
Portland State University Portland State University 

PDXScholar PDXScholar 

Computer Science Faculty Publications and 
Presentations Computer Science 

6-2011 

Resizable, Scalable, Concurrent Hash Tables via Resizable, Scalable, Concurrent Hash Tables via 

Relativistic Programming Relativistic Programming 

Josh Triplett 
Portland State University 

Paul E. McKenney 

Jonathan Walpole 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac 

 Part of the Computer and Systems Architecture Commons, and the Software Engineering Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Josh Triplett, Paul E. McKenney, and Jonathan Walpole, "Resizable, Scalable, Concurrent Hash Tables via 
Relativistic Programming" (2011). Presentation to USENIX Annual Technical Conference (USENIX 
ATC'11). 

This Presentation is brought to you for free and open access. It has been accepted for inclusion in Computer 
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if 
we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/73
mailto:pdxscholar@pdx.edu


Resizable, Scalable, Concurrent Hash Tables
via Relativistic Programming

Josh Triplett1 Paul E. McKenney2 Jonathan Walpole1

1Portland State University

2IBM Linux Technology Center

June 16, 2011



Synchronization = Waiting

• Concurrent programs require synchronization

• Synchronization requires some threads to wait on others

• Concurrent programs spend a lot of time waiting



Locking

• One thread accesses shared data

• The rest wait for the lock

• Straightforward to get right

• Minimal concurrency



Locking

• One thread accesses shared data

• The rest wait for the lock

• Straightforward to get right

• Minimal concurrency



Fine-grained Locking

• Use different locks for different data

• Disjoint-access parallelism

• Reduce waiting, allow multiple threads to proceed

• Many expensive synchronization instructions

• Wait on memory

• Wait on the bus

• Wait on cache coherence



Fine-grained Locking

• Use different locks for different data

• Disjoint-access parallelism

• Reduce waiting, allow multiple threads to proceed

• Many expensive synchronization instructions

• Wait on memory

• Wait on the bus

• Wait on cache coherence



Fine-grained Locking

• Use different locks for different data

• Disjoint-access parallelism

• Reduce waiting, allow multiple threads to proceed

• Many expensive synchronization instructions

• Wait on memory

• Wait on the bus

• Wait on cache coherence



Reader-writer locking

• Don’t make readers wait on other readers

• Readers still wait on writers and vice versa

• Same expensive synchronization instructions

• Dwarfs the actual reader critical section

• No actual reader parallelism; readers get serialized



Reader-writer locking

• Don’t make readers wait on other readers

• Readers still wait on writers and vice versa

• Same expensive synchronization instructions

• Dwarfs the actual reader critical section

• No actual reader parallelism; readers get serialized



Reader-writer locking

• Don’t make readers wait on other readers

• Readers still wait on writers and vice versa

• Same expensive synchronization instructions

• Dwarfs the actual reader critical section

• No actual reader parallelism; readers get serialized



Non-blocking synchronization

• Right there in the name: non-blocking

• So, no waiting, right?

• Expensive synchronization instructions

• All but one thread must retry

• Useless parallelism: waiting while doing busywork

• At best equivalent to fine-grained locking



Non-blocking synchronization

• Right there in the name: non-blocking

• So, no waiting, right?

• Expensive synchronization instructions

• All but one thread must retry

• Useless parallelism: waiting while doing busywork

• At best equivalent to fine-grained locking



Non-blocking synchronization

• Right there in the name: non-blocking

• So, no waiting, right?

• Expensive synchronization instructions

• All but one thread must retry

• Useless parallelism: waiting while doing busywork

• At best equivalent to fine-grained locking



Transactional memory

• Non-blocking synchronization made easy

• (Often implemented using locks for performance)

• Theoretically equivalent performance to NBS

• In practice, somewhat more expensive

• Fancy generic abstraction wrappers around waiting



Transactional memory

• Non-blocking synchronization made easy

• (Often implemented using locks for performance)

• Theoretically equivalent performance to NBS

• In practice, somewhat more expensive

• Fancy generic abstraction wrappers around waiting



Transactional memory

• Non-blocking synchronization made easy

• (Often implemented using locks for performance)

• Theoretically equivalent performance to NBS

• In practice, somewhat more expensive

• Fancy generic abstraction wrappers around waiting



How do we stop waiting?

