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Fluttering fountains: Annular geometry
Lee W. Casperson
Department of Electrical Engineering, Portland State University, Portland, Oregon 97207-0751

~Received 11 July 1995; accepted for publication 28 September 1995!

Under certain conditions of flow rate, height, and feedback, periodic or chaotic fluttering oscillations
can be observed as the sheet of water from a dam or waterfall fountain descends through the air.
Numerical and analytical interpretations of this phenomenon have recently been reported. The
extension of these results to other fountain geometries is discussed here together with experimental
observations on an annular waterfall fountain. ©1996 American Institute of Physics.
@S0021-8979~96!01502-5#

I. INTRODUCTION

The feature of a thin uniform sheet of water falling
through the air is most widely observed in waterfall foun-
tains. Under some conditions the water sheets in such foun-
tains exhibit a wavelike fluttering motion at a frequency in
the range of about 2.5 to 25 Hz, and numerical models of this
effect provide good agreement with experimental
observations.1 Approximate analytic solutions2 and stability
criteria3 for this phenomenon have also been reported. The
fluttering oscillations are often highly periodic and represent
laserlike feedback oscillations of the air–water system.
Small displacements of the water sheet are amplified by the
Helmholtz mechanism as the sheet moves downward through
the surrounding air.1 The large amplitude wave motions at
the bottom tend to compress or expand the air trapped behind
the sheet, and this air in turn pulls in or pushes out on the
water surface at the top.

All previous reports and experiments relating to this flut-
tering instability have concerned dams or waterfall fountains
that are basically linear in design. While systems that clearly
exhibit the instability are not particularly common, the au-
thor has now collected videos and photographs of about a
dozen good examples. All of these examples are linear in the
sense that the crest of the weir is very nearly a horizontal
straight line. While this linearity is a natural aspect of dam
development, it is by no means an appropriate restriction in
the design of ornamental fountains. For example, circular
fountains have been popular since the Renaissance,4 and it
would seem possible that the annular water sheets in such
systems might also exhibit related instability effects. One
purpose of this study has been to investigate this question of
fluttering instabilities in circular fountains.

It may be noted that annular liquid flow has long been
studied in other contexts. In 1833, Savart showed that a bell-
like sheet of water could be produced by placing a disk-
shaped obstruction in the path of a vertical cylindrical jet of
water.5 Analyses of such flows by Boussinesq, Taylor, and
others have emphasized systems in which some of the forces
such as gravity, surface tension, pressure, and air resistance
may be important, but Helmholtz amplification is
negligible.6,7 Small diameter annular liquid jets exhibit an
instability in which a periodic train of liquid shells or
bubbles is formed.8,9A more recent study has included other

periodic oscillations and possible applications of annular
flows to chemical and nuclear reactors.10 Our results here
show that in larger annular flows Helmholtz amplification
and associated instabilities may have a dominant effect on
the flow dynamics.

Several possible circular fountain configurations are dis-
cussed in Sec. II, and their anticipated oscillation character-
istics are also considered. A specially designed circular foun-
tain has been constructed, and observations of fluttering
oscillations in this system are reported in Sec. III.

II. ANNULAR GEOMETRY

There are two basic categories of circular fountain, and
these are illustrated in schematic cross section in Fig. 1. The
interior design in Fig. 1~a! might also be called an inverted
fountain, because in one realization the water seems to sim-
ply disappear into a hole in the ground rather than, as more
usual, flowing outward from some localized source. The ex-
terior design in Fig. 1~b! represents a more traditional circu-
lar fountain in which the water flows over the edge of a
raised circular basin. This second design is the one studied in
the experiments reported below.

At first glance, one might imagine that the theoretical
analysis of the dynamics of the water sheet would have to be
reexamined for the circular geometry. Thus, the relationship
between displacement and air pressure should not be the
same for the linear and circular geometries. However, most
analyses of linear fountain behavior assume that the surface
displacements are very small. In this limit the displacement-
pressure relationships are independent of curvature of the
water sheet in a horizontal plane. Thus, for our present needs
most of the results of preceding analyses can be adopted
directly.

One important result of the theory is an approximate
analytic formula for the frequency of the oscillation modes
of the fluttering water sheet.2 This formula is

f5
m11/4

~v0 /g!@~112gy0 /v0
2!1/221#

, ~1!

wherev0 is the downward velocity of the water as it sepa-
rates from the weir,g is the acceleration of gravity,y0 is the
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height of the fall, andm is an integer indicating the order of
the mode. The lowest order or fundamental mode in this
notation corresponds tom51.

For systems in which the weir height is very small, Eq.
~1! may sometimes be simplified further. If viscosity of the
water ~or other liquid! is neglected, the initial downward
velocity v0 is related approximately to the weir heightyw by
the familiar expression

v05~2gyw!1/2. ~2!

With this substitution Eq.~1! becomes

f5
m11/4

~2yw /g!1/2@~11y0 /yw!1/221#
. ~3!

It is now clear that if the fountain height is large compared to
the weir height~y0@yw! Eq. ~3! reduces to

f5
m11/4

~2yw /g!1/2~y0 /yw!1/2
5Sm1

1

4D S g

2y0
D 1/2. ~4!

With g59.8 m s22, the frequency of the fundamentalm51
mode varies with height according to the simple approximate
formula

f52.77y0
21/2. ~5!

This formula is compared with experimental data for our
circular fountain system.

III. EXPERIMENT

In order to observe the fluttering oscillations of interest
here, it is necessary that the falling water sheet be highly
uniform. In typical circular fountains the weir is not smooth
enough, and excessive waves and turbulence in the pool be-
hind the weir also seem to be common. As is noted below,
these fountains are also much more susceptible to perturba-
tions from the wind than are the more protected linear de-
signs. Accordingly, it was considered important to build our
own fountain and verify that the theoretical models can be
extended to the circular geometry. Because of time and bud-

get constraints, we determined to build the simplest and
smallest system that was likely to exhibit the instabilities.

The first and most obvious decision was to build an ex-
terior system like that shown in Fig. 1~b!. Interior designs
would seem to be much more difficult to construct. Our ex-
perience with linear systems suggested that the minimum
fountain height to obtain adequate Helmholtz gain would
probably be in the range of 0.5–1.0 m. This height also im-
plies a minimum fountain diameter of almost the same mag-
nitude to prevent the bottom of the water sheet from being
drawn in excessively by the flow-generated air pressure dif-
ference. The falling water sheet tends to entrain air and pump
it out of the enclosed space, and ultimately the resulting pres-
sure difference can pull the sheet into the back or central
surface before it reaches the lower pool. In the circular ge-
ometry this effect is already known in the context of water
bells.10

For our minimal fountain design, we chose to have a
variable height and a diameter of 37.5 cm. The column sup-
porting the upper pool is a section of standard 3 in.~7.62 cm!
i.d. PVC drain pipe through which the input water is pumped
upward. The upper pool is a circular plastic planter tray,
which was strengthened and modified for the central water
input. The column and basin setup was positioned in a spa,
which served as the lower pool. The fountain height could be
easily varied by pumping the water in the spa back and forth
to an adjoining swimming pool using the existing pool
plumbing. The water flow to the fountain itself was provided
by a small auxiliary swimming pool pump and the flow rate
could be varied between 1 and 2 liters per meter of fountain
circumference per second.

Fluttering oscillations were readily observed with the
fountain system just described. In these oscillations circu-
larly symmetric waves grow as they fall toward the surface
of the lower pool. Video pictures of these oscillations are
quite striking and are reminiscent of the undulations of a
hula skirt. A photograph of an oscillation mode is given in
Fig. 2. At the instant of this photograph the oscillating water
sheet is bulging outward at the top and inward near the bot-
tom. The concentric wire gauze screens visible in the upper
pool are introduced to reduce turbulence in the flow, and
such screens have been employed for a similar purpose in
earlier flow studies.7 The water pump for the fountain is
visible in the background, and the white post tied to the
black column is for support only.

For this relatively small diameter system the height
range between initial instability and water bell conditions is
quite narrow, with distinct periodic motion being observed
for heights between about 50 and 62 cm. For slightly greater
heights the motion becomes irregular with some hints of the
next higher-order mode. If the fountain height is increased to
about 70 cm, the water sheet contracts to form a water bell as
discussed above. A photograph of such a contracted sheet is
given in Fig. 3. A summary of the experimental periodic data
is given in Fig. 4 together with a plot of the simplest fre-
quency model of Eq.~5!. Within the experimental uncertain-
ties of about 0.2 Hz, the frequencies are in good agreement
with the simple model.

FIG. 1. Schematic representation of circular fountains including~a! internal
and ~b! external geometries.
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In a not so well characterized experiment, we have
slightly warped the tray containing the upper pool so that the
effective weir height was slightly higher on two opposite
sides~N and S, for example! and slightly lower on the in-
between sides~E and W!. This had the effect of making the
flow rate higher on the two lower sides and lower on the
higher sides. The result was that the low-flow~high gain!
sides fluctuated strongly toward and away from each other
while the high-flow~low gain! sides moved very little.

Another observation is that this external circular con-
figuration is extremely sensitive to wind. It is by definition
exposed on all sides and lacks the partial protection provided
by the back wall in a typical linear fluttering fountain. For an
ideal experiment it would be better to operate the fountain
indoors. The internal fluttering fountain shown in Fig. 1~a!
provides good protection from the wind but would probably
be more difficult to construct. We have not seriously consid-
ered constructing an interior fountain and, among other
things, consider such systems to be relatively lacking in es-
thetic appeal.

IV. CONCLUSION

It has been shown that the same fluttering instability that
has been observed and studied in linear waterfall fountains
also exists in fountains having a circular geometry. Experi-
ments have been conducted with the external circular con-
figuration, and the frequencies and stability threshold for this
system are in good agreement with theoretical models. The
previously noted tendency of the water sheet in a linear foun-
tain to be drawn against the back wall3 translates in the cir-
cular fountain into a tendency for the water sheet to form a
water bell.

The design we chose is really a minimal system, and a
wider range of oscillation behaviors would be possible in a
fountain having a larger diameter. Another type of periodic
mode should be possible in very large circular systems in
which the central column is large enough to prevent direct
acoustic communication between opposite sides of the foun-
tain. In this case helical modes could occur in which the
phase of the waves for a given time and height on the water
sheet varies linearly with angular position around the foun-
tain perimeter. The total phase shift of one of these modes for
one loop around the fountain would be an integer multiple of
2p, and the modes are similar in that respect to
electromagnetic-beam modes having helical phase fronts. A

FIG. 2. Experimental circular fountain showing the fundamental oscillation
mode as observed for heights between about 50 and 62 cm. Contrast in the
photograph is limited by the necessary uniformity of the water sheet.

FIG. 3. Experimental fountain showing contraction of the water sheet with
a height of about 70 cm.

FIG. 4. Oscillation frequency as a function of fountain heighty0 . Experi-
mental data points are represented by circles, and the line is a plot of Eq.~5!.
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transverse wind across the face of a linear fountain seems to
cause a transverse phase delay,1 and it is possible that the
helical modes in a circular fountain could be encouraged by
an appropriate wind behind or in front of the water sheet.

While the emphasis here has been on the simplest pos-
sible circular generalization of the fluttering oscillations of
more familiar linear waterfall fountains, many other geom-
etries should also be possible. One can imagine systems in
which the curvature, flow rates, or heights of the upper or
lower pools vary with position along the fountain boundary.
Nonvertical flows should exhibit related behaviors in sys-
tems using jets to provide the initial fluid flow.7 Previous
treatments of annular flows have always neglected Helm-
holtz amplification, and as shown here this mechanism must
be included to obtain a valid description of the flow dynam-
ics for larger annular systems.
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