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Abstract
We present algorithms for shrinking and expanding a
hash table while allowing concurrent, wait-free, linearly
scalable lookups. These resize algorithms allow the hash
table to maintain constant-time performance as the num-
ber of entries grows, and reclaim memory as the number
of entries decreases, without delaying or disrupting read-
ers.

We implemented our algorithms in the Linux kernel,
to test their performance and scalability. Benchmarks
show lookup scalability improved 125x over reader-
writer locking, and 56% over the current state-of-the-art
for Linux, with no performance degradation for lookups
during a resize.

To achieve this performance, this hash table imple-
mentation uses a new concurrent programming method-
ology known as relativistic programming. In particular,
we make use of an existing synchronization primitive
which waits for all current readers to finish, with little to
no reader overhead; careful use of this primitive allows
ordering of updates without read-side synchronization or
memory barriers.

1 Introduction

Hash tables provide a useful data structure for many ap-
plications and operating systems, with various conve-
nient properties, including constant average time for ac-
cesses and modifications [3, 8].

The performance and suitability of hash tables de-
pend heavily on choosing an appropriate size for the ta-
ble. Making a hash table too small will lead to exces-
sively long hash chains and poor performance. Making
a hash table too large will consume too much memory,
reducing the memory available for other applications or
performance-improving caches, and increasing hardware
requirements.

Many systems and applications cannot know the
proper size of the hash table in advance. Software de-

signed for use on a wide range of system configurations
with varying needs may not have the option of choosing
a single hash table size suitable for all supported system
configurations. Furthermore, the needs of a system may
change at runtime due to numerous factors, and software
must scale both up and down dynamically to meet these
needs. Thus our hash tables must provide dynamic resiz-
ing.

Hash tables used in concurrent applications require
some sort of synchronization to maintain internal consis-
tency. In order for these concurrent applications to scale
to many threads on many processors, the hash tables they
use must scale as well.

Existing approaches to concurrent resizable hash ta-
bles primarily make use of mutual exclusion, in the form
of locks. These approaches do not scale, due to con-
tention for those locks. Alternative implementations ex-
ist, using non-blocking synchronization or transactions,
but these techniques still require expensive synchroniza-
tion operations, and still do not scale well. Running any
of these hash-table implementations on additional pro-
cessors does not provide a proportional increase in per-
formance.

One solution for scalable concurrent hash tables
comes in the form of Read-Copy Update (RCU) [16,
14, 10]. Read-Copy Update provides a synchronization
mechanism for concurrent programs, with very low over-
head for readers [11]. Thus, RCU works particularly
well for data structures with significantly more reads than
writes; this category includes many data structures com-
monly used in operating systems and applications.

Existing RCU-based hash tables use open chaining,
with RCU-based linked lists for each hash bucket. These
tables support insertion, removal, and lookup operations
[11]. Furthermore, our previous work provided an algo-
rithm to move hash items between hash buckets due to a
change in the key [21, 20]; this operation makes RCU-
based hash tables more broadly usable in place of those
based on mutual exclusion.
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Resizing a hash table based on mutual exclusion re-
quires relatively little work: simply acquire the appro-
priate locks to exclude concurrent reads and writes, then
move items to a new table. This approach works, but
blocks all operations while a resize occurs.

However, existing RCU-based hash tables do not pro-
vide the ability to resize, because they cannot exclude
readers, and thus they must cope with concurrent reads
while resizing. This gap in available solutions forces pro-
grams to choose between scalable concurrent hash tables
and resizable adaptive hash tables.

The Linux directory entry cache (dcache) uses a scal-
able concurrent hash table based on RCU [15, 9]; the
dcache supports fast lookups concurrent with insertions
and removals, but does not support resizing. As a re-
sult, the kernel must choose the dcache size at boot time,
which it estimates based on the total amount of memory
in the system. While functional, this commonly results
in a dcache too large or small for the actual filesystem
usage on the system. In addition, current server hard-
ware and cloud platforms offer the ability to add storage
and memory without rebooting; however, the kernel can-
not adjust the dcache size to compensate for these new
resources.

We present algorithms which allow resizing of an
RCU-based hash table, without blocking concurrent
lookups. Because lookups can occur at any time, we
keep the hash table in a consistent state at all times, and
never allow a lookup to spuriously miss an entry due to a
concurrent resize operation. Furthermore, our resize al-
gorithms avoid copying the individual hash-table nodes,
allowing readers to maintain persistent references to ta-
ble entries.