• Reader-writer locking had the right idea

• But readers needed synchronization to wait on writers

• Some waiting required to check for potential writers

• Can readers avoid synchronization entirely?

• Readers should not wait at all

• Joint-access parallelism: Can we allow concurrent readers and
writers on the same data at the same time?

• What does “at the same time” mean, anyway?



How do we stop waiting?

• Reader-writer locking had the right idea

• But readers needed synchronization to wait on writers

• Some waiting required to check for potential writers

• Can readers avoid synchronization entirely?

• Readers should not wait at all

• Joint-access parallelism: Can we allow concurrent readers and
writers on the same data at the same time?

• What does “at the same time” mean, anyway?



How do we stop waiting?

• Reader-writer locking had the right idea

• But readers needed synchronization to wait on writers

• Some waiting required to check for potential writers

• Can readers avoid synchronization entirely?

• Readers should not wait at all

• Joint-access parallelism: Can we allow concurrent readers and
writers on the same data at the same time?

• What does “at the same time” mean, anyway?



How do we stop waiting?

• Reader-writer locking had the right idea

• But readers needed synchronization to wait on writers

• Some waiting required to check for potential writers

• Can readers avoid synchronization entirely?

• Readers should not wait at all

• Joint-access parallelism: Can we allow concurrent readers and
writers on the same data at the same time?

• What does “at the same time” mean, anyway?



Modern computers

• Shared address space

• Distributed memory

• Expensive illusion of coherent shared memory

• “At the same time” gets rather fuzzy

• Shared address spaces make communication simple

• Incredibly optimized communication via cache coherence

• When we have to communicate, let’s take advantage of that!

• (and not just to accelerate message passing)



Modern computers

• Shared address space

• Distributed memory

• Expensive illusion of coherent shared memory

• “At the same time” gets rather fuzzy

• Shared address spaces make communication simple

• Incredibly optimized communication via cache coherence

• When we have to communicate, let’s take advantage of that!

• (and not just to accelerate message passing)



Modern computers

• Shared address space

• Distributed memory

• Expensive illusion of coherent shared memory

• “At the same time” gets rather fuzzy

• Shared address spaces make communication simple

• Incredibly optimized communication via cache coherence

• When we have to communicate, let’s take advantage of that!

• (and not just to accelerate message passing)



Modern computers

• Shared address space

• Distributed memory

• Expensive illusion of coherent shared memory

• “At the same time” gets rather fuzzy

• Shared address spaces make communication simple

• Incredibly optimized communication via cache coherence

• When we have to communicate, let’s take advantage of that!

• (and not just to accelerate message passing)



Relativistic Programming

• By analogy with relativity: no absolute reference frame

• No global order for non-causally-related events

• Readers do no waiting at all, for readers or writers

• Minimize expensive communication and synchronization

• Writers do all the waiting, when necessary

• Reads linearly scalable



What if readers see partial writes?

• Writers must not disrupt concurrent readers

• Data structures must stay consistent after every write

• Writers order their writes by waiting

• No impact to concurrent readers



Outline

• Synchronization = Waiting

• Introduction to Relativistic Programming

• Relativistic synchronization primitives

• Relativistic data structures

• Hash-table algorithm

• Results

• Future work



Relativistic synchronization primitives

• Delimited readers
• No waiting: Notification, not permission

• Pointer publication
• Ensures ordering between initialization and publication

• Updaters can wait for readers
• Existing readers only, not new readers



Relativistic synchronization primitives

• Delimited readers
• No waiting: Notification, not permission

• Pointer publication
• Ensures ordering between initialization and publication

• Updaters can wait for readers
• Existing readers only, not new readers



Relativistic synchronization primitives

• Delimited readers
• No waiting: Notification, not permission

• Pointer publication
• Ensures ordering between initialization and publication

• Updaters can wait for readers
• Existing readers only, not new readers



Example: Relativistic linked list insertion

a

b

c

Potential readers

• Initial state of the list; writer wants to insert b.

• Initialize b’s next pointer to point to c

• The writer can then “publish” b to node a’s next pointer

• Readers can immediately begin observing the new node



Example: Relativistic linked list insertion

a

b

c

Potential readers

• Initial state of the list; writer wants to insert b.

