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ABSTRACT 

Objective: To determine if decomplexification of intracranial pressure (ICP) dynamics occurs during 

periods of severe intracranial hypertension (ICP > 25 mmHg for longer than 5 minutes in the absence of 

external noxious stimuli) in pediatric patients with intracranial hypertension.  

Design: Retrospective analysis of clinical case series over a 30-month period from April 2000 through 

January 2003. 

Setting: Multi-disciplinary 16-bed Pediatric Intensive Care Unit. 

Subjects: Eleven episodes of intracranial hypertension from 7 subjects requiring ventriculostomy catheter 

for intracranial pressure monitoring and/or cerebral spinal fluid drainage. 

Intervention: None. 

Measurements and Main Results: We measured changes in the ICP complexity, estimated by the 

approximate entropy (ApEn) as patients progressesed from a state of normal ICP (<25 mmHg) to 

intracracranial hypertension.  We found the ApEn population mean to be lower during the intracracranial 

hypertension period than during the stable and recovering periods in all the 11 episodes (0.5158 ± 0.0089, 

0.3887 ± 0.077, and 0.5096 ± 0.0158, respectively, p<0.01). Both the mean reduction in ApEn from the 

state of normal ICP (stable region) to intracranial hypertension (-0.1271), and the increase in ApEn from 

the ICH region to the recovering region (0.1209) were determined to be statistically significant (p<0.01). 

Conclusions: Our results indicate that decreased complexity of ICP coincides with periods of intracranial 

hypertension in brain injury. This suggests that the complex regulatory mechanisms that govern ICP may 

be disrupted during acute periods of intracranial hypertension. This phenomenon of decomplexification of 

physiologic dynamics many have important clinical implications for ICP management. 

 

KEY WORDS: brain injury, intracranial pressure, intracranial hypertension, approximate entropy, 

complexity 
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INTRODUCTION 

Elevated intracranial pressure (ICP) following acute brain injury may be due to cerebral edema, cerebral 

hyperperfusion, and/or intra- or extracranial hemorrhage. Intracranial hypertension (ICH) has been 

defined as elevated ICP > 25 mmHg for longer than 5 minutes in the absence of external noxious stimuli 

(1). ICH may be associated with secondary brain injury due to decreased cerebral perfusion pressure and 

cerebral ischemia.  

 

Current intensive care unit (ICU) monitoring devices only allow for display of the ICP waveform with a 

digital parameter display of the averaged 3-10 second mean ICP value (2). ICP alarms are typically set for 

sustained periods of ICP in accordance with the definition of ICH as above. Thus, by the time a bedside ICP 

alarm goes off, the ICP may have been dangerously elevated for seconds to minutes, depending on the alarm 

settings and type of ICP elevation. Conversely, very brief elevations in ICP  lasting less than 3-10 seconds 

may be missed altogether. 

 

We have previously demonstrated that elevated ICP due to severe traumatic brain injury (TBI) is associated 

with changes in physiologic signal metrics derived from the electrocardiogram, arterial pressure waveform, 

and ICP waveform that suggests uncoupling of autonomic cardiovascular regulatory mechanisms (3-5). In 

addition, we reported preliminary data showing a breakdown in long-range correlation behaviour of heart rate 

fluctuations, as measured by the nonlinear scaling exponent, alpha (α), a nonlinear complexity statistic 

calculated by detrended fluctuation analysis (6 ,7). This line of research suggests that metrics to analyze the 

ICP signal other than the time-averaged mean may have physiologic and clinical significance and that there 

are measurable differences in signal metrics between subjects with ICH.  

 

In this study, the objective was to determine whether there were immediate changes in the ICP signal before, 

during, and after an acute elevations in ICP (a so-called “ICP spike”) using metrics other than the time-
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averaged mean value. We hypothesized that measures of ICP complexity would decrease during periods of 

intracranial hypertension (ICH) compared to baseline values when the ICP was within physiologic normal 

ranges, providing evidence for decomplexification during an acute and finite period of severe physiologic 

stress (8). To test this hypothesis, we measured changes in the complexity of the ICP signal, estimated by the 

approximate entropy (ApEn), as patients progressed from a stable state of normal ICP (<25 mmHg) to 

intracranial hypertension (ICP > 25 mmHg for longer than 5 minutes in the absence of external noxious 

stimuli (1), and then back towards pre-ICH levels. 

 

Approximate entropy is a metric to estimate system complexity. A low value of ApEn indicates 

predictability, regularity, or a quantitatively less complex state whereas high ApEn indicates 

unpredictability, irregularity, and greater complexity (9). ApEn is a computable measure which can be 

used to determine changing system complexity from time series and is potentially capable of classifying 

complex systems from a relatively small amount of data. It has been used mainly in the analysis of heart 

rate variability (10), endocrine hormone release pulsatility (11) and the impact of pulsatility on the 

ensemble orderliness of neurohormone secretion (12). Furthermore, ApEn has been applied to studies 

discriminating atypical EEGs (13) and respiratory patterns (14) from normative counterparts, to estimate 

depth of anesthesia (15) and to examine the time and frequency structure of Parkinson’s disease tremor 

(16,17). Preliminary evidence suggests that when applied to analysis of EEGs, the ApEn is predictive of 

epileptic seizure (18). ApEn has also been used to study the connection between panic disorder and 

respiration dynamics (19), to investigate changes during stages of consciousness, and to associate such 

alterations with brain function (20). This measure of complexity, however, has not been applied directly 

to the ICP signal in order to evaluate changes in system complexity during different pathologic states of 

brain injury. In this paper the term complexity is restricted to the scientific definition provided  by Pincus 

as it relates to ApEn (9).  
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MATERIALS AND METHODS 

Patients and Patient Management and Data Acquisition 

The study protocol was reviewed and approved by the Institutional Review Board at Oregon Health & 

Science University. The requirement for informed consent was waived.  

 

This study included 11 ICP spikes from 7 subjects with brain injury admitted to the pediatric ICU at 

Doernbecher Children’s Hospital. The subject’s age, gender, mechanism and description of injury, 

admission Glasgow Coma Scale score (21), survival, and Glasgow Outcome Score (22) are listed in 

Table 1. Management of the six subjects with severe traumatic brain injury (TBI) followed the recently 

published “Guidelines for the Acute Medical Management of Severe Traumatic Brain Injury in Infants, 

Children, and Adolescents” (1). One subject with a history of craniosynostosis and severe headaches was 

admitted for ICP monitoring. 

 

ICP Database and ICP Spike Detection 

Data for this study was obtained from the physiologic signal library in the Complex Systems Laboratory 

(2). The database consisted of 76 GB of ICP data collected from 93 patients from 1998-2003. ICP was 

monitored continuously using a ventricular catheter or parenchymal fiberoptic pressure transducer 

(Integra NeuroCare, Integra LifeSciences, Plainsboro, NJ). The ICP monitor was connected to a Philips 

Merlin patient monitor (Philips, Best, Netherlands) that sampled the ICP and arterial blood pressure 

signals at 125 Hz. An HPUX workstation automatically acquired these signals through a serial data 

network, and they were stored in files on CD-ROM. Detailed description of the data acquisition system 

used in the Complex Systems Laboratory was previously reported (2).  
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The following criteria were used to detect ICP spikes. The criteria are specified in terms of three non-

overlapping segments of the mean ICP signal: a 300 s stable region, a 10-300 s transition zone, and a 20 s 

region of ICH. Similar criteria were reported in an earlier study (23).  

1. The difference between the minimum value in the critical region and the maximum value in the 

stable region was > 10 mmHg. This ensured the detector only detected significant elevations of at 

least 10 mmHg that occur over a period of no more than 5 minutes. 

2. The minimum ICP value in the critical region was > 20 mmHg. This ensured that each ICP spike 

was large enough to be clinically significant (24).  

3. The mean ICP was in the range of 0-100 mmHg in the stable region and less than 150 mmHg in 

the ICH region. These criteria were used to limit artifact from being detected as ICP spikes.  

4. Each ICP spike was separated from preceding ICP spikes by at least 5 minutes. This ensured that 

a single long elevation in ICP was not detected as two separate ICP spikes.  

 

To estimate the mean ICP, a low-pass filter was applied with a cutoff frequency sufficiently low to 

eliminate the pulsatile components of the ICP signal due to respiration and heart beats. The non-causal 

low-pass filter had a cutoff frequency of 0.22 Hz and zero phase delay. To decrease the computational 

load, the signal was decimated by a factor of 225. This changed the effective sampling rate from 125 Hz 

to 0.556 Hz. The criterion described in the previous section were then applied to every sample of the 

decimated signal to determine if a spike occurred.  

 

ICP spikes that met the specified criteria were visually screened for artifact. This screen was based on a 

plot of the ICP signal spanning 20 minutes before and 30 minutes after the leading edge of the spike and a 

spectrogram of the same segment. The visual screen eliminated candidate spikes if (1) they contained 

artifact, (2) there was an abrupt drop in the ICP signal consistent with CSF withdrawal, (3) the signal was 
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clipped, or (4) the ICP spike was part of the preceding episode of intracranial hypertension. If there were 

no problems detected during the 50 minute record, the ICP spike was included in the study. 

 

The automatic spike detection algorithm found 166 ICP segments that met our criteria for an acute spike. 

During the visual screen we found that 31 of the segments contained artifact, 28 of which were actually 

periods of cerebral spinal fluid drainage when the ventriculostomy catheter was turned “off” to the 

pressure monitor and created a “false” spike. An additional 95 segments were “clipped” at the maximum 

range of the patient monitor (i.e. the top or bottom of the ICP waveform was cut off creating signal 

artifact not suitable for analysis – this technical problem has since been resolved). One segment was 

identified as a second detection of a single ICH episode. The end result was 11 clean records of ICH 

detected from 7 different subjects that were used for analysis. An example of a detected ICH region is 

shown in Figure 1. Figure 2 shows an example of the ICP segments used for analysis including the 

stable, ICH and recovering regions.  

 

Approximate Entropy 

Approximate Entropy (ApEn) is a family of parameters and statistics introduced as a quantification of 

regularity in time-series, initially motivated by applications to short and noisy data sets. It was first 

proposed by Pincus in 1991 (9), and its biologic and physiologic applications are spreading rapidly (25). 

Several properties of ApEn facilitate its utility for empirical time series analysis (26): 

1. ApEn is nearly unaffected by noise below a de facto specified filter level (r). 

2. ApEn can be applied to time series of 50 or more points with good reproducibility. 

3. ApEn is finite for stochastic, noisy deterministic and composite processes. 

4. Increasing values of ApEn correspond to more irregularity in the time series or to intuitively 

increasing process complexity. 
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The potential uses of ApEn to provide new insights in epidemiologic settings are considerable from a 

complementary perspective to that given by more classical statistical methods. It appears that ApEn has 

potential widespread utility to practical data analysis and clinical application due to the salient features it 

bears. Moreover, when applied to the analysis of biomedical time series, ApEn does not show the 

important drawbacks – i.e. very long data sequences needed to estimate them accurately, data must be 

stationary, etc. – that many widely-applied nonlinear methods (correlation dimension, first positive 

Lyapunov exponent) have. 

 

ApEn is scale invariant, model independent, evaluates both dominant and subordinant patterns in data, 

and discriminates series for which clear feature recognition is difficult; notably it detects changes in 

underlying episodic behaviour not reflected in peak occurrences or amplitudes (27). ApEn assigns a non-

negative number to a time series, with larger values corresponding to more complexity or irregularity in 

the data. It has two user-specified parameters: a run length m and a tolerance window r. Briefly, ApEn 

measures the logarithmic likelihood that runs of patterns that are close (within r) for m contiguous 

observations remain close (within the same tolerance width r) on subsequent incremental comparisons.  

ApEn has two user-specified parameters: a run length m and a tolerance window r. It is important to 

consider ApEn(m, r) – or ApEn(m, r, N), where N is the number of points of the time series – as a family 

of parameters: comparisons between time series segments can only be made with the same values of m

and r (26). 

 

Formally, given N data points from a time series <x(n)>=x(1), x(2), …, x(N), to compute ApEn, the 

following steps are taken: 

1. Form m-vectors X(1)~X(N-m+1) defined by: X(i)=[x(i),x(i+1),…,x(i+m-1)], i=1~N-m+1. These 

vectors represent m consecutive x values, commencing with the ith point.  

2. Define the distance between X(i) and X(j), d[X(i),X(j)], as the maximum absolute difference 
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between their respective scalar components: 
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3. For a given X(i), count the number of j (j=1~N-m+1, j≠i) such that d[X(i),X(j)]≤r, denoted as 

Nm(i). Then, for i=1~N-m+1,
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)(rmφ represents the average frequency that all the m-point patterns in the sequence remain close to each 

other. 

5. Increase the dimension to m+1. Repeat steps 1 to 4 and find )(1 iC m
r
+ and )(1 rm+φ .

6. Approximate Entropy is then defined by: 

)()(),,( 1 rrNrmApEn mm +−= φφ (4) 

 

Prior to ApEn estimation, the ICP signals were filtered to eliminate the low frequency components 

(baseline trend) and remove the mean pressure (DC component). We used a high-pass equiripple FIR 

filter with a cut-off frequency of 0.5 Hz. This guaranteed that our ApEn estimates obtained from the ICP 

signal were based exclusively on the ICP pulse morphology, since both the mean ICP and the baseline 

trend were eliminated with by the highpass filter. Figure 2 and Figure 3 illustrate this methodology. Each 

filtered ICP signal was windowed into segments of 20 seconds in duration. ApEn was estimated for each 

segment. We used normalized parameters of m = 1 and r = 20% of the segments time series standard 

deviation (SD) (12). Normalizing r in this manner gives ApEn a translation and scale invariance, in that it 
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remains unchanged under uniform process magnification, reduction, or constant shift to higher or lower 

values (26). Several studies (9,27,28) have demonstrated that these input parameters produce good 

statistical reproducibility for ApEn for time series of length n≥60, as considered herein. 

 

Statistical Analysis 

Statistical analysis was aimed at determining the statistical significance of the mean reduction in ApEn 

during the ICH period for each of the individual subjects and across the population. Mean ApEn’s values 

were obtained for 2 min windows immediately before, during, and after the ICH period. We used 

bootstrap to estimate the standard error of the means for each of these states. We performed a 

nonparametric hypothesis test in order to determine statistically significant mean ApEn reductions based 

on bootstap (29).  The main advantage of using the nonparametric bootstrap technique is that is that it can 

be used to assess the statistical significance of these reductions without making any assumptions about the 

distribution of the mean ApEn  reductions. The nonparametric bootstrap hypothesis testing involves 

computing a bootstrap confidence interval for the difference of mean ApEn. Equality of the mean ApEn is 

obtained if zero is a possible value in the confidence interval. Results were considered to be statistically 

significant if p < 0.01. 