These algorithms make use of a new concurrent pro-
gramming methodology known as relativistic program-
ming (RP). This methodology aims to minimize the
amount of synchronization required to perform opera-
tions, by allowing these operations to occur concurrently,
without blocking them to enforce a system-wide serial-
ization of memory operations. Relativistic programming
builds on existing RCU synchronization primitives, and
adds rules for using those primitives to enforce ordering
of update operations.

Section 2 documents our new hash-table resize algo-
rithms, and the corresponding read-side lookup opera-
tion. Section 3 describes the other hash-table algorithms
implemented and tested for comparison. Section 4 pro-
vides the implementation and benchmark methodology.
Section 5 presents and analyzes the benchmark results.
Section 6 compares our algorithms to other related work.
Section 7 discusses the relativistic programming method-
ology supporting this work.

2 Resize Algorithms

Any hash table requires a hash function, which maps en-
tries to hash buckets based on their key. The same key
will always hash to the same bucket; different keys will
ideally hash to different buckets, but may map to the
same bucket, requiring some kind of conflict resolution.
The algorithms described here work with hash tables us-
ing open chaining, where each hash bucket has a linked
list of entries whose keys hash to that bucket. As the
number of entries in the hash table grows, the average
depth of a bucket’s list grows, and lookups become less
efficient, necessitating a resize.

Resizing the table requires allocating a new region of
memory for the new number of hash buckets, then link-
ing all the nodes into the new buckets. To allow resizes to
substitute the new hash table for the old, readers access
a hash-table structure through a pointer; this structure in-
cludes the array of buckets and the size of the table.

Our hash-table resize algorithms synchronize with the
corresponding lookup algorithm using existing relativis-
tic programming primitives: a lightweight operation de-
lineating the start and end of a reader, and an opera-
tion which blocks until all currently running readers have
completed. Read-Copy Update (RCU) implementations
provide such operations, with minimal overhead for the
read-side primitives. However, any semantically equiv-
alent implementation will work. The “wait for current
readers” primitive need not prevent new readers from
starting; it need only wait for all existing readers to com-
plete.

With the two additions of relativistic reader delin-
eation and a separate hash-table structure, a lookup in
this table otherwise follows the standard algorithm for
open-chain hash table lookups:

1. Begin an RP reader.

2. Snapshot the hash-table pointer, for later references
to the size and buckets.

3. Hash the desired key, modulo the number of buck-
ets.

4. Look up the corresponding hash bucket in the array.

5. Traverse the linked list, comparing each entry’s key
to the desired key.

6. If the current entry’s key matches the desired key,
the desired value appears in the same entry; use or
return that value.1

7. End the RP reader.
1If the lookup algorithm needs to hold a reference to the entry after

the RP reader ends, it must take any additional steps to protect that
entry before ending the RP reader.
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To avoid disrupting concurrent lookups, the resize al-
gorithms can never allow a lookup to fail to find a node
when traversing the hash table.

The proposed resize algorithms will map the nodes in
the buckets of the old hash table to buckets of the new
hash table. These algorithms rely on some key assump-
tions which constrain the relationships between the old
and new hash buckets. Typically, a hash function used
for hash tables will generate a value the size of a system
word (for instance, 32 bits on a 32-bit machine, 64 bits on
a 64-bit machine). Hash table algorithms will apply the
hash function to an item’s key to obtain a hash value, and
then map the hash value to a hash bucket using an opera-
tion such as a modulus or bitwise and. Furthermore, we
assume that any resize will occur via an integral factor.
These assumptions provide two constraints:

• When shrinking the table, each bucket of the new
table will contain all entries from multiple buckets
of the old table.

• When growing the table, each bucket of the new ta-
ble will contain entries from at most one bucket of
the old table.

Based on the first of these constraints, we can shrink
the table as follows:

1. Allocate the new, smaller table.

2. Link each bucket in the new table to the first bucket
in the old table that contains entries which will hash
to the new bucket.

3. Link the end of each such bucket to the beginning
of the next such bucket; each new bucket will thus
chain through as many old buckets as the resize fac-
tor.

