Modeling Post-fire Successional Trajectories under Climate Change in Interior Alaska using Landis II

Shelby A. Weiss
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/systems_science_seminar_series

Part of the Environmental Indicators and Impact Assessment Commons, Forest Management Commons, and the Natural Resources Management and Policy Commons

Let us know how access to this document benefits you.

Recommended Citation
https://pdxscholar.library.pdx.edu/systems_science_seminar_series/69

This Book is brought to you for free and open access. It has been accepted for inclusion in Systems Science Friday Noon Seminar Series by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Modeling post-fire successional trajectories under climate change in Interior Alaska using LANDIS-II

Shelby Weiss
Earth, Environment, and Society Doctoral Student
PSU Department of Geography
How did I find modeling?

B.S. at Colorado State University
- Wildlife Biology
- Statistics (minor)

M.S. at Ohio State University
- Forest/wildlife management
- Fire as an ecological restoration tool

 Missouri Botanical Garden
- Databases
- Ex-situ species conservation

Seney National Wildlife Refuge, MI
- Big landscape
- Management
- Field surveys and experiments

Earth, Environment & Society Doctoral Program, PSU
- Boreal forests in Alaska
- Big landscape
- Climate change & wildfire
- Modeling
Outline of Today’s Seminar

- Modeling
- LANDIS-II
- Alaska example
Purpose of Models

A model is a representation of a system or process

- To provide a framework for data and organizing ideas
- To explore real or hypothetical scenarios
- To make predictions; extrapolate across scales or time
What can we do with models?

- We can answer big questions!
 - Processes
 - Potential futures
 - We could have a “no analog” future
 - Management
 - Scenario Planning

- We can conduct experiments (with replicates!) at large scales that we wouldn’t be able to otherwise

- We can compare across many conditions, and manipulation of these conditions
Types of models

Analytical models
- Have a closed-form mathematical solutions
- Changes in a system can be expressed as a mathematical function

Simulation models
- Use mathematical and logical operations to represent the structure and behavior or a system
- Lack a closed-form solution
- Often complex
- Dynamic- the system or phenomenon may change through time.
Common types of vegetation simulation models

• Dynamic Global Vegetation Model (DGVM)

• State-and-Transition Model

• Landscape Model
Dynamic Global Vegetation Models

- Used to simulate effects of climate change on vegetation, carbon and water cycles
- Large scales
- Captures feedbacks from vegetation change/disturbance to the atmosphere
- Questions can include:
 - Response of veg to CC
 - Estimate changes in carbon pools/fluxes

State-and-Transition Models

- User defines the developmental states (boxes) and pathways (arrows) between them
 - growth, disturbance, management, etc
- The states and pathways are predetermined before running the model
- Not species-level
- Can model shifts to a wide range of vegetation types
- Can easily test alternative hypotheses about veg dynamics or management strategies
(Forest) Landscape Models

- Large spatial and temporal scales

- Differ from one another the ecological processes and level of detail they simulate

- Can be species (or even individual)- level

- Can ask questions about the outcomes of repeated, stochastic spatial processes
 - seed dispersal, fire, wind, insects, diseases, harvests, and fuel treatments
 - Allows for no-analog futures!
LANDscape DISturbance and Succession

The LANDIS family of forest landscape models have been around for > 30 years.

LANDIS-II is > 20 years old.

Open source!

www.landis-ii.org
LANDIS-II Simulates Succession

- An emergent property of species life-history attributes, disturbance, and dispersal

- No single pathway

- Responds *dynamically* to climate change, introduced species, novel disturbance regimes, etc.

Example cohort

<table>
<thead>
<tr>
<th>Paper Birch White Spruce</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-30 years old</td>
</tr>
<tr>
<td>5 Mg ha(^{-1})</td>
</tr>
</tbody>
</table>
Life History Attributes

- Life history attributes can include chemical and physiological properties.
LANDIS-II Simulates Disturbance

- Fire, wind, harvesting, insects, fuels management, drought...

- Disturbance events are stochastic and dependent upon probabilities

- Disturbances overlap in space and time
Spatially Explicit and Spatially Dynamic (...though not always)
User Determined Complexity

LANDIS-II has a Core and many extensions.

There can be many different extensions for each process: *different questions = different extensions*. Extensions have varying degrees of complexity.
Fast Model Evolution

Extensions are **open source** and easily modified. Extensive documentation at multiple levels.

Scientists can download extension code and tweak or rewrite as necessary.
Characterizing shifts in species composition and C source/sink status due to fire and climate change
The boreal forest is the world’s largest terrestrial biome and holds an estimated 30-50% of the global stocks of forest carbon

(...and we are probably underestimating this)
Boreal forests of Interior Alaska

- In Alaska, 30-40% of the area is considered boreal forest, with black spruce being the most common boreal forest type.