 

RESULTS 

Table 2 shows the estimated mean ApEn during the stable, ICH, and recovering regions for each of the 11 

episodes. Table 3 shows the estimated standard errors corresponding to the ApEn means shown in Table 

2. The mean ApEn was lower during the ICH period than during the stable and recovering period in all the 

11 episodes (p<0.01) (Table 2). The population mean across all the 11 episodes during the stable, ICH, 

and recovering regions were estimated to be 0.5158 ± 0.0089, 0.3887 ± 0.077, and 0.5096 ± 0.0158, 

respectively. Both the mean reduction in ApEn from the state of normal ICP (stable region) to the ICH 

region (-0.1271), and the increase in ApEn from the ICH region to the recovering region (0.1209) were 
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determined to be statistically significant (p<0.01). Figure 4 shows histograms of the mean ApEn for the 

stable, ICH, and recovering regions.  Figure 5 shows a plot of the normalized ApEn for each of the 11 

episodes and the median ApEn across all the episodes. The estimated ApEn decreases as subjects 

progressed from a stable state of normal ICP to ICH. The level of complexity begins to return within 

minutes as ICP drops below 20-25 mmHg.  Figure 6a-b shows the ApEn vs. ICP for two representative 

subjects during the study period.  

 

DISCUSSION 

Our main finding was that ApEn of the ICP signal decreased as patients progressed from a state of normal 

ICP to a state of ICH. As larger ApEn values correspond to increased complexity or irregularity in the 

data, this indicates that decreased complexity of ICP coincides with episodes of ICH. We also noted that 

the level of complexity begins to increase and return towards baseline levels within minutes as ICP drops 

below 20-25 mmHg. These findings suggest that the complex regulatory mechanisms that govern ICP are 

disrupted during acute rises in ICP and return towards baseline with resolution of the acute elevation in 

pressure. Although we only analyzed one subject without severe TBI as a cause of ICH, the results were 

similar in this subject suggesting that the regulatory mechanisms that govern ICP are independent of the 

type of injury. 

 

Physiologic Implications 

Godin and Buchman have suggested that the pathogenesis of multiple organ dysfunction syndrome 

(MODS) from the systemic inflammatory response syndrome (SIRS) may be due to erosion of 

interconnections among organ systems (30). Loss of variability in the heart beat and systemic blood 

pressure has been demonstrated during the sepsis syndrome in experimental models and septic patients 

(31-33). Return of variability was reported by Ellenby et al. to be associated with recoupling between the 
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autonomic nervous and cardiovascular systems during septic shock (34). Our results suggest that 

analogous physiologic mechanisms occur during ICH, at least during short periods of observation.  

 

Zwiener et al. (35) found evidence of impaired short-term (25-60 second periods) dynamics between 

respiratory movements and fluctuations in heart rate and blood pressure brain  injured subjects compared 

to controls. Furthermore, the impairment in short-term dynamics were inversely proportional to the 

degree of neurological injury and were not affected by concomitant analgesic or sedative medications. 

They concluded that the diminished coherence was indicative of organ system uncoupling or 

decomplexification consistent with previous reports (8,30).  

 

Zweiner et al. further suggest that the short-term dynamics of coherence and coordination of multiple 

organ system activity depends on brainstem afferent activities (35). They point to research by Langhorst 

et al. (36) and Schulz et al. (37) who found that the degree and pattern of rhythmic fluctuations in 

brainstem neurons were related to respiratory or cardiovascular functions and the joint influence on the 

efferent neuroautonomic activity to lung, heart, and blood vessels depended on brainstem afferent 

activity. As the main stimuli to the brainstem in these experiments were from peripheral somatic and 

visceral origins, the conclusion is that these experiments were an example of autonomic adaptations to 

changed external conditions, a postulated rationale for the advantages of complexity in healthy organisms 

(30,35). Thus, uncoupling between lungs, heart, and the vascular system decreases their functional 

performances and results in worse outcome. 

 

Zweiner at al. (35) also point out, and we agree, that it is not clear whether our findings of 

decomplexification represents a primary physiological process or is only an epiphenomenon. However, 

the results of the current study, using more sensitive nonlinear methodologies, strongly suggest the 

former. 
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The six subjects with severe TBI  had an evolving clinical course. It is clinically accepted that maximal 

ICP generally occurs 24 to 48 hours following severe TBI. If the SIRS to MODS analogy applies in TBI, 

then future studies need to examine if repeated episodes of decreased complexity in ICP, indicative of 

loss of regulatory control mechanisms, result in worsening brain injury, cerebral edema, neuronal cell 

death, and, in extreme cases, eventually lead to brain death. In addition, there has been much discussion 

about what is the best treatment threshold value of ICP to use in severe TBI (1,38). Loss of physiologic 

complexity of the ICP signal may be a sensitive and specific method for determination of exactly at what 

value elevated ICP becomes physiologically dangerous. 

 

Clinical Implications – Measures of Cerebral Autoregulation 

Investigators have suggested that diminished complexity results in a decreased ability to respond to 

external perturbations (30,39). Under normal conditions, cerebral autoregulatory mechanisms maintain 

cerebral blood flow to the brain constant over a wide range of systemic arterial pressures with typical 

values between 45 and 65 ml/100mg of brain tissue per second despite variations in blood pressure as 

large as 100 mmHg (40). Local cerebral autoregulation delivers a relatively constant cerebral perfusion 

pressure in response to fluctuations in ICP such as with postural change and cough.  

 

It is clear that acute ICH is a result of failure of normal cerebral autoregulatory mechanisms to 

compensate for overwhelming changes in cerebral volume (hemorrhage or edema), external pressure 

(depressed skull fractures), cerebral blood volume (cerebral hyperperfusion), or cerebral spinal fluid 

(obstructive hydrocephalus). Our findings suggest that, similar to sepsis, the ICP waveform exhibits 

diminished complexity and increased regularity during periods of ICH when CAR has failed. Conversely, 

when CAR is intact, the ICP becomes more complex and irregular. Thus, our findings suggest that ApEn 

of the ICP waveform may provide an indirect measure of CAR. 
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Other investigators have proposed a number of indirect measures to determine whether CAR is intact or 

not. Physiologic stressors or challenges such as changes in PaO2, PaCO2, ABP, intracranial volume (via 

balloon catheter) have all been reported to correlate to various degrees with CAR. These techniques 

require manipulation of one or more physiologic variables with some inherent risk to the patient. More 

recently, investigators have examined the transfer function and phase shift between cerebral blood flow 

and ICP as a dynamic measure of CAR (41-43). These measures typically use Doppler blood flow 

velocity in the middle cerebral artery that may be difficult to maintain for continuous measurements in the 

ICU environment. Direct analysis of the ICP waveform using ApEn or some other nonlinear metric may 

provide an easier and less risky alternative for determination of CAR. Currently there are a few indices of 

potential clinical interest obtained by direct analysis of the ICP signal (e.g. RAP, pressure-reactivity). The 

RAP index (index of compensatory reserve) is defined as the correlation coefficient (R)  between the ICP 

pulse amplitude (AMP) and mean pressure (P). This index is obtained by calculating the linear correlation 

between consecutive, time average data points of AMP and ICP (usually about 40 of such samples are 

used), and indicates the degree of correlation between AMP and mean ICP over short periods of time (~4 

min). This can be used to estimate the state of the pressure-volume compensatory reserve. Another ICP 

derived index is the pressure-reactivity index. This index has been shown to correlate well with indices of 

autoregulation based on transcranial Doppler ultrasonography. In conjunction these indices can be use to 

indirectly estimate the CAR or deranged cerebrospinal compensatory reserve (44)  

 

Interpretation of Approximate Entropy 

Since it is not possible to directly measure the complexity of individual organ systems, approximate 

measures must be used. There are several methods to estimate the complexity of systems from analysis of 

time series. In this work the meaning of the term complexity is restricted to the definition provided by 

Pincus in relation to the ApEn (9). We chose to used ApEn because it was specifically designed as a 
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technique to determine changing system complexity from short time series. Furthermore, contrary to the 

frequent used correlation dimension measure of complexity, ApEn does not assume an underlying 

deterministic model or chaos and is capable of classifying complex systems that include chaotic, 

stochastic and composite processes; these last processes are likely models for complicated biological data 

sets. In the general stochastic, noisy deterministic or composite setting, the statistical accuracy of the 

correlation dimension measure of complexity is typically very poor (9,45). Because dynamic mechanics 

of most biological signals remain undefined, a suitable statistic of complexity for these signals must be 

more cautious to accommodate general classes of processes and their much more diffuse reconstructed 

dynamics (26). Moreover, a robust estimate of ApEn can be obtained by using a number of points several 

orders of magnitude lower than that needed to estimate accurately the correlation dimension or the first 

positive Lyapunov exponent (25). 

 

In order to aid the interpretation of the ApEn values obtained in this study, we performed a series of test 

with synthetic signals with known characteristics. From these test we concluded that 1) the ApEn 

increases as the frequency and the number of harmonics of a sinusoidal signal increases, 2) ApEn is 

correlated with noise bandwidth, increasing as the noise bandwidth increases (ApEn is lower in the case 

of colored noise than for white noise), 3) typical values of ApEn for sinusoidal signals range from 0.001 

to 0.07 (increasing as the numbers of harmonics increases) and 1.4 to 2 for white noise, and 4) the ApEn 

of ICP ranges from 0.05 to 1.5, correlating with heart rate variability, noise power, and pulse morphology 

changes.  

 

The fact that ApEn correlates with the number of harmonics in periodic and quasi-periodic signals has 

important implications in the context of ICP analysis, since the number of harmonics of the signal directly 

relates to the morphology of the ICP beats. Investigators have documented specific variations in the ICP 

beat morphology, which correspond to specific alterations in the cerebral vascular system, CSF 
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circulation, and respiration. These morphology variations may be used to measure the progression of 

disease. For instance, Pornoy states that in patients who do not have a cerebral edema or expanding mass, 

the ICP beat shows an initial sharp rise and subsequent downward slope similar to the arterial pulse; but 

as the expanding mass or edema develops, the ICP pulse becomes more rounded (46). As the ICP pulse 

becomes more rounded the amplitude of the higher frequency sinusoidal components also decreases.  

 

In the light of our results ApEn can be interpreted as a “summarizing metric” that combines information 

such as heart rate variability, number of harmonics, and time morphology variability. Our results support 

the hypothesis that ApEn is inversely related and negatively correlated to acute elevations in ICP. 

Furthermore, our results also support the hypothesis that there is information in the ICP pulse which 

correlates with severity of disease, since ApEn was calculated from high-pass filtered ICP signals where 

the mean ICP trend was removed prior the the ApEn calculation.   

 

Limitations 

The data presented in this study came from only seven subjects. Further study is warranted in a larger and 

more diverse population of subjects with ICH from a variety of diseases and injuries. Additionally, the 

there was no direct or indirect measure of cerebral autoregulation during periods of ICH. Finally, the 

dataset was blinded to treatment(s) used in response to ICH so it is not possible to differentiate what 

effects, if any, therapies such as osmotic diuresis, cerebral spinal fluid drainage, mild hyperventilation, or 

elevation of the head-of-the bed may have had on ICP analysis. 
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Table 1. Subject characteristics.  
 

Subject Age Gender Mechanism and description of 
brain injury 

Admission 
GCS Survival GOS

1 9.5 F
Fall off horse; 
Depressed skull fracture, IPH, 
cerebral edema 

7 Y 4

2 4.5 M
MVA; 
Skull fracture, SDH, cerebral edema 3 Y 3

3 8 F
s/p craniosysostosis repair at age 2 
y.o., ICP monitoring for headaches 15 Y NA 

4 4.75 F
MVA; 
Skull fracture, IPH, cerebral edema 5 Y 2

5 11.5 M
MVA; 
Skull fracture, SDH 8 Y 3

6 12.5 M
Gun Shot Wound; 
IPH, SDH, cerebral edema 4 Y 4

7 15.8 M
Fall off skateboard; 
Depressed skull fracture, IPH, 
cerebral edema 

3 Y 3

Mean + SD 9.5 +
4.1  6 + 4 3 + 1

GCS, Glasgow Coma Scale score 
GOS, Glasgow Outcome Score 
IPH, intraparenchymal hematoma 
MVA, motor vehicle accident 
SDH, subdural hematoma 
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Table 2. Mean ApEn of the intracranial pressure signal for the stable, intracranial hypertension, and 

recovering regions. Standard errors for each of the columns are shown in Table 3. 

Stable Critical Recovering 
0.643 0.262 0.759 
0.536 0.325 0.446 
0.548 0.387 0.539 
0.439 0.353 0.433 
0.499 0.336 0.377 
0.605 0.225 0.442 
0.507 0.363 0.466 
0.233 0.223 0.234 
0.329 0.225 0.325 
0.341 0.197 0.326 
0.315 0.185 0.277 
0.315 0.185 0.277 
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Table 3. Standard error of the mean ApEn for the stable, intracranial hypertension, and recovering 

regions. 

Stable Critical  Recovering 
0.0157 0.0209 0.0070 
0.0060 0.0358 0.0153 
0.0066 0.0032 0.0122 
0.0037 0.0026 0.0095 
0.0048 0.0069 0.0014 
0.0142 0.0078 0.0094 
0.0028 0.0024 0.0035 
0.0006 0.0004 0.0005 
0.0023 0.0015 0.0174 
0.0060 0.0032 0.0078 
0.0058 0.0023 0.0047 
0.0058 0.0023 0.0047 
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LEGENDS FOR FIGURES 

Figure 1. Illustration of the criteria for an acute elevation in intracranial pressure. The signal divided into 

three segments: a 5 min stable region (SR), a 10-300 s transition zone (TZ), and a 20 s critical region 

(CR). The stable and critical regions had a required separation of at least 10 mmHg. 

Figure 2. Illustration of the type of intracranial pressure (ICP) spike analysed in this study. The light grey 

is the ICP signal waveform sampled at 125 Hz, and the dark line is the moving average ICP pressure. All 

ICP segments studied were 50 minutes long, with the onset of the ICH period synchronized at minute 20.  

Figure 3. Prior to ApEn estimation, the intracranial pressure (ICP) signals were filtered to eliminate the 

low frequency components (baseline trend) and remove the mean pressure (DC component). This figure 

illustrates the results of this operation. Processing the high passed ICP signal ensures that the ApEn metric 

obtained is based entirely on the ICP beat morphology, since the ICP mean pressure information is 

eliminated in this operation.    

Figure 4. Histogram approximating the sampling distribution of the mean ApEn across all the patients for 

the stable, critical (ICH), and recovering regions obtained using bootstrap. Note the statistically 

significance reduction in mean ApEn during the ICH period. 

Figure 5. ApEn (normalized) for each of intracranial hypertension (ICH) episode (light grey) and mean 

and median across all ICH episodes (dark). ApEn decreases as patients progressed from a stable state of 

normal ICP to a state of ICH. This indicates that decreased complexity of ICP coincides with episodes of 

ICH in TBI 

Figure 6.a. ApEn vs. ICP for Patient 1, episode 1. Note decreased ApEn associated with both ICP spikes 

in pressure > 20 mmHg. 6.b. ApEn vs. ICP for Patient 3, episode 1. Note drop in ApEn during ICP spikes 

with return to baseline levels during normal ICP.  
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Figure 1. 

Figure 2. 
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Figure 3. 

Figure 4. 
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Figure 5. 

Figure 6.a. 
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Figure 6.b. 
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