• Initialize b’s next pointer to point to c

• The writer can then “publish” b to node a’s next pointer

• Readers can immediately begin observing the new node



Example: Relativistic linked list insertion

a

b

c

Potential readers

• Initial state of the list; writer wants to insert b.

• Initialize b’s next pointer to point to c

• The writer can then “publish” b to node a’s next pointer

• Readers can immediately begin observing the new node



Example: Relativistic linked list insertion

a

b

c

Potential readers

• Initial state of the list; writer wants to insert b.

• Initialize b’s next pointer to point to c

• The writer can then “publish” b to node a’s next pointer

• Readers can immediately begin observing the new node



Example: Relativistic linked list removal

a b c

Potential readers

• Initial state of the list; writer wants to remove node b

• Sets a’s next pointer to c, removing b from the list for all
future readers

• Wait for existing readers to finish

• Once no readers can hold references to b, the writer can safely
reclaim it.



Example: Relativistic linked list removal

a b c

Potential readers

• Initial state of the list; writer wants to remove node b

• Sets a’s next pointer to c, removing b from the list for all
future readers

• Wait for existing readers to finish

• Once no readers can hold references to b, the writer can safely
reclaim it.



Example: Relativistic linked list removal

a b c

Potential readers

• Initial state of the list; writer wants to remove node b

• Sets a’s next pointer to c, removing b from the list for all
future readers

• Wait for existing readers to finish

• Once no readers can hold references to b, the writer can safely
reclaim it.



Example: Relativistic linked list removal

a c

Potential readers

• Initial state of the list; writer wants to remove node b

• Sets a’s next pointer to c, removing b from the list for all
future readers

• Wait for existing readers to finish

• Once no readers can hold references to b, the writer can safely
reclaim it.



Relativistic data structures

• Linked lists

• Radix trees

• Tries

• Balanced trees

• Hash tables



Relativistic hash tables

• Open chaining with relativistic linked lists

• Insertion and removal supported

• Atomic move operation (see previous work)

• What about resizing?

• Necessary to maintain constant-time performance and
reasonable memory usage

• Must keep the table consistent at all times



Relativistic hash tables

• Open chaining with relativistic linked lists

• Insertion and removal supported

• Atomic move operation (see previous work)

• What about resizing?

• Necessary to maintain constant-time performance and
reasonable memory usage

• Must keep the table consistent at all times



Relativistic hash tables

• Open chaining with relativistic linked lists

• Insertion and removal supported

• Atomic move operation (see previous work)

• What about resizing?

• Necessary to maintain constant-time performance and
reasonable memory usage

• Must keep the table consistent at all times



Existing approaches to resizing

• Don’t: allocate a fixed-size table and never resize it
• Poor performance or wasted memory

• “Dynamic Dynamic Data Structures” (DDDS)
• Readers must check old and new data structures
• Readers have to wait until no concurrent resizes
• Slows down the common case
• Significantly slows lookups while resizing

• Herbert Xu’s resizable relativistic hash tables
• Extra linked-list pointers in every node
• High memory usage



Existing approaches to resizing

• Don’t: allocate a fixed-size table and never resize it
• Poor performance or wasted memory

• “Dynamic Dynamic Data Structures” (DDDS)
• Readers must check old and new data structures
• Readers have to wait until no concurrent resizes
• Slows down the common case
• Significantly slows lookups while resizing

• Herbert Xu’s resizable relativistic hash tables
• Extra linked-list pointers in every node
• High memory usage



Existing approaches to resizing

• Don’t: allocate a fixed-size table and never resize it
• Poor performance or wasted memory

• “Dynamic Dynamic Data Structures” (DDDS)
• Readers must check old and new data structures
• Readers have to wait until no concurrent resizes
• Slows down the common case
• Significantly slows lookups while resizing

• Herbert Xu’s resizable relativistic hash tables
• Extra linked-list pointers in every node
• High memory usage



Defining “consistent”

• A reader traversing a hash bucket must always observe all
elements in that bucket

• . . . but if it observes more, no harm done

• Imprecise hash buckets contain elements from other buckets



Defining “consistent”

• A reader traversing a hash bucket must always observe all
elements in that bucket

• . . . but if it observes more, no harm done

• Imprecise hash buckets contain elements from other buckets



Defining “consistent”

• A reader traversing a hash bucket must always observe all
elements in that bucket