- Typical forest types:
 - Black spruce forests on north-facing slopes (often underlain by permafrost)
 - Black spruce bogs (often underlain by permafrost)
 - White spruce, birch, and aspen on warmer, south-facing slopes
Alaska and Fire

- Fire plays a key role in maintaining black spruce on the landscape
 - Black spruce is well adapted to regenerate following fire
 - Has several competitive advantages over other (deciduous) species
 - serotiny
 - shallow roots
 - germinates on organic soils

- Historically wildfires took place every 50-150 years
- Fire-free periods allowed adequate time for those species which were dominant prior to fire to reestablish and grow to reproductive maturity
 - ~30 years for black spruce

189,369 acres
Climate change in AK

Simulating the response of natural ecosystems and their fire regimes to climatic variability in Alaska

D. Bachelet, J. Lenihan, R. Neilson, R. Drapek, and T. Kittel

HISTORICAL CONDITIONS 1961–1990

FUTURE CLIMATE SCENARIO CGCM1 2090–2100
Alaska Fire Trends

Fires in Alaska since 1970

Number of Fires Since 1940

Number of Fires over 5000 ha

0
1
2
3+

Fire, CC and Permafrost

Figure 5. There are strong differences in albedo before and after wildfire. During snowmelt, the albedo ranges from 0.2 to 0.9 or more, decreasing to about 0.14 on a feather moss surface prior to the fire. The albedo drops to 0.07 at a moderately burned site after the fire. Plotted data are the daytime (0600–1700 AST) averages.

Figure 9. Modeled mean annual temperature at the ground surface (open and filled squares) and at 1 m depth (open and filled circles) at an unburned site (open symbols) and at burned site 5 (filled symbols).
How does increasing fire frequency alter successional trajectories of aboveground vegetation in interior Alaska?
What are the mechanisms?

- Fire returns before black spruce is sexually mature
- Organic layer thickness declines with more fire, removing spruce competitive advantage to establish
- Permafrost thawing allows for greater rooting depths, removing spruce’s competitive advantage to persist long-term

... and how can we model them?
A new extension for Alaska

DGS: DAMM-McNiP, GIPL and SHAW
Climate regions map & modeled climate data using:
SNAP historic and projected dynamically downscaled climate data at 20 km resolution
- Temperature
- Precipitation
- Wind speed and direction
- Relative Humidity
- Shortwave Radiation

Species composition map, created using:
- Forest Inventory Analysis dataset for Interior AK
- Alaska Center for Conservation Science vegetation wetland composite map
- Digital Elevation Map

Soil maps from STATSGO, including:
- Depth
- Texture
- Carbon
- Nitrogen
- Drainage
Output

T=30 Black Spruce Biomass (g/m2)

Will depend on the extensions you’re using

T=29 Fires
Dominant Cover Types Over Time Following One Fire

- Conifer at start: 31.6%, 29.7%, 38.7%, 10.2%, 76.8%, 13.0%
- Deciduous at start: 48.7%, 32.4%, 18.9%, 14.1%, 80.2%, 5.7%
- Nonforest at start: 52.0%, 33.1%, 14.9%, 15.6%, 81.1%, 3.3%

Time Since Most Recent Fire: At Start, 25 years, 50 years, 75 years

Dominant Cover Type:
- Conifer dominant
- Deciduous dominant
- Nonforest
Dominant Cover Types Over Time Following Three Fires

Time Since Most Recent Fire

- At Start
- 25 years
- 50 years
- 75 years

Proportion of Cells

Conifer at start

Deciduous at start

Dominant_Cover_Type

- Conifer dominant
- Deciduous dominant
- Nonforested

37.0% 34.3% 39.4%
30.9% 30.5% 30.4%
32.1% 35.2% 30.2%
82.2% 82.0% 77.0%
17.8% 18.0% 23.0%

100% 82.2% 82.0% 77.0%
This work is ongoing! We are working on...

- A more complete representation of species composition
- Using the fully coupled DGS extension to LANDIS-II
- Comparing trends under historic climate versus RCP 8.5 CC scenario
- Modeling dynamic fire with SCRPPPLE- make fire responsive to CC
- Investigating spatial patterns and changes in carbon source/sink status
My Takeaways about Simulation Modeling (with LANDIS-II)

- Know your question
 - Are you using the right tool?
 - Can/should the tool be adjusted?

- Know your system (or the people who do...)
 - Modeling is done best when it’s collaborative

- Get comfortable working with messy data

- Understand the limitations

- Understand what is ‘emergent’ vs. ‘prescribed’
Thank you!