4. Set the table size.

5. Publish the new, valid hash table.2

6. Wait for all current readers to finish. No new readers
will have references to the old hash table.

7. Free the old hash table.

For an example of the shrink algorithm, see figure 1.
Based on the second constraint, we can safely expand

the table:

1. Allocate the new, larger table.
2To publish a pointer update, we use the relativistic programming

publish operation, as provided by RCU or equivalent. This operation
first executes a write memory barrier to ensure that all updates to a
structure become visible before the pointer to that structure. Readers
then have an implicit ordering constraint due to the dependent read of
the pointer contents after the pointer; on all modern CPU architectures,
a dependent read does not require an explicit read memory barrier.

odd

even

1 3

2 4

(a)

odd

even

all

1 3

2 4

(b)

odd

even

all

1 3

2 4

(c)

all 1 3 2 4

(d)

Figure 1: Example of relativistic algorithm to shrink a
hash table. Figure 1a shows the initial state of the hash ta-
ble: it has two buckets, one containing odd numbers, and
the other containing even numbers. The resize will trans-
form this table into a hash table with one bucket contain-
ing all nodes. The resizer first allocates a new one-bucket
table, and links the bucket to the first element in the odd
bucket, resulting in figure 1b. The resizer then links the
last element in the odd bucket to the first element in the
even bucket, resulting in figure 1c. This makes the new
table valid, so the resizer now publishes the new table,
waits for current readers to finish to eliminate all refer-
ences to the old table, then frees the old table, resulting
in figure 1d.
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2. For each new bucket, search the corresponding old
bucket for the first entry that hashes to the new
bucket, and link the new bucket to that entry. Since
all the entries which will end up in the new bucket
appear in the same old bucket, this constructs an en-
tirely valid new hash table, but with multiple buck-
ets ”zipped” together into a single list.

3. Set the table size.

4. Publish the new table pointer. Lookups may now
traverse the new table, but they will not benefit from
any additional efficiency until later steps unzip the
buckets.

5. Wait for all current readers to finish. All new read-
ers will see the new table, and thus no references to
the old table will remain.

6. For each bucket in the old table (each of which con-
tains items from multiple buckets of the new table)

6.1 Advance the pointer for that old bucket until it
reaches a node that doesn’t hash to the same
bucket as the previous node. Call the previous
node p.

6.2 Find the subsequent node which does hash to
the same bucket as node p, or NULL if no such
node exists.

6.3 Set p’s next pointer to that subsequent node
pointer, bypassing the nodes which do not
hash to p’s bucket.

7. Wait for all current readers to finish. New readers
will see the changes made in this pass, so they won’t
miss a node during the next pass.

8. If any changes occurred in this pass, repeat from
step 6.

9. Free the old hash table.

Notice that the wait in step 7 serves to order the update
operations with respect to concurrent readers. Without
it, a reader traversing one bucket and currently looking
at an entry that hashes to another bucket could follow an
updated pointer in that entry and fail to find later entries
in its own bucket.

This algorithm requires auxiliary storage for a current
entry in each old bucket. Conveniently, the old hash ta-
ble provides an array of precisely the needed size to store
this additional state. Reworking this algorithm to avoid
the auxiliary storage would allow freeing the old table
earlier, after step 5; this presents a subject for future de-
velopment.

For an example of the hash-table expansion algorithm,
including the error case avoided by waiting for current
readers, see figure 2.

all 1 2 3 4

(a)

all

odd

even

1 2 3 4

(b)

odd

even

1 2 3 4

(c)

odd

even

1 2 3 4

(d)

odd

even

1 3

2 4

(e)

Figure 2: Example of relativistic algorithm to expand a
hash table. Figure 2a shows the initial state of the hash
table: it has one bucket, containing all of the entries. The
resize will transform this table into a table with two buck-
ets, one containing odd numbers and the other contain-
ing even numbers. The resizer first allocates a new two-
bucket table, and points each bucket to the first entry in
all that hashes to that bucket, resulting in figure 2b. This
represents a valid hash table (with “zipped” buckets), so
the resizer publishes this table, and waits for all current
readers to finish to eliminate references to the old table,
which it may then use as auxiliary storage to remember
its place in each bucket. The resizer then begins unzip-
ping the buckets, by pointing node 1 at node 3, bypass-
ing the even node 2, resulting in figure 2c. Now, a reader
which started traversing the odd bucket in 2b could still
hold a reference to bucket 2, and changing 2 to point to 4
would cause that reader to miss node 3. Thus, the resizer
first waits for all current readers to finish before pointing
2 to 4, resulting in figure 2d. Finally, the resizer waits
once more for current readers before pointing 3 to null,
resulting in the expanded hash table in figure 2e.
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2.1 Handling Insertion and Removal

The algorithms so far support expanding or shrinking
the hash table while handling concurrent lookups, but do
not yet address the operations of insertion and removal.
Existing RCU-based hash tables synchronize an inser-
tion or removal operation with concurrent lookups via
standard RCU linked-list operations on the appropriate
bucket; multiple insertion and removal operations syn-
chronize with each other using per-bucket mutual exclu-
sion. Resizes, however, introduce an additional operation
that modifies the hash table, and thus require synchro-
nization with insertions and removals.