• . . . but if it observes more, no harm done

• Imprecise hash buckets contain elements from other buckets



Shrinking: Initial state

odd

even

1 3

2 4



Shrinking: Initialize new buckets

odd

even

all

1 3

2 4



Shrinking: Link old chains

odd

even

all

1 3

2 4



Shrinking: Publish new buckets

all

odd

even

1 3 2 4



Shrinking: Wait for readers

all

odd

even

1 3 2 4



Shrinking: Reclaim

all 1 3 2 4



Expanding: Initial state

all 1 2 3 4



Expanding: Initialize new buckets

all

odd

even

1 2 3 4



Expanding: Publish new buckets

all

odd

even

1 2 3 4



Expanding: Wait for readers

aux

odd

even

1 2 3 4



Expanding: Unzip one step

aux

odd

even

1 2 3 4



Expanding: Wait for readers

aux

odd

even

1 2 3 4



Expanding: Unzip again

aux

odd

even

1 2 3 4



Expanding: Final state

odd

even

1 3

2 4



Benchmarking methodology

• Implemented a microbenchmark as a Linux kernel module

• Used Linux’s Read-Copy Update (RCU) implementation

• Relativistic Programming primitives map to RCU operations

• Lookups with no resize as a baseline

• Lookups with continuous resizing as a worst-case scenario

• Compared: our algorithm, DDDS, rwlock



Benchmarking methodology

• Implemented a microbenchmark as a Linux kernel module

• Used Linux’s Read-Copy Update (RCU) implementation

• Relativistic Programming primitives map to RCU operations

• Lookups with no resize as a baseline

• Lookups with continuous resizing as a worst-case scenario

• Compared: our algorithm, DDDS, rwlock



Benchmarking methodology

• Implemented a microbenchmark as a Linux kernel module

• Used Linux’s Read-Copy Update (RCU) implementation

• Relativistic Programming primitives map to RCU operations

• Lookups with no resize as a baseline

• Lookups with continuous resizing as a worst-case scenario

• Compared: our algorithm, DDDS, rwlock



Results: fixed-size table baseline

1 2 4 8 16
0

50

100

150

RP

DDDS

rwlock

Reader threads

L
o

ok
u

p
s/

se
co

n
d

(m
ill

io
n

s)



Results - continuous resizing

1 2 4 8 16
0

50

100

150

200

RP

DDDS

Reader threads

L
o

ok
u

p
s/

se
co

n
d

(m
ill

io
n

s)



Results - our resize versus fixed

1 2 4 8 16
0

50

100

150

200

8k

16k

resize

Reader threads

L
o

ok
u

p
s/

se
co

n
d

(m
ill

io
n

s)



Results - DDDS resize versus fixed

1 2 4 8 16
0

50

100

150

200

8k

16k

resize

Reader threads

L
o

ok
u

p
s/

se
co

n
d

(m
ill

io
n

s)



Hang on a minute. . .

• This is USENIX!

• We don’t settle for microbenchmarks here

• We care about real-world implementations



memcached

• Network-accessible key-value store

• Used for caching

• Performance-critical

• . . . and it uses a global table lock



memcached

• Network-accessible key-value store

• Used for caching

• Performance-critical

• . . . and it uses a global table lock



memcached with relativistic hash tables

• Uses the userspace RCU implementation, urcu

• Adds a fast path for GET requests using relativistic lookups

• Copies value while still in a relativistic reader

• Falls back to the slow path for expiry, eviction

• Writers use safe relativistic memory reclamation



memcached results

1 2 3 4 5 6 7 8 9 10 11 12
0

200

400

600

RP GET

default GET

default SET

RP SET

mc-benchmark processes

R
eq

u
es

ts
/s

ec
on

d
(t

h
ou

sa
n

d
s)



Future work: Relativistic data structures

• New relativistic algorithms currently require careful
construction

• We have a general methodology for algorithm construction
• Write an algorithm assuming our memory model
• Use this methodology to mechanically place barriers and

wait-for-readers operations



Summary

• Relativistic programming allows linearly scalable readers

• Relativistic hash tables support resizing now
• Now suitable for general-purpose usage

• Real-world code scales better with relativistic programming

Questions?


	Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming
	Let us know how access to this document benefits you.
	Citation Details

	Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming

