of the identities (1) and (2) of
Lemma 2.3. The second assertion of the theorem follows again from Lemma 2.3, this
time from the equivalence of (3) and (4). This completes the proof of Theorem 2.1.
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Remark 2.3. The characterization theorem we just proved states that the solution
(qh, uh) is the sum of the lifting of m = λh + g, (qh, uh)m and the contribution from
f , (qh, uh)f . By the identity (ii) of Lemma 2.2, we see that these two are orthogonal
with respect to the bilinear form on (Vh ×Wh)2 defined by

〈〈 (q1, u1), (q2, u2) 〉〉 =

∫

Ω
c q1 · q2 dx +

∫

Ω
d u1 u2 dx.

3. The matrix entries.

3.1. The local matrices. To compute the matrices E and H, we can proceed
in the traditional finite element way. Let e denote an interior edge of the mesh Th,
and let {Le,$ }k$=0 denote a basis for the set of polynomials of degree at most k on e.
For example, we can choose properly scaled Legendre polynomials. Then, we set

(qe,$, ue,$) = (qh, uh)Le,! .

Now, for each element K, we compute the so-called local matrices, whose entries are

EK;e,$;e′,$′ =

∫

K
c qe,$ · qe′,$′ dx +

∫

K
d ue,$ ue′,$′ dx,

HgK;e,$ =

∫

∂K∩∂Ω
g qe,$ · n dx,

HfK;e,$ =

∫

K
ue,$ f dx.

Then the global matrices can be easily assembled by noting that

Λt
e,$EΛe′,$′ =

∑

K∈Th

EK;e,$;e′,$′ ,

Λt
e,$ Hg =

∑

K∈Th

HgK;e,$,

Λt
e,$ Hf =

∑

K∈Th

HfK;e,$.

Since the lifting (qe,$, ue,$) is supported only on the triangles sharing the edge
e, to compute the local matrices, we have to provide only the numbers EK;e,$;e′,$′ ,
HgK;e,$, and HfK;e,$ for any two edges e and e′ of K and any two integers % and %′

between 0 and k; all the remaining entries are equal to zero. This also implies that
the matrix E is a matrix of (k+1)× (k+1) blocks which has at most four off-diagonal
blocks in each block column.

3.2. An example. The above computations can easily be carried out for the
hybridized version of the RT method of lowest order. In this example, as the subscript
% in qe,$ and ue,$ is superfluous, we drop it.

We begin by computing the lifting m (→ (qh, uh)m. Let m take the constant value
λi on the edge ei of the triangle K, i = 1, 2, 3. Then, on K,

(qh, uh)m =
3∑

i=1

(qei , uei)λi,
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e

Ke
+

Ke
-

ne
+

ne
-

e

ne

Ke

-

-
-

Fig. 1. A representation of the lifting qh,m when m = χe for interior and boundary edges e. In
this case, we have taken d = 0 and c = Id.

where, for x ∈ K and i = 1, 2, 3,

qei(x) = − | ei |
|K | (c̄)−1ni −

1

2

(
d̄ ρi

1 + d̄ h2

)
(x − B), uei(x) =

ρi
1 + d̄ h2

,

and

c̄ =
1

|K |

∫

K
c dx, d̄ =

1

|K |

∫

K
d dx, ρi =

| ei | (mi − B) · ni

2 |K | ,

h2 =
1

4 |K |

∫

K
c (x − B) · (x − B) dx, B = (c̄)−1

∫
K cx dx

|K | .

Here mi denotes the midpoint of the edge ei and ni its outward unit normal. Note
that if c is the identity, B is the barycenter of the triangle; if, moreover, K is an
equilateral triangle of diameter h, then ρi = 1/3 and h2 = h2/48. The case of c
equaling the 2 × 2 identity and vanishing d is illustrated in Figure 1.

Now, it is easy to compute the entries of the local matrices:

EK;ei;ej =
| ei | | ej |
|K | nj · (c̄)−1nj +

d̄ |K |
1 + d̄ h2

ρi ρj ,

HgK;ei
= −

∑

ej⊂∂K∩∂Ω

(
| ei |
|K | (c̄)

−1ni · nj +
|K |
| ej |

(
d̄

1 + d̄ h2

)
ρi ρj

) ∫

ej

g(s) ds,

HfK;ei
=

ρi
1 + d̄ h2

∫

K
f(x) dx.

3.3. The reference element. A convenient implementation results if the local
matrices for the multiplier can be computed by using quadratures on a reference
element alone.

To achieve it, we need to define local mappings on the reference element and map
spaces on the reference element K̂ to corresponding ones on any triangle K. Let K̂
be mapped one-to-one onto K by the standard affine mapping

x = DK x̂ + bK ,
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and let us set

û(x̂) ≡ u(x), q̂(x̂) ≡ |detDK |D−1
K q(x)

for scalar-valued functions u and vector-valued functions q, respectively. Finally, set

V̂ = P k(K̂) × P k(K̂) + xP k(K̂),

Ŵ = P k(K̂),

M̂ = {m̂ ∈ L2(∂K̂) : m̂|̂
e
∈ P k(ê) for all ê ∈ ∂K̂}.

Now, suppose we are given a symmetric positive definite 2× 2 matrix function Ĉ
and a scalar nonnegative function D̂ on K̂. For each m̂ in M̂ , we define the element
(Q̂

m̂
, Û

m̂
) ∈ V̂ × Ŵ by requiring that

∫

K̂
Ĉ Q̂

m̂
· V dx̂ −

∫

K̂
Û

m̂
∇̂ · V dx̂ = −

∑

ê∈∂K̂

∫

ê
m̂ [[V ]] dŝ,

∫

K̂
W ∇̂ · Q̂

m̂
dx̂ +

∫

K̂
D̂ Û

m̂
W dx̂ = 0

hold for all (V ,W ) ∈ V̂ × Ŵ . Then, we have the following result.
Proposition 3.1. Let K be any triangle and e be one of its edges. Set

Ĉ(x̂) = |detDK |−1 Dt
K c(x)DK and D̂(x̂) = |detDK | d(x).

Then, the lifting (qe,$, ue,$) on K when mapped to K̂ satisfies

q̂e,$ = Q̂
L̂e,!

and ûe,$ = Û
L̂e,!

.

Moreover,

EK;e,$;e′,$′ = −
∫

ê
L̂e,$ Q̂

L̂e′,!′
· n̂ dŝ,

HgK;e,$ =

∫

ê
ĝ Q̂

L̂e,!
· n̂ dŝ,

HfK;e,$ =

∫

K̂
Û
L̂e,!

f̂ |detDK | dx̂.

This result can be easily proved by a straightforward change of variables and
application of Lemma 2.2. Note that if the functions Ĉ and D̂ are constant, there is
no need to use quadrature rules to find the matrix entries.

4. Comparison with the hybridized BDM method. Now we compare the
multipliers given by the hybridized version of the RT method and those given by the
hybridized version of the corresponding BDM method.

4.1. Statement of the results. To state our comparison results, we first intro-
duce the hybridized BDM method. The approximate solution given by this method,
(qBDM

h , uBDM
h , λBDM

h ), is sought in the finite element space V BDM
h × WBDM

h × Mh given
by

V BDM
h = {v ∈ L2(Ω) × L2(Ω) : v|K ∈ P k(K) × P k(K) for all K ∈ Th},

WBDM
h = {w ∈ L2(Ω) : w|K ∈ P k−1(K) for all K ∈ Th},
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where k ≥ 1, and is defined by requiring that, for all (v, u, µ) ∈ V BDM
h ×WBDM

h ×Mh,
∫

Ω
c qBDM

h · v dx−
∑

K∈Th

∫

K
uBDM
h ∇ · v dx +

∑

e∈Ei,h

∫

e
λBDM
h [[v]] ds = −

∫

∂Ω
g [[v]] ds,

∑

K∈Th

∫

K
w∇ · qBDM

h dx +

∫

Ω
d uBDM

h w dx =

∫

Ω
f w dx,

∑

e∈Ei,h

∫

e
µ [[qBDM

h ]] ds = 0.

Note that the approximate solution of the BDM method satisfies exactly the same
weak formulation as the approximate solution of the RT method; the only difference
is the choice of the finite element spaces. As a consequence, the characterization
theorem (Theorem 2.1) holds for the hybridized version of the BDM method. This
is the key fact that allows us to compare the hybridized versions of the RT and the
BDM methods.

In comparing the RT and BDM methods, for the sake of readability, we shall
superscript the notation previously introduced in connection with the RT method by
“RT.” When superscripted by “BDM,” such notation is to be understood as defined
exactly as before except that the RT spaces are replaced by the BDM spaces. For
example, (qh, uh)BDM

m ≡ (qBDM
h,m , uBDM

h,m ) ∈ V BDM
h ×WBDM

h is defined by requiring that
∫

Ω
c qBDM

h,m · v dx−
∑

K∈Th

∫

K
uBDM
h,m ∇ · v dx = −

∑

e∈Eh

∫

e
m [[v]] ds,

∑

K∈Th

∫

K
w∇ · qBDM

h,m dx +

∫

Ω
d uBDM

h,m w dx = 0

hold for all (v, w) ∈ V BDM
h ×WBDM

h .
To state our first comparison theorem, we need the following additional notation:

Denote by Pk the L2-orthogonal projection into the space of functions which are
piecewise polynomials of degree k on each triangle K ∈ Th. Let Rf = Pk f − Pk−1 f
for all f ∈ L2(Ω). Define the form

bRT
h,Rf (µ) =

∫

Ω
Rf uRT

h,µ dx for all µ ∈ Mh

and the function ρh ≡ ρh(Rf) ∈ Mh by

aRT
h (ρh, µ) = bRT

h,Rf (µ) for all µ ∈ Mh.

Also set

Ψ(µ, g, f) = (0,RuRT
h,µ) + (0,RuRT

h,g) + (0,RuRT
h,Pk−1f ) and

Υ(Rf) = (qh, uh)RT
ρh

+ (qh, uh)RT
Rf .

Now we can state the theorem.
Theorem 4.1 (comparison of the RT and BDM methods for d = 0).
Assume that d(x) = 0 almost everywhere in Ω.
1. Suppose f ∈ L2(Ω) is such that (Pk − Pk−1)f = 0. Then, the Lagrange

multiplier components of the RT and BDM solutions coincide:

λRT
h = λBDM

h .
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2. If f ∈ L2(Ω) is arbitrary, then the following statements hold:

(α) aRT
h (m, µ) = aBDM

h (m, µ) for all m, µ ∈ L2(Eh).

(β) bRT
h (µ) = bBDM

h (µ) + bRT
h,Rf (µ) for all µ ∈ L2(Eh).

(γ) λRT
h = λBDM

h + ρh(Rf).

(δ) (qRT
h , uRT

h ) = (qBDM
h , uBDM

h ) + Ψ(λBDM
h , g, f) + Υ(Rf).

Before proving the theorem, let us discuss the result and some of its consequences.
Remark 4.1. Statements (α) and (β) can be easily rewritten in matrix form as

follows:

(α′) ERT = EBDM,

(β′) HRT = HBDM + HRT
Rf ,

where the matrix EN is the stiffness matrix associated to the bilinear form aN
h(·, ·),

and the matrix HN is the right-hand side matrix associated to the linear form bN
h(·) for

N ∈ {RT, BDM}. The matrix HRT
Rf is, of course, the right-hand side matrix associated to

the linear form bRT(·)h,Rf . This means that, when d = 0, the stiffness matrices of the
multipliers of both methods coincide. However, the right-hand side matrices differ.
But they differ by a matrix which vanishes when Rf = 0—hence the coincidence of
the Lagrange multipliers whenever Rf = 0.

Remark 4.2. The coincidence of Lagrange multipliers asserted by the theorem in
the case Rf = 0 (and d = 0) appears to have gone unnoticed hitherto even numeri-
cally. This case occurs, e.g., when f is a polynomial of degree k− 1 on every element
of the mesh and in several applications of practical interest, e.g., incompressible flow
in porous media (where f = 0 usually). The condition Rf = 0 is not only sufficient
but also necessary for such a coincidence: From the characterization theorem, it is
clear that the only part of f that determines λRT

h is Pkf , while the only part of f that
determines λBDM

h is Pk−1f . Therefore, setting f to a polynomial of degree k for which
0 = Pk−1f -= Pkf , we can make λRT

h -= λBDM
h .

Remark 4.3. Statement (δ) of the theorem shows how the solution components
other than the multipliers are related. Obviously, Υ(Rf) depends linearly on Rf .
Therefore, when Rf = 0, the solution (qRT

h , uRT
h ) differs from (qBDM

h , uBDM
h ) only by

Ψ(λBDM
h , g, f), a function that can be computed locally element by element. In par-

ticular, this means that it is possible to implement the less expensive BDM method
and locally recover the RT solution uRT

h , which is one order higher in accuracy (under
certain regularity assumptions). In this sense, (δ) can be thought of as yielding a post-
processing technique. Of course, one can then further postprocess the RT solution by
the technique of [1] and gain one further order in accuracy.

Remark 4.4. It is well known that the Lagrange multiplier of both the RT and
the BDM methods approximates the traces of the exact solution u on mesh edges.
Specifically, under certain regularity assumptions, [5, Lemma 4.1] asserts that when
Th is a quasi-uniform mesh with mesh size h, as h → 0,

‖λBDM
h − PMhu‖Eh= O(hk+3/2−δk1),(4.1)

where PMh denotes the L2-orthogonal projection onto Mh, ‖ ·‖Eh denotes the L2(Eh)-
norm, and δk1 is zero for all k except for k = 1, in which case it equals one. The
analogous estimate for the RT method [1, Corollary 1.5] is

‖λRT
h − PMhu‖Eh= O(hk+3/2).
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However, obviously whenever λRT
h = λBDM

h , there can be no difference in the con-
vergence rates. Therefore, when k = 1 and Rf = 0, by virtue of Theorem 4.1,
we conclude that although (4.1) provides for only O(h3/2)-convergence, in fact the
convergence rate is at least O(h5/2).

When d -= 0, the liftings qRT
h,m and qBDM

h,m are no longer divergence-free on each
element, in general. In fact, as we show later, there are multipliers m for which
RuRT

h,m -= 0. This property implies that the statements of Theorem 4.1 do not hold in
general. In particular, the following theorem provides a case wherein statement (α)
does not hold. Obviously, whenever statement (α) fails to hold, one cannot expect
coincidence of RT and BDM Lagrange multipliers.

Theorem 4.2 (comparison of the RT and BDM methods for d ≥ 0). Assume
that c(x) and d(x) are constant on each element of the mesh. Then, whenever d(x)
is positive on at least one element, statement (α) of Theorem 4.2 does not hold.

Now, we prove Theorems 4.1 and 4.2.

4.2. Proof of Theorem 4.1. The proof proceeds by establishing a connection
between the BDM and RT liftings and applying the characterization theorem. Two
properties of the finite element spaces of the RT and BDM methods play a crucial role.
The first is simply that the multipliers of both methods share the same space. The
second is that the elements of V RT

h whose divergence on each element is a polynomial
of degree k − 1 also belong to the space V BDM

h . Let us begin by proving the latter
property.

Lemma 4.3. The following containment holds:

{qh ∈ V RT
h : ∇ · qh|K ∈ P k−1(K) for all K ∈ Th} ⊂ V BDM

h .

Proof. If qh ∈ V RT
h , then qh|K = vk + xp̃k for some vk ∈ P k(K) × P k(K) and

some homogeneous polynomial p̃k(x) of degree k on K. Taking the divergence, we
find that

∇ · (qh|K) = ∇ · vk + (k + 2)p̃k.

Therefore, ∇ · (qh|K) ∈ P k−1(K) implies that p̃k = 0, and consequently qh|K ∈
P k(K) × P k(K). Hence qh ∈ V BDM

h . This completes the proof.
The next result uses the above lemma and the definition of the local mappings to

establish key relations between the local mappings of the RT and BDM methods.
Lemma 4.4. Assume that d = 0. Then, for all m ∈ L2(Eh) and f ∈ L2(Ω),

(i) qRT
h,m = qBDM

h,m , uRT
h,m = uBDM

h,m + RuRT
h,m,

(ii) qRT
h,f = qBDM

h,f + qRT
h,Rf , uRT

h,f = uBDM
h,f + RuRT

h,Pk−1f + uRT
h,Rf .

Proof. Let us begin by proving (i). From (2.9), we have
∫

Ω
c
(
qRT
h,m − qBDM

h,m

)
· v dx−

∑

K∈Th

∫

K

(
uRT
h,m − uBDM

h,m

)
∇ · v dx = 0 for all v ∈ V BDM

h ,

and from (2.10), ∇ · qRT
h,m|K = 0 and ∇ · qBDM

h,m |K = 0 for all K ∈ Th. Since by
Lemma 4.3 qRT

h,m ∈ V BDM
h , we can take v = qRT

h,m − qBDM
h,m in the first equation of this

proof to get that qRT
h,m = qBDM

h,m . It immediately follows that

−
∑

K∈Th

∫

K

(
uRT
h,m − uBDM

h,m

)
∇ · v dx = 0 for all v ∈ V BDM

h ,

which implies that Pk−1 uRT
h,m = uBDM

h,m . This proves (i).
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Now, let us prove (ii). It suffices to show that for p = Pk−1f ,

qRT
h,p = qBDM

h,p and uRT
h,p = uBDM

h,p + RuRT
h,p.(4.2)

Indeed, once we have (4.2), by linearity and the obvious equality

(qh, uh)BDM
Pk−1f = (qh, uh)BDM

f ,

we get that

(qh, uh)RT
f = (qh, uh)RT

p + (qh, uh)RT
Rf

= (qh, uh)BDM
p + (0,RuRT

h,p) + (qh, uh)RT
Rf ,

and (ii) follows. To show (4.2), first observe that since p|K = (Pk−1f)|K ∈ P k−1(K),
(2.12) implies that

∇ · qRT
h,p|K = p and ∇ · qBDM

h,p |K = p for all K ∈ Th.

Therefore, using Lemma 4.3 again, qRT
h,p ∈ V BDM

h . Now, (2.11) yields
∫

Ω
c
(
qRT
h,p − qBDM

h,p

)
· v dx−

∑

K∈Th

∫

K

(
uRT
h,p − uBDM

h,p

)
∇ · v dx = 0 for all v ∈ V BDM

h .

Since we have shown that qRT
h,p ∈ V BDM

h , we can choose v = qRT
h,p − qBDM

h,p above. Then
the first equality of (4.2), namely, qRT

h,p = qBDM
h,p , immediately follows. The second

equality of (4.2) also follows, because by (i) we have Pk−1 uRT
h,p = uBDM

h,p . This completes
the proof.

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. First, observe that the first conclusion of the theorem,

namely, λRT
h = λBDM

h whenever Rf = 0, follows from statement (γ), because ρh(Rf)
depends linearly on Rf . Therefore, we shall prove only statements (α)–(δ).

Applying the characterization theorem with d = 0, we find that

aN
h(m, µ) =

∫

Ω
c qN

h,m · qN
h,µ for N ∈ {RT, BDM},

so the equality of (α) follows from the first equality of Lemma 4.4(i). Similarly, since

bN
h(µ) =

∫

∂Ω
g [[qN

h,µ]] ds +

∫

Ω
f uN

h,µ dx for N ∈ {RT, BDM},

the second equality, namely, (β), also follows from Lemma 4.4(i). Now, statement (γ)
obviously follows from (α), (β), and the definitions of the multipliers.

To prove statement (δ), we start again from the characterization theorem, apply
statement (γ), and use the identities of Lemma 4.4 in succession:

(qRT
h , uRT

h ) = (qh, uh)RT

λRT
h

+ (qh, uh)RT
g + (qh, uh)RT

f

= (qh, uh)RT

(λBDM
h

+ρh) + (qh, uh)RT
g + (qh, uh)RT

f

= (qh, uh)BDM

λBDM
h

+ (0,RuRT

h,λBDM
h

+ uRT
h,ρh

) + (qBDM
h,g , uBDM

h,g + RuRT
h,g)

+ (qBDM
h,f + qRT

h,Rf , u
BDM
h,f + RuRT

h,Pk−1f + uRT
h,Rf )

= (qh, uh)BDM

λBDM
h

+ (qh, uh)BDM
g + (qh, uh)BDM

f

+Ψ(λBDM
h , g, f) + Υ(Rf).

The first three terms on the right-hand side of the last equality sum to the BDM so-
lution. This completes the proof of Theorem 4.1.
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4.3. Proof of Theorem 4.2. To prove this result, we begin by studying the
local spaces of the RT method, namely,

V RT
K = P k(K) × P k(K) + x P k(K),

WRT
K = P k(K),

MRT
K = {µ ∈ L2(∂K) : µ|e ∈ P k(e) for each edge of K}.

It turns out that, when d > 0, the lifting maps induce a natural orthogonal decom-
position of the local space V RT

K , namely,

V RT
K = V 0

K ⊕ V ⊥
K ,

where

V 0
K = {v ∈ V RT

K : v · ne = 0 on each edge e of K},
V ⊥
K = {v ∈ V RT

K : ((v, q)) = 0 for all q ∈ V 0
K},

and

((v1,v2)) =

∫

K
cv1 · v2 dx +

∫

K

1

d
∇ · v1 ∇ · v2 dx.

Indeed, the following result states that the local space V ⊥
K is nothing but the image

of the lifting map m (→ qRT
h,m.

Lemma 4.5. Assume that d(x) is a positive constant on an element K ∈ Th, and

let {mi}3(k+1)
i=1 be a basis of MRT

K . Then, {qRT
h,mi

}3(k+1)
i=1 is a basis of V ⊥

K .
Proof. By (2.10), we have for any m ∈ MRT

K

uRT
h,m = −1

d
∇ · qRT

h,m.(4.3)

Substituting this expression for uRT
h,m into (2.9), we see that (2.9) can be rewritten as

follows:

((qRT
h,m,v)) = −

∑

e∈∂K

∫

e
m [[v]] ds.

As a consequence

{qRT
h,mi

}3(k+1)
i=1 ⊂ V ⊥

K .

Since the dimension of V ⊥
K is 3(k + 1), it remains only to show that the elements

of the set {qRT
h,mi

}3(k+1)
i=1 are linearly independent. So, assume that there are scalars

αi such that

3(k+1)∑

i=1

αi qRT
h,mi

= 0.

By the linearity of the lifting, this implies that qRT
h,m = 0, where

m =

3(k+1)∑

i=1

αi mi.
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However, since by (4.3)

uRT
h,m = −1

d
∇ · qRT

h,m = 0,

we have that the lifting (qRT
h,m, u

RT
h,m) is zero. Consequently, m = 0. Since {mi}3(k+1)

i=1
is a basis for MRT

K , it follows that αi = 0 for all i = 1, . . . , 3(k + 1). This completes
the proof.

Now, we use the above result to show that the lifting uRT
h,m is not always a poly-

nomial of degree at most k − 1 on all the elements of the triangulation.
Lemma 4.6. Assume that c(x) is constant on an element K ∈ Th. Also assume

that d(x) is a positive constant on K. Then there is a function m ∈ MRT
K such that

RuRT
h,m -= 0 on K.

Proof. Since by (4.3)

uRT
h,m = −1

d
∇ · qRT

h,m,

an application of Lemma 4.3 shows that RuRT
h,m = 0 if and only if

qRT
h,m ∈ P k(K) × P k(K) for all m ∈ MRT

K .(4.4)

We claim that this is not possible for all m ∈ MRT
K . Indeed, if this were the case, V ⊥

K ⊂
P k(K)×P k(K). This implies that the orthogonal complement of P k(K)×P k(K) in
V RT
K with respect to the inner product ((·, ·)), which we denote by WK , satisfies

WK ⊂ V 0
K .(4.5)

However, as we shall now see, this implies that WK = {0}, which is a contradiction.
In the orthogonality relation

∫

K
cφ · v dx +

1

d

∫

K
(∇ · φ)(∇ · v) dx = 0 for all v ∈ P k(K) × P k(K),

let us choose v = c−T∇η for some η ∈ P k+1(K) (where c−T denotes the inverse of
the transpose of c):

∫

K
φ · ∇η dx +

1

d

∫

K
(∇ · φ)(∇ · c−T∇η) dx = 0.(4.6)

By (4.5) and integration by parts
∫

K
φ · ∇η dx +

∫

K
η∇ · φ dx =

∫

∂K
η(φ · n) ds = 0.(4.7)

Subtracting (4.6) from (4.7), we have
∫

K

(
η − 1

d
∇ · c−T∇η

)
(∇ · φ) dx = 0 for all η ∈ P k+1(K).(4.8)

Now we show that (4.8) implies that ∇ · φ = 0. Choosing η ∈ P 1(K) in (4.8),
we conclude that ∇ · φ is L2(K)-orthogonal to P 1(K). For k ≥ 2, if ∇ · φ is L2(K)-
orthogonal to P k−1(K), then choosing η ∈ P k(K) we find that ∇ · φ is L2(K)-
orthogonal to P k(K) as well, because ∇ · (c−T∇η) ∈ P k−2(K). Thus, by induction,
∇ · φ is zero.
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It follows from ∇ · φ = 0 that φ = 0: Indeed, any φ ∈ W can be written as
φ(x) = xp̃k −Qk(xp̃k), where Qk is the orthogonal projection onto P k(K) × P k(K)
in the ((·, ·))-inner product, and p̃k is a homogeneous polynomial of degree k. Therefore,

0 = ∇ · φ = (k + 2)p̃k −∇ ·Q k(xp̃k).

Since the latter term is in P k−1(K), we conclude that p̃k = 0, so φ = 0. Thus (4.4)
does not hold, and the lemma is proved.

The next result establishes an equivalent criterion for statement (α) of Theo-
rem 4.1 in terms of the liftings.

Lemma 4.7. Assume that d(x) is constant on every element of the mesh. Let
m ∈ L2(∂K). Then

aRT
h (m,m) = aBDM

h (m,m)

if and only if

(i) qRT
h,m = qBDM

h,m on Ω and

(ii) uRT
m = uBDM

m on all elements K ∈ Th, where d > 0.

Proof. Set J(m) = aRT
h (m,m) − aBDM

h (m,m). Since, by Theorem 2.1, we have, for
N ∈ {RT, BDM},

aN
h(m,m) =

∫

Ω
c qN

h,m · qN
h,m dx +

∫

Ω
d uN

h,m uN
h,m dx,

a straightforward use of the identity a2 − b2 = (a− b)2 + 2 b (a− b) allows us to write
J(m) = Θ(m) + D(m), where

Θ(m) =

∫

Ω
c (qRT

h,m − qBDM
h,m ) · (qRT

h,m − qBDM
h,m ) dx +

∫

Ω
d (uRT

m − uBDM
m )2 dx

and

D(m) = 2

∫

Ω
c qBDM

h,m ·
(
qRT
h,m − qBDM

h,m

)
dx + 2

∫

Ω
d uBDM

h,m

(
uRT
h,m − uBDM

h,m

)
dx.

We will now show that D(m) = 0. Consider the first term in the definition of D(m).
By (2.9),

∫

Ω
c qBDM

h,m ·
(
qRT
h,m − qBDM

h,m

)
dx =

∫

Ω
c qRT

h,m · qBDM
h,m dx−

∫

Ω
c qBDM

h,m · qBDM
h,m dx

= −
∑

K∈Th

∫

K

(
uRT
h,m − uBDM

h,m

)
∇ · qBDM

h,m dx.

Hence, using also (2.10), we have

∫

Ω
c qBDM

h,m ·
(
qRT
h,m − qBDM

h,m

)
dx = −

∑

K∈Th

∫

K

(
Pk−1u

RT
h,m − uBDM

h,m

)
∇ · qBDM

h,m dx

= −
∫

Ω
d uBDM

h,m

(
Pk−1u

RT
h,m − uBDM

h,m

)
dx.
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Inserting this expression in the definition of D, we get

D(m) = 2

∫

Ω
d uBDM

h,m

(
uRT
h,m − Pk−1u

RT
h,m

)
dx = 0,

because d is constant on each element of the mesh. In other words, J(m) = Θ(m).
This implies that J(m) = 0 if and only if Θ(m) = 0. The lemma follows from the

definition of Θ(m) and the fact that c(x) is positive definite.
We are now ready to prove Theorem 4.2.
Proof of Theorem 4.2. Since there is at least one element K ∈ Th wherein d is a

positive constant, Lemma 4.6 asserts the existence of at least one function m ∈ MRT
K

for which RuRT
h,m -= 0 on K. This implies that uRT

h,m -= uBDM
h,m on K. Therefore, by

Lemma 4.7, for any µ ∈ Mh such that µ|∂K = m, we have aRT
h (µ, µ) -= aBDM

h (µ, µ).
Consequently, statement (α) of Theorem 4.1 does not hold. This completes the
proof.

5. Concluding remarks. The characterization theorem obtained in this pa-
per for the hybridized RT method on triangular meshes also holds for various other
methods. For example, it holds for the RT method on simplicial meshes in any space
dimension as well as on rectangular and cubic meshes. It also holds for the hybridized
versions of the mixed methods of Brezzi, Douglas, and Marini [5, 6] on rectangles, the
method of Brezzi et al. [3] on tetrahedra and bricks, and the method of Brezzi et al.
[4] on triangles, rectangles, tetrahedra, and bricks.

As a consequence, the matrix entries for the multipliers of all of the above-
mentioned methods can be computed as described in section 3. Moreover, a result
similar to the comparison theorem (Theorem 4.1) holds for the RT and BDM meth-
ods on multidimensional simplices. However, when the elements are rectangles or
bricks, the subspace of divergence-free members of the RT and BDM spaces on an
element are not identical. Therefore, in general, we cannot expect a result analogous
to Theorem 4.1 to hold in this case.

Other applications of the characterization theorem are studied elsewhere. Indeed,
in [11] it is shown how to use the characterization theorem to construct a Schwarz pre-
conditioner for the multiplier equation of the RT and BDM hybridized mixed methods
of any order. Such preconditioners were known only for the lowest order hybridized
RT method. Also, in a forthcoming paper, we show how to use the characterization
result to obtain error estimates for the multipliers without relying on error estimates
on the other variables, as is customarily done.

Finally, let us briefly comment on the relation between the hybridized mixed
methods and the discontinuous Galerkin methods. It is not difficult to see that the
counterpart of the multiplier λh is nothing but the so-called numerical trace of the ap-
proximation uh given by the discontinuous Galerkin method. How to exploit this link
to achieve a better theoretical understanding of both methods remains a challenging
open problem; see [9].
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