Herlihy and Shavit describe a common workload for
hash tables as 90% lookups, 9% insertions, and 1% re-
movals [6]. This ratio justifies our emphasis on fast con-
current lookups. For insertions and removals, we con-
sider it sufficient to minimize performance degradation
versus a non-resizable hash table, particularly with no
concurrent resize running.

For the simplest correct implementation of insertion
and removal, we can have these operations acquire and
release a reader-writer lock for reading, and have the re-
size algorithm acquire the same lock for writing. How-
ever, resizes need to repeatedly wait for readers to fin-
ish, an operation that can incur long delays. Holding the
write lock over these delays would block all updates to
the hash table for extended periods of time. For suffi-
ciently infrequent resizes this may prove acceptable, par-
ticularly since it should not result in excessive perfor-
mance degradation when not running a concurrent resize.
We would nonetheless prefer a solution at least as scal-
able as per-bucket locking, particularly if insertion and
removal operations already need to do such locking to
coordinate with each other.

To support per-bucket locking, we first need to resize
the array of locks themselves, stored either as a stan-
dalone array or as a field of each bucket. For this initial
memory resizing step the resizer may synchronize with
updates using either a reader-writer lock as above (which
the resizer need not hold across a wait for readers), or by
temporarily acquiring all the per-bucket locks [6]. Given
this means of temporarily locking out all updates, the re-
sizer may then perform the initial step of the resize, re-
sulting in a new valid hash table with a sufficient number
of per-bucket locks.

After this initial step, our shrink algorithm has al-
ready produced a valid table with no unusual properties
that can affect concurrent insertions or removals. As
soon as the shrink algorithm has finished cross-linking
a given bucket, it may drop the per-bucket lock for that
bucket. Thus, insertions and removals may immediately
take place on earlier buckets while the cross-linking steps
complete on later buckets.

The expansion algorithm proves more difficult, as the
insertion and removal operations must take extra care
when operating on the “zipped” buckets. When perform-
ing a single unzip pass on a given set of buckets, the ex-
pansion algorithm must acquire the per-bucket locks for
all buckets in that set. This alone proves sufficient to han-
dle insertions, which may simply insert at the beginning
of the appropriate new bucket without disrupting the next
resize pass.

Removal, however, may occur at any point in a zipped
bucket, including at the location of the resizer’s current
pointer into that bucket to mark its place for the next un-
zip pass. If a removal occurs with a table expansion in
progress, the removal must check for a conflict with the
resizer’s current pointer into the bucket, and update that
pointer if it points to the removed node. Given the rel-
atively low frequency of removal versus lookup and in-
sertion (1%, per Herlihy and Shavit) and the even lower
frequency of resizes, we consider it acceptable to require
this additional check in the removal algorithm.

2.2 Variation: Resizing In Place

The preceding descriptions of the resize algorithms as-
sumed an out-of-place resize: allocate a new table, move
all the nodes, free the old table. However, given a mem-
ory allocator which can resize existing allocations with-
out moving them, we can adapt the resize algorithms to
resize in place. This has two primary side effects: the
resizer cannot count on the new table remaining private
until published, and the buckets shared with the old table
will remain initialized to the same values.

To shrink a hash table in place, we adapt the previous
shrink algorithm to avoid disrupting current readers:

1. The smaller table will consist of a prefix of the cur-
rent table, and the buckets in that prefix already
point to the first of the lists that will appear in those
buckets.

2. As before, concatenate all the buckets which con-
tain entries that hash to the same bucket in the
smaller table.

3. Wait for all current readers to finish. All new read-
ers will see the concatenated buckets.

4. Set the table size to the new, smaller size.

5. Wait for all current readers to finish. No new read-
ers will have references to the buckets beyond the
common prefix.

6. Shrink the table’s memory allocation.
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To expand a hash table in place, we can make a similar
adaptation to the expansion algorithm, by adding a single
wait for current readers before setting the new size. How-
ever, the algorithm still requires auxiliary storage for the
traversal state in the old buckets, equal to the size of the
current table. Together with the newly expanded allo-
cation, this makes in-place expansion require the same
amount of memory as out-of-place expansion.

2.3 Variation: Keeping Buckets Sorted
Typically, a hash table implementation will not enforce
any ordering on the items within a hash bucket. This
allows insertions to take constant time even if a bucket
contains many items. However, if we keep the items in a
bucket sorted carefully, modulo-based hashing will keep
all the items destined for a given new bucket together in
the same old bucket. This allows a resize increasing the
size of the table to make only as many passes as the resize
factor, minimizing the number of waits for current read-
ers. This approach optimizes resizes significantly, at the
expense of slowing down insertions into large buckets.

Furthermore, an application may find sorted buck-
ets useful for other reasons, such as optimizing failed
lookups. Sorted buckets do not provide an algorithmic
improvement for lookups, nor can they do anything to
accelerate successful lookups; however, sorted buckets
do allow failed lookups to terminate sooner, providing a
constant-factor improvement for failed lookups.

Our hash-table expansion algorithm already performs
a stable partition of the entries in a bucket, preserving
the relative order of entries within each of the subsets
that move to the buckets of the new table. The shrink al-
gorithm, however, simply concatenates a set of old buck-
ets into a single new bucket. To make the shrink algo-
rithm preserve the sorting order for concurrent readers,
we must use a careful sort order based on the hash key.
Ori Shalev and Nir Shavit presented such a sorting mech-
anism in their “split-ordered list” proposal [19, 6].

We do not pursue this variation further in this paper,
but we do consider it a potentially productive avenue for
future investigation.

3 Other Resize Algorithms

To evaluate the performance of our hash-table resize al-
gorithm, we compared it against two other resize algo-
rithms.

First, as a baseline, we implemented a simple resizable
hash table based on reader-writer locking. In this im-
plementation, lookups acquired a reader-writer lock for
reading, to lock out concurrent resizes. Resizes acquired
the reader-writer lock for writing, to lock out concur-
rent lookups. With lookups excluded, the resizer could

simply allocate the new table, move all entries from the
old table to the new, publish the new table, and free the
old table. We do not expect this implementation to scale
well, but it represents the best-known method based on
mutual exclusion, and we included it to provide a base-
line for comparison.

For a more competitive comparison, we turned to Nick
Piggin’s “Dynamic Dynamic Data Structures” (DDDS)
[18]. DDDS provides a generic algorithm to safely move
nodes between any two data structures, given only the
standard insertion, removal, and lookup operations for
those structures. In particular, DDDS provides another
method for resizing an RCU-protected hash table with-
out outright blocking concurrent lookups (though it can
delay them).

The DDDS algorithm uses two technologies to syn-
chronize between resizes and lookups: RCU to detect
when readers have finished with the old data structure,
and a Linux construct called a sequence counter or seq-
count to detect if a lookup has raced with a rename. A
seqcount employs a counter incremented before and af-
ter moving each entry; the reader can use that counter (to-
gether with an appropriate read memory barrier) to check
for a resize step running concurrently with any part of the
read.

The DDDS lookup occurs entirely within an RCU
read-side critical section. Within that critical section,
DDDS first checks for the presence of an old hash ta-
ble, which indicates a concurrent resize. If present, the
lookup proceeds via the concurrent-resize slowpath; oth-
erwise, the lookup uses a fastpath. The DDDS fastpath
just performs a lookup within the current hash table. The
slowpath uses a sequence counter to check for a race with
a resize, then performs a lookup first in the current hash
table and then in the old table. The slowpath returns
the result of the first successful lookup, or loops if both
lookups fail and the sequence counter indicates a race
with a resize. Note that the potentially unbounded num-
ber of retries makes DDDS lookups non-wait-free, and
could theoretically lead to a livelock, though in practice
resizes do not occur frequently enough for a livelock to
arise.

We expect DDDS to perform fairly competitively ver-
sus our resize algorithms. However, the DDDS lookup
incurs more overhead than our algorithms, due to the ad-
ditional conditionals, the secondary table lookup, the ex-
pensive read memory barrier in the sequence counter, and
the potential retries with a concurrent resize. Thus, we
expect our algorithms to outperform DDDS significantly
when running a concurrent resize, and slightly even with-
out a concurrent resize.
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4 Benchmark Methodology

To compare the performance and scalability of our algo-
rithms to the alternatives, we created a test harness and
benchmarking framework for resizable hash-table imple-
mentations. We chose to implement this framework as a
Linux kernel module, rcuhashbash-resize. The
Linux kernel already includes a scalable implementation
of RCU, locking primitives, and linked list primitives.
Furthermore, we created our hash-table resize algorithms
with specific use cases of the Linux kernel in mind, such
as the directory entry cache. This made the Linux kernel
an ideal development and benchmarking environment.

The rcuhashbash-resize framework provides
a common structure for hash-tables, based on the
Linux hlist primitives, a doubly-linked list with a sin-
gle head pointer. On top of this common base,
rcuhashbash-resize includes the lookup and re-
size functions for the three resizable hash-table imple-
mentations: our relativistic resizable hash table, DDDS,
and the simple rwlock-based implementation.

The current Linux memory allocator supports shrink-
ing memory allocations in-place, but does not support
growing in-place. Thus, we implemented the in-place
variation of our shrink algorithm, and the copying im-
plementation of our expansion algorithm.
rcuhashbash-resize accepts the following con-

figuration parameters:

• The name of the hash-table implementation to test.

• An initial and alternate hash table size, specified as
a power of two.

• The number of entries to appear in the table.

• The number of reader threads to run.

• Whether to run a resize thread.

rcuhashbash-resize starts by creating a hash
table with the specified number of buckets, and adds
entries to it containing integer values from 0 to the
specified upper bound. It then starts the reader
threads and optional resize thread, which record statis-
tics in thread-local variables to avoid the need for ad-
ditional synchronization. When the test completes,
rcuhashbash-resize stops all threads, sums their
recorded statistics, and presents the results via the kernel
message buffer.

The reader threads choose a random value from the
range of values present in the table, look up that value,
and record a hit or miss. Since the readers only look
up entries that should exist in the table, any miss would
indicate a test failure.

The resize thread continuously resizes the hash table
from the initial size to the alternate size and back. While
continuous resizes do not necessarily reflect a common
usage pattern for a hash table, they will most noticeably
demonstrate the impact of resizes on concurrent lookups.
In practice, most hash tables will choose growth factors
and hysteresis to avoid frequent resizes, but such a work-
load would not allow accurate measurement of the im-
pact of resizing on lookups. We consider a continuous
resize a harsh benchmark, but one which a scalable con-
current implementation should handle reasonably. Fur-
thermore, we can perform separate benchmark runs to
evaluate the cost of the lookup in the absence of resizes.

The benchmark runs in this paper all used a hash table
with 216 entries. For each of the three implementations,
we collected statistics for three cases: no resizing and
213 buckets, no resizing and 214 buckets, and continu-
ous resizing between 213 and 214 buckets. We expect
lookups to take less time in a table with more buckets,
and thus if the resize algorithms have minimal impact on
lookup performance, we would expect to see the num-
ber of lookups with a concurrent resizer fall between the
no-resize cases with the smaller and larger tables.

For each set of test parameters, we performed 10
benchmark runs of 10 seconds each, and averaged the
results.

Our test system had two Intel “Westmere” Xeon DP
processors at 2.4GHz, each of which had 6 hardware
cores of two logical threads each, for a total of 24
hardware-supported threads (henceforth referred to as
“CPUs”). To observe scalability, we ran each benchmark
with 1, 2, 4, 8, and 16 concurrent reader threads, with
and without an additional resize thread. In all cases, we
ran fewer threads than the hardware supported, thus min-
imizing the need to pass through the scheduler and al-
lowing free CPUs to soak up any unremovable OS back-
ground noise. (We do however expect that performance
may behave somewhat less than linearly when passing 12
threads, as that matches the number of hardware cores.)

All of our tests occurred on a Linux 2.6.37 kernel us-
ing the default configuration (make defconfig). We
targeted the 64-bit x86-64 architecture, using the hierar-
chical RCU implementation, and no involuntary preemp-
tion.

5 Benchmark Results

To evaluate the baseline reader performance in the ab-
sence of resizes, we first compare the lookups per sec-
ond for all the implementations with a fixed table size of
8192 buckets; figure 3 shows this comparison. As pre-
viously predicted, our relativistic programming (RP) im-
plementation and DDDS remain very competitive when
not concurrently resizing, though as the number of con-
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Figure 3: Lookups/second by number of reader threads
for each of the three implementations, with a fixed hash-
table size of 8k buckets, and no concurrent resizes.

current readers increases, our implementation’s perfor-
mance pulls ahead of DDDS slightly. Reader-writer
locking does not scale at all. In this test case, the reader-
writer lock never gets acquired for writing, yet the over-
head of the read acquisition prevents any reader paral-
lelism.

We observe the expected deviation from linear growth
for 16 readers, likely due to passing the limit of 12 hard-
ware cores. In particular, notice that the performance for
16 threads appears approximately 50% more than that
for 8, which agrees with the expected linear increase for
fully utilizing 12 hardware cores rather than 8.

Figure 4 compares the lookups per second for our im-
plementation and DDDS in the face of concurrent re-
sizes. (We omit rwlock from this figure, because it would
vanish against the horizontal axis.) With a resizer run-
ning, our lookup rate scales better than DDDS, with its
lead growing as the number of reader threads increases.
DDDS has sub-linear performance, while our lookup rate
improves linearly with reader threads.

To more precisely evaluate the impact of resizing on
lookup performance for each implementation, we com-
pare the lookups per second when resizing to the no-
resize cases for the larger and smaller table size. Figure
5 shows the results of this comparison for our implemen-
tation. The lookup rate with a concurrent resize falls be-
tween the no-resize runs for the two table sizes that the
resizer toggles between. This suggests that our resize al-
gorithms add little to no overhead to concurrent lookups.

Figure 6 shows the same comparison for the DDDS
resize algorithm. In this case, the lookup rate with a re-
sizer running falls below the lower bound of the smaller
hash table. This suggests that the DDDS resizer adds
significant overhead to concurrent lookups, as previously
hypothesized.
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Figure 4: Lookups/second by number of reader threads
for our RP-based implementation versus DDDS, with a
concurrent resize thread continuously resizing the hash-
table between 8k and 16k buckets.
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Figure 5: Lookups/second by number of reader threads
for our resize algorithms. “8k” and “16k” indicate fixed
hash-table sizes in buckets; “resize” indicates continuous
resize between the two sizes.
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Figure 6: Lookups/second by number of reader threads
for the DDDS resize algorithm. “8k” and “16k” indicate
fixed hash-table sizes in buckets; “resize” indicates con-
tinuous resize between the two sizes.

Finally, figure 7 shows the same comparison for the
rwlock-based implementation. With a resizer running,
the rwlock-based lookups suffer greatly, falling initially
by two orders of magnitude with a single reader, and
struggling back up to only one order of magnitude down
at the 16-reader mark.

5.1 Benchmark Summary

Our relativistic resizable hash-table provides linearly
scalable lookup performance, surpassing DDDS by a
widening margin of up to 56% with 16 reader threads.
Both implementations vastly dwarf reader-writer locks,
with ours providing a 125x improvement with 16 read-
ers. Furthermore, our resize algorithms minimize the
impact of concurrent resizing on lookup performance,
as demonstrated through the comparison with fixed-size
hash tables.

6 Related Work

Our hash-table resize algorithms operate on hash tables
using open-hashing with per-bucket chaining, and do not
function on closed-hashing tables that use re-probing.
Closed hash tables store entries inline in the array rather
than using indirection, to minimize lookup cost. How-
ever, this prevents the use of indirection to allow exist-
ing entries to migrate to the new hash table, forcing a
copy of each entry, and breaking any persistent refer-
ences. Furthermore, closed-address tables require more
frequent resizing, as they do not gracefully degrade in
performance when overloaded, but rather become expo-
nentially more expensive and then stop working entirely.
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Figure 7: Lookups/second by number of reader threads
for the rwlock-based implementation. “8k” and “16k”
indicate fixed hash-table sizes in buckets; “resize” indi-
cates continuous resize between the two sizes.

Depending on the implementation, deletions from the ta-
ble may not make the table any emptier, as the entries
must remain as “tombstones” to preserve reader probing
behavior.

Various authors have proposed resizable hash tables
using closed hashing. Maurice Herlihy and Nir Shavit
documented a resizable closed-hashing table based on
cuckoo hashing and striped lock arrays [6]. Gao, Groote,
and Hesselink proposed a lock-free hash table using
closed hashing [5]; their approach relied heavily on
atomic operations and on helping concurrent operations
complete.

Cliff Click presented a scalable lock-free resizable
hash for Java [2]; this hash avoids any synchronization
operations for readers, by leaving the ordering of mem-
ory operations entirely unspecified and reasoning about
all possible resulting memory states and transitions. This
assumption holds for the intended application to hash-
based caches, in which spurious lookup failures only led
to suboptimal performance rather than incorrect behav-
ior. However, to support resizing, readers must probe an
alternate hash table; furthermore, as with most closed-
hashing approaches, the resizer must copy all entries.

Other approaches to resizable hash tables include that
of Ori Shalev and Nir Shavit, who proposed a “split-
ordered list” structure consisting of a single linked list
with hash buckets pointing to intermediate list nodes
[19, 6]. This structure allows resizing by adding or re-
moving buckets, dividing or joining the existing buck-
ets respectively. This approach requires maintaining the
linked list in a carefully sorted order based on the hash
key, as with the variation of our algorithms proposed in
section 2.3. Like that variation, this approach incurs ad-
ditional costs on insertion to maintain the sort order.

9



Maged Michael implemented a lock-free resizable
hash table based on compare and swap (CAS) [17]. This
implementation also maintains sorted buckets. It relies
on retries like DDDS, but lookups must retry if a concur-
rent modification of any kind occurs, not just if a concur-
rent resize occurs.

Herbert Xu implemented a resizable multi-hash-table
structure based on RCU, in which every entry contains
two sets of linked-list pointers so it can appear in two
hash tables simultaneously [22]. Together with a global
version number for the structure, this allows readers to
effectively snapshot all links in the hash table simulta-
neously. However, this approach drastically increases
memory usage.

Our previous work developed a relativistic algorithm
for moving a hash-table entry from one bucket to another
atomically [21, 20]. This algorithm introduced the notion
of cross-linking hash buckets to make entries in multiple
buckets simultaneously. However, this move algorithm
required changing the hash key, and potentially copying
the entry.

Paul McKenney originally proposed the elimination
of read memory barriers by introducing a write mem-
ory barrier that forced a barrier on all CPUs via inter-
processor interrupts [12]. McKenney later used the RCU
“wait for current readers to finish” operation as a write
memory barrier with batching in his work on Sleepable
Read-Copy Update (SRCU) [13]. Philip Howard further
refined this approach in his work on relativistic red-black
trees [7].

While we chose to implement our benchmarking
framework rcuhashbash-resize as a Linux ker-
nel module, several portable RCU implementations exist
outside the Linux kernel. Mathieu Desnoyers reimple-
mented RCU as a POSIX userspace library for use with
pthreads, with no Linux-specific code outside of optional
optimizations [4].

7 Relativistic Programming Methodology

Our proposed hash-table resize algorithms demonstrate
the use of the “wait for current readers to finish” opera-
tion to order update operations. In our algorithms, this
operation functions not merely as a write memory bar-
rier, but as a means of flushing existing readers from
a structure when their current position could otherwise
cause them to see writes out of order. Figure 2 provided
a specific example of this, in which a reader has already
navigated past the location of an earlier write, but would
subsequently encounter a later write if the writer did not
first wait for such readers to finish.

We have developed a full methodology for ordering
writes to any acyclic data structure while allowing con-
current readers, based on the order in which readers tra-

verse a data structure. This methodology allows writers
to consider only the effect of any prefix of their writes,
rather than any possible subset of those writes. This
proves equivalent to allowing a reader to perform a full
traversal of the data structure between any two write op-
erations, but not overlapping any write operation. This
methodology forms the foundation of our work on rela-
tivistic programming.

Relativistic readers traversing a data structure have a
current position, or read cursor. Writes to a data struc-
ture also have a position relative to read cursors: some
read cursors will subsequently pass through that write,
while others have already passed that point. In an acyclic
data structure, readers will start their read cursors at
designated entry points, and advance their read cursors
through the structure until they find what they needed to
read or reach the end of their path.

When a writer performs two writes to the data struc-
ture, it needs to order those writes with respect to any po-
tential read cursors that may observe them. These writes
will either occur in the same direction as reader traver-
sals (with the second write later than the first), or in the
opposite direction (with the second write earlier than the
first). If the second write occurs later, read cursors be-
tween the two writes may observe the second write and
not the first; thus, the writer must wait for readers to fin-
ish before performing the second write. However, if the
second write occurs earlier in the structure, no read cur-
sor may observe the second write and subsequently fail to
observe the first write in the same pass (if it reaches the
location of the first); thus, the writer need only use the
relativistic publish operation, which uses a simple write
memory barrier.

“Laws of Order” [1] presents a set of constraints on
concurrent algorithms, such that any algorithm meeting
those constraints must necessarily use expensive syn-
chronization instructions. In particular, these constraints
include strong non-commutativity: multiple operations
whose order affects the results of both. Our relativistic
programming methodology allows readers to run with-
out synchronization instructions, because at a minimum
those readers do not execute strongly non-commutative
operations: reordering a read and a write cannot affect
the results of the write.

We originally developed a more complex hash-table
resize operation, which required readers to perform
lookups in a secondary hash table if the primary lookup
failed; this approach mirrored that of the DDDS lookup
slowpath. Our work on the RP methodology motivated
the simplified version that now appears in this paper. We
plan to use the same methodology to develop algorithms
for additional data structures not previously supported by
RCU.

As an immediate example, the RP methodology al-
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lows a significantly simplified variation of our previous
hash-table move algorithm [21, 20]. This variation will
no longer need to copy the moved entry and remove the
original, a limitation which breaks persistent references,
and which made the original move algorithm unsuitable
for use in the Linux dcache.

8 Availability

The authors have published the code supporting this
paper as Free and Open Source Software under
the GNU General Public License. See the repos-
itory at http://git.kernel.org/?p=linux/
kernel/git/josh/rcuhashbash.git for de-
tails.
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