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I. INTRODUCTION  

The role of industrial clusters in the economic development of countries and regions has drawn 

the attention of both academics and policymakers. The idea of promoting the formation and 

development of clusters is based on the assumption that firm-level performance benefits from 

agglomeration. These so-called agglomeration economies were first introduced by Marshall 

(1920) and later rediscovered by Arrow and Romer. Agglomeration economies originate from a 

set of positive externalities that are simultaneously industry specific and location specific. These 

externalities are mainly due to knowledge or technology spillovers, input/output sharing and 

labor-market pooling. Because of Marshall’s seminal work, this phenomenon is often referred to 

as Marshallian externalities.
1
 

Porter (1998, 2000) has recently influenced the discussion of the relevance of industrial clusters 

arguing that while changes in technology and competition have diminished the relevance of 

location decisions, clusters are a striking feature of today’s economies.
2
 Indeed, as Krugman 

(1991) and, Ellison and Glaeser (1997) note, industries tend to be geographically concentrated. 

In this context, the main reason for interest towards industrial agglomeration, as originally 

pointed out by Rosenstein-Rodan (1943), is that firms may benefit from the proximity to each 

other due to the existence of the aforementioned externalities.  

Several studies provide evidence in this direction. The empirical literature on agglomeration 

economies began in the 1970’s with the contributions of Shefer (1973) and Sveikauskas (1975). 

However, the work by Ciccone and Hall (1996) was the first to clearly address endogeneity 

issues – i.e. reverse causality: firms benefit from agglomeration because of externalities and, at 

the same time, the best firms decide to locate close to other firms. Using data on gross state 

output in the United States, they find that a doubling of employment density increases average 

labor productivity by around 6 percent. Other papers presenting evidence of agglomeration 

economies include Ellison and Glaeser (1999), Hanson (2001), Dumais et al. (2002), Rosenthal 

and Strange (2003), Rodríguez-Clare (2005, 2007), Combes et al. (2008, 2010), Ellison et al. 

(2010) and Rizov et al. (2012). 

This evidence on the benefits of agglomeration notwithstanding, it is also a well-known result in 

economic theory that in the presence of externalities the market often fails to assign resources 

optimally. This is particularly relevant when geographical proximity and industry 

complementarities cause agglomeration economies. In this context, cluster policies may foster 

the beneficial effects of agglomeration by creating a set of incentives to overcome the 

coordination failures that hamper the development of certain industries. A first stage of this type 

                                                           
1
 In more generic terms, the literature has also referred to the concept of industry-specific local externalities (ISLE). 

Henderson et al. (1995) refer to these types of industry-specific externalities that arise from regional agglomeration 

as “localization externalities”, in particular when firms operate in related sectors and are closely located. 
2
 The simplest definition of an industry cluster is derived from the work of Porter (1990), who defines clusters as “a 

geographic concentration of competing and cooperating companies, suppliers, service providers, and associated 

institutions”. 
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of interventions is usually a process whereby linkages between the different cluster stakeholders 

(firms, support institutions, and public agencies) and externalities are built up through support to 

latent and potential clusters. This step includes the preparation and adoption of cluster 

development plans to map and facilitate cluster formation and encourage the interaction among 

private agents (private-private and public-private). In a second stage, consolidated clusters are 

usually supported by public investments to promote innovation and joint learning, and overcome 

technological, infrastructure and environmental constraints – e.g. investments in knowledge 

creation and technology adoption which are two of the major sources of industry and location 

specific externalities as well as joint-investments in public goods. 

Several countries have implemented cluster-development programs. Unfortunately, few 

evaluations have been carried out to assess the impact of this type of public policies and, the 

evidence remains scarce and inconclusive.
3
 Falck et al. (2009) evaluate a cluster program 

introduced in 1999 in Bavaria, Germany, aimed at fostering innovation and regional 

competitiveness by stimulating cooperation. They find that the cluster-oriented policy increased 

the likelihood of becoming an innovator in the targeted industry. Nishimura and Okamuro (2011) 

evaluate the Industrial Cluster Project (ICP)
4
 in Japan. Their results suggest that beneficiaries 

expand the industry-university-government network. Interestingly, they find that while clusters 

participants that collaborate with national universities in the same region significantly improve 

the R&D productivity – without reducing patent quality – participation in the cluster project 

alone has no significant effect on the R&D productivity of firms. Finally, Martin et al. (2011a) 

analyze a public policy promoting industrial clusters in France for the period 1996-2004, and 

apply a difference-in-differences approach. They find that the program selected firms in relative 

decline and find no major effect on productivity. They also conclude the policy had no robust 

effects on employment and exports. 

To our knowledge, there are no impact evaluations of cluster policies in Latin America. 

Although similar types of programs, such as agricultural (Cerdán-Infantes et al. 2008; López and 

Maffioli, 2008; González et al., 2009), innovation (Binelli and Maffioli, 2007; Hall and Maffioli, 

2008; Crespi et al., 2011; Benavente et al., 2012), export promotion (Volpe and Carballo, 2008), 

SME support (Castillo et al., 2010; López Acevedo and Tan, 2010) and supplier development 

(Arráiz et al., 2011) have been analyzed,
5
 none of these directly evaluate a cluster policy. The 

study by Maffioli (2005) is probably the closest piece of research to an impact evaluation of a 

                                                           
3
 As Anderson et al. (2004) point out, thorough evaluations of specific cluster initiatives and cluster actions are in 

fact few and have been developed only in few countries. Few solid attempts have been made to assess whether first-

best results are obtained, go beyond efficiency in use of given resources to encompass economic results, or take into 

account interactions and synergies in the performance of different actors. Further, most evaluations of cluster 

policies pursued still focus on single tools, which fits poorly with the systemic notion of cluster policy. 
4
 The ICP was initiated by the Japanese Ministry of Economy, Trade and Industry in 2001 and aims at developing 

regional industries and includes both direct R&D support and indirect networking/coordination support. 
5
 Several of these evaluations were done by the Inter-American Development Bank. 
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cluster policy in this region. He presents a theoretical discussion of industrial networks and 

empirically analyzes the most important Chilean networking program, the PROFO program.
6
  

In this paper, we aim at closing this knowledge gap and shedding light on the effectiveness of 

cluster policies by focusing on the case of Brazil’s Arranjos Produtivos Locais (APL), a cluster 

development policy in place since 2004. More precisely, we analyze the impact of participating 

in APLs on a series of performance indicators for SMEs, including level of employment, value 

of exports and likelihood of exporting.
7
 

We present evidence of a positive direct average effect of the APL program on the three 

outcomes of interest – level of employment, value of exports and the likelihood of exporting – 

we considered. Furthermore, those positive effects seem to be increasing over time. We also find 

evidence of positive spillovers on both export outcomes. These effects seem to become more 

pronounced in the medium and long term. Results reinforce the idea that finding direct and 

indirect effects of a cluster policy on firms’ performance requires considering the fact that the 

realization of such impacts may require a period of gestation after the policy is implemented. 

Our contributions to the empirical literature are twofold. First, we add to the general impact 

evaluation literature not only by studying the direct impact of a large cluster program, but also by 

testing for potential indirect (i.e. spillover) effects, and carefully considering the timing of the 

realization of impacts. Second, we provide what to our knowledge is the first evaluation of a 

specific cluster policy in Latin America, expanding the current literature which to this point has 

almost exclusively focused on developed countries. 

The rest of the paper is organized as follows. Section II presents the APL program. Section III 

describes the relationships of interest, the ideal experiment, the estimation methods and the 

robustness checks used to assess the impact of the cluster policy. Section IV presents and 

summarizes the data used for the estimations and performs a preliminary analysis. Section V 

reports the estimation results and section VI concludes. 

 

 

 

                                                           
6
 The availability of relational data on a significant number of firm networks allows him to investigate in detail the 

relationship between network structure, public intervention and firm competitiveness. His econometric analysis 

confirms a strong correlation between PROFO firms’ innovativeness and industrial cooperation, proving the 

existence of an interactive learning process among participant firms. Using sociometric data to refine the analysis of 

the impact of the program on the network multiplier he finds that participant firms increase their productivity and 

that this improvement is strongly correlated with firm centrality and network density, which are the two variables 

best representing the structure and function of the network multiplier and that are affected by PROFO. 
7
 Given the confidentiality of the data, the estimations were conducted following the Instituto de Pesquisa 

Econômica Aplicada’s microdata policy, which implies working in situ under the supervision of its staff and with 

blinded access to sensible information. 
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II. BRAZIL’S ARRANJOS PRODUTIVOS LOCAIS 

In Brazil, during the last decade, the public and private organizations that promote small and 

medium-sized firms (SMEs)
8
 have increasingly focused on the development of local productive 

clusters, known as Arranjos Produtivos Locais or APLs.  According to the definition given by 

the Brazilian Service to Support Micro and Small Enterprises (SEBRAE), APLs – "local 

productive arrangements" or "local systems" –  are clusters of firms within the same 

administrative area (e.g. municipality) that share a particular specialization. Firms within each 

cluster maintain ties of cooperation and learning both among themselves and with other 

stakeholders such as government, business associations, lenders, and teaching and research 

institutions. An APL is characterized by the existence of a group of firms operating in the same 

economic activity. For instance, manufacturing firms producing goods and services, suppliers of 

machinery and equipment, input providers, associations and cooperatives and human resource 

training firms.
9
 

The importance of APLs in Brazil’s industrial policy is illustrated by the fact that cluster support 

is recognized as one of the key pillars of Brazil’s Industrial, Technological, and Foreign Trade 

Policy (PITCE), and of the Brazilian Industrial Development Agency (ABDI).
10

 In the last 

decade most of the states who started implementing policies to develop and support clusters have 

been mainly guided by the federal government through the APL Permanent Working Group 

(GTP-APL) created in 2004 in the Ministry of Development, Industry and Foreign Trade 

(MDIC). This agency promotes coordination among the various federal and state agencies 

working with APLs.  

The purpose of this integrated APL policy has been to stimulate local development through 

competitiveness and sustainability projects in territories where has been some kind of pre-

existing agglomeration of SMEs. More specifically, the selection criteria for APLs in the states 

where we focus our evaluation (Sao Paulo and Minas Gerais) can be summarized in the 

following four points: (i) capability and possibilities of operating and collaborating with other 

organizations; (ii) form and degree of development of the APL – selection is guided by the 

number and maturity of participating institutions, the existence of a local governmental 

institution capable of coordinating collective actions, and the quality of linkages between firms 

                                                           
8
 The Brazilian Institute of Geography and Statistics (IBGE) defines microenterprises and small businesses as firms 

employing up to 49 workers in the services sector and up to 99 in the industrial sector. For the National Bank for 

Economic and Social Development (BNDES) a microenterprise is a firm with sales of less than R$1.2 million, while 

a “small” firm has sales of between R$1.2 million and R$10.5 million, and a “medium-sized” one between R$10.5 

million and R$60 million. 
9
 See Lastres et al. (2002, 2003). 

10
 This agency’s main objectives are to coordinate and synchronize efforts made by various government institutions 

and levels to achieve consistency in productive-sector support policies, and to improve the country’s technological 

base in areas displaying the greatest growth potential, including: (i) strengthening the industrial structure of 

industrial property; (ii) promoting innovative SME capacity; (iii) creating a favorable investment environment; and 

(iv) increasing research and development expenditure, in both the public and private sectors (see 

http://www.abdi.com.br/). 
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and other actors; (iii) socio-economic relevance of the main activity of the APL e.g. impact on 

GDP, exports and level of employment, and (iv) capability of generating new opportunities for 

social and economic development and innovation.
11

 

Policy actions were designed following a set of guidelines that seek to maximize the impact on 

local development, increase social capital, and integrate participating agents.
12

 Under this 

framework, participating ministries as well as governmental and non-governmental agencies 

designed and implemented several instruments to support APL development. More precisely, 

policy actions consist of two main components. First, private and public agents jointly elaborate 

strategic development plans. In this stage the main role of public agents is to facilitate interaction 

between the various agents involved and designate local leaders to be responsible for 

coordinating each plan’s execution. The focus is on the development of methodologies for the 

organization and consolidation of the APLs. Secondly, – once each plan is completed – public 

agents support recently consolidated APLs through different instruments aimed at increasing 

competitiveness of the productive chains. This stage includes direct investment in infrastructure, 

equipment, specific training and technology transfer programs, implementation of sectorial 

technology centers, design offices, export promotion programs, and information systems for 

monitoring and evaluation.  

The overall goals of this integrated policy are: (i) to promote economic development; (ii) to 

reduce social and regional inequalities; (iii) to foster technological innovation; (iv) to expand and 

modernize the productive base; (v) to foster employment and income; (vi) to reduce the failure 

rate of SMEs; (vii) to improve education and training; and (viii) to increase productivity, 

competitiveness and exports. This paper will be mainly focusing on the effectiveness of such 

policy in accomplishing goals (v) and (viii). The remaining goals, although key for policy 

formulation, will be addressed in future research. Moreover, due to problem of data availability 

we are not able to identify each instrument separately. Then, we evaluate the APL policy as a 

unique program compounding the different instruments just described. 

 

III. ASSESSING THE IMPACT OF A CLUSTER POLICY 

(a)  The Causal Relationships of Interest 

To measure the impact of a cluster policy we need to identify a causal effect. The causal effect of 

a policy is the difference between the value of the outcome variable after the policy took place 

and the value that the outcome variable would have been in absence of the policy. Suppose the 

                                                           
11

 This selection criteria is defined in Politicas Estaduais para Arranjos Productivos Locais no Sul, Sudeste e 

Centro-Oeste do Brasil, 2010 (www.bndes.gov.br). 
12

 This is how the objectives are defined in the Termo de Referencia para Politica Nacional de Apoio ao 

Desenvolvimiento de Arranjos Productivos Locais (2004). 

http://www.bndes.gov.br/
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cluster policy variable takes the value one when firm i belongs to APL and zero otherwise – i.e. 

Ci = {0,1}. Suppose in addition that if firm i participates in APL – i.e. Ci=1 – its value of the 

outcome variable is Yi1 and if it does not participate – i.e. Ci=0 – its value of the outcome 

variable is Yi0. In this setting, Yi1 and Yi0 are our potential outcomes.  

Then, the observed outcome variable of firm i can be written as: 

     









1CifY

0CifY
Y

ii1

ii0

i  

or equivalently,  

       Yi = Yi0 + (Yi1-Yi0).Ci.      

The difference between the potential outcomes Yi1 – Yi0 is the causal effect of the cluster policy C 

on the outcome variable Y for firm i. The main problem in measuring this effect arises because 

the counterfactual outcome (Yi0 for treated firms, Yi1 for untreated firms) is never observed, and 

therefore we must estimate it.
13

 Furthermore, because it is not possible to estimate the effect of C 

on Y for each individual I – except under very stringent and unrealistic assumptions – we often 

focus on estimating average treatment effects. For this, we need to identify a valid control group, 

in our case, a group of firms with the same characteristics than the group of beneficiaries of the 

cluster policy, differing from the formers only in that firms in the control group do not benefit 

from the policy.
14

 

Before discussing how to ideally construct both the treated (beneficiaries) and control (non-

beneficiaries) groups we also need to consider another key challenge in the evaluation of cluster 

policies: how to deal with externalities and spillovers. The first step in addressing this issue is to 

note that there are two types of beneficiaries (direct and indirect) and therefore two causal 

relationships of interest.  

Direct beneficiaries are firms in a cluster that participate in the cluster policy program – i.e. they 

choose to actively participate in the cluster development plan. Indirect beneficiaries are those 

firms that do not participate in the program but have linkages with participants. For instance, 

firms that share the geographical location with participating firms may indirectly benefit from 

higher foreign direct investment in the region attracted by cluster firms (De Propris and Driffield, 

                                                           
13

 This is the Fundamental Problem of Causal Inference (see Holland, 1986). 
14

 Basically, if assignment to treatment is randomized, the inference problem is straightforward because the 

treatment and control groups are from the same population. We can then estimate the Average Treatment Effect 

(ATE). With observational data the two groups are not drawn from the same population. In this case, we often want 

to estimate the Average Treatment Effect for the Treated (ATT). 
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2006).
15

 We will base our definition of indirect beneficiaries on this geographical criterion; i.e., 

we assume that geographical proximity is the channel through which spillovers occur. Thus, an 

indirect beneficiary is a firm that does not participate in the plan but is located in a municipality 

where the APL policy was implemented. We will refer to the municipalities with a positive 

number of APL firms as “treated municipalities”. Finally, non-beneficiaries are firms located in 

municipalities not treated by the program. However, some non-beneficiaries may be contiguous 

with a treated municipality and therefore benefit from spillovers. If this is the case then our 

estimates would be a lower bound of the impact of the program since these firms are also 

included in our control group. 

(b) The Ideal Experiment 

Like in other type of policies, the ideal experiment that would answer the causal effect questions 

is a randomized assignment of the cluster policy.
16

 However, in this case, the randomization has 

to be done at two different levels – i.e. double randomization.
17

 The need for this double 

randomization responds to the fact that both the locations where the policy will be implemented 

and the firms that will participate directly have to be selected. Then, we have three groups: 

1. Direct Beneficiaries: APL firms 

2. Indirect Beneficiaries: non-APL firms in a treated municipality 

3. Non-beneficiaries (control or comparison group): non-APL firms in a non-treated municipality 

Once the policy has been randomly assigned and in order to identify its effect, we are able to do 

two set of comparisons. The first comparison is between direct beneficiaries (APL firms) and 

similar non-beneficiaries. This comparison would provide the direct impact of the policy: 

DATE = E[Yi|Di=1,Ci=1] – E[Yi|Di=0,Ci=0] 

where Di takes value 1 if the municipality is a treated municipality and 0 otherwise and DATE is 

the Direct Average Treatment Effect i.e. it is the difference between the average value of the 

outcome variable for direct beneficiaries and non-beneficiaries. 

The second comparison involves comparing indirect beneficiaries with similar non-beneficiaries. 

This comparison identifies the Indirect Average Treatment Effect i.e. spillover effects: 

                                                           
15

 Bronzini and Piselli (2009) consider geographical spillovers assuming that factors enhancing productivity in one 

region can also affect the productivity in the neighboring regions. Bottazzi and Peri (2003) use geographical 

proximity as a channel for R&D spillovers. 
16

 With a large enough number of observations, the randomized assignment of the policy ensures that beneficiaries 

and non-beneficiaries have statistically equivalent averages not only for their observed characteristics but also for 

their unobserved characteristics before the policy is applied. 
17

 See Angelucci and Di Maro (2010). 
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IATE = E[Yi|Di=1,Ci=0] – E[Yi|Di=0,Ci=0] 

In principle, we would like to randomly assign the treated municipalities and the cluster policy as 

described above (double randomization). However, in most cases cluster policies are not 

designed using randomized assignment. Hence, in the absence of a randomized control trial we 

use quasi-experimental methods that mimic an experiment under certain assumptions and 

therefore, we will focus on estimating the average effect of the treatment on the treated firms 

(ATT). 

(c) Identification Strategy and Estimation Methods 

The main idea to identify the impact of a cluster policy without random assignment of the policy 

is the same as in the case of random assignment – i.e. to compare direct and indirect beneficiaries 

with non-beneficiaries. However, in absence of a randomization, beneficiaries may be different 

from non-beneficiaries because of selection bias. In the case of cluster policies, as in other 

productive development policies, it is likely that beneficiaries are more or less productive than 

non-beneficiaries. Therefore, beneficiaries may show different outcomes than non-beneficiaries 

even in absence of the cluster policy. In terms of the notation described earlier, it is possible to 

expect both a positive – i.e.  E[Yi0|Di=1,Ci=1] or even E[Yi0|Di=1,Ci=0]  larger than E[Yi0|Di=0, 

Ci=0] or negative – e.g. if the policy selected firms in sectors and regions in relative decline – 

selection bias. Then, the comparison of the average of the outcome variable between 

beneficiaries and non-beneficiaries will over or underestimate the effect of the policy. 

As suggested before, the selection problem occurs because beneficiaries (direct and indirect) are 

different than non-beneficiaries even before the policy is implemented. Several techniques can 

be used to avoid these potential problems. First, if participation is determined by observable 

factors, these variables can be included as control variables in a regression framework. However, 

some of these relevant factors may be unobservable – e.g. entrepreneurial behavior of the firm, 

manager characteristics and leadership – and thus cannot be accounted for. Nevertheless, the 

panel structure of our database allows us to eliminate all confounding factors (both observable 

and unobservable), as long as they do not vary over time, using a fixed-effects model. Under this 

assumption we can identify the effect of the cluster policy on our outcomes of interest using the 

following fixed effect linear regression model:
18

 

 

                                          (1) 

where      is any of the outcomes under study of the firm i in year t,    captures all time-constant 

factors that are firm-specific,    represents yearly shocks that affect all firms,   is the parameter 

of interest which captures the causal effect of       (a binary variable that takes the value one 

                                                           
18

 See Bertrand et al. (2004) for a discussion on Differences-in-Differences estimates. 
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since the year in which the firm i enters the APL)
19

 on the outcome under consideration,      is a 

vector of time-varying control variables, and      is an error term which may be correlated within 

each cluster but is assumed to be independently and identically distributed across clusters. In the 

absence of time-varying unobserved factors that affect both the outcome and the participation in 

APL, the fixed-effects method leads to a consistent estimator for  , the average impact of the 

cluster policy on the treated firms. 

The validity of the fixed-effects estimator rests on the identification assumption that trends in the 

outcomes would have been equal in absence of treatment. However, this non-testable assumption 

may be difficult to accept when firms in the control group are very heterogeneous and very 

different from the participating firms, since firms that are very different at the baseline are likely 

to follow different trends as well.  

In order to reinforce the validity of our identification assumption, we run equation (1) on a 

matched sample, selecting among firms in the comparison group those that are more similar to 

beneficiaries not only in terms of observed characteristics but also on their pre-treatment 

performance. We use Nearest Neighbor Matching with one neighbor and replacement applying it 

to the year before the beginning of the cluster policy i.e. 2003. For each type of beneficiary we 

match on each outcome separately using its values for the period 2002-2003 and observed 

characteristics of the firm in 2003 i.e. region, industry, size, age and a Herfindahl index.
20

 We do 

this to ensure that we select from the control group only those which have pre-treatment trends 

that are similar to direct and indirect beneficiaries.
21

 

 As mentioned above, the equality in the growth rate of the outcome variables in absence of the 

program is a non-testable assumption and the combination of these methods can make it more 

credible. It involves three steps: (i) estimating the propensity score before the treatment takes 

place, (ii) defining a matched sample of firms – we are left with the treated firms and their 

nearest neighbors –, and (iii) running a fixed effects model on this matched sample. Heinrich et 

al. (2010) provide guidelines for the application of this method. For a recent application of this 

procedure to evaluate a SME policy in Argentina see Castillo et al. (2010).  

We reinforce our estimates by using entropy balancing, a multivariate reweighting method 

proposed by Hainmueller (2012). This method allows us to reweight our full sample such that the 

control group matches the covariate moments in the treatment group.
22

 In this paper, we focus on 

                                                           
19

 In the case of indirect beneficiaries Ci,t takes the value one since the year in which the municipality is a treated 

municipality. 
20

 The Herfindahl index was created by sector-municipality-year using level of employment. For a full discussion on 

measures of concentration see Hay and Morris (1987). 
21

 It is worth mentioning that in both matching and reweighting contexts we are left only with firms whose outcome 

was observed in both pre-treatment years i.e. 2002-2003. 
22

 We use the Stata package called ebalance introduced by Hainmueller and Xu (2011). In order to create the 

weights we apply the entropy balancing to the year 2003 by type of beneficiary for each outcome separately using 

the value of the outcome in 2002 and 2003 and all the observed characteristics of the firm (region, industry, size, age 
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balancing the first moment (mean) of the covariates and pre-treatment values of the outcome. 

Both the matching and reweighting methods allow us to eliminate a potential source of bias 

because non-beneficiaries are now more similar to beneficiaries.
23

  

In general, it takes time for the effects of cluster policy to manifest themselves in firm economic 

performance. The realization of the impact may require a period of gestation after the policy 

takes place. As a result, a proper consideration of the timing of the effects is crucial in an impact 

evaluation of a cluster program, and failures to account for this issue may lead to misleading 

conclusions and policy recommendations. To this end, we estimate the dynamic effects of the 

APL policy for the full, matched and reweighted sample. In terms of the previous notation: 

 

                                                        (2) 

where       takes value one if the firm received the program k years ago and 0 otherwise. 

(d) Robustness Checks 

To further address the validity of the control group and therefore the robustness of our results we 

run a pre-treatment trends equality test which assesses whether the pre-intervention time trends 

for beneficiaries and non-beneficiaries are different.
24

 We use only the observations of 

beneficiaries and non-beneficiaries in the pre-treatment period i.e. 2002-2003 and run the 

following regression: 

 

                                         (3) 

where            is the interaction between the treatment status      and the respective pre-

treatment year. This test allows us to validate our fixed-effects identification strategy.
25

 

 

IV. THE DATA 

Using the Cadastro Nacional Pessoa Juridica (CNPJ)
26

 from firms participating in APLs and 

registered in SEBRAE, it was possible to match the information from the Relacao Anual de 

                                                                                                                                                                                           
and a Herfindahl index) for the direct impact while only these values of the outcome for the indirect impact in order 

the algorithm to converge. 
23

 Heckman et al. (1997) and Heckman et al. (1998) point out this source of bias. 
24

 See Galiani et al. (2005). 
25

 See Heckman and Hotz (1989). 
26

 The CNPJ is a unique number that identifies each firm in Brazil. 
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Informacoes Sociais (RAIS)
27

 and Secretaria de Comércio Exterior (SECEX) of Brazil. Using 

the database of firms registered at SEBRAE, the spatial distribution of firms in Minas Gerais and 

Sao Paulo for which data are available is pictured in Figures 1 and 2. 

Table 1 displays the composition of our sample over time. We do not consider firms with 

observations only before or only after their starting year of treatment (direct or indirect) in order 

not to contaminate our control and treated group respectively. After excluding large firms, firms 

with only one observation and sectors with too few firms participating in APLs, we are left with 

a sample of 580,083 observations from 110,601 SMEs for the period 2002-2009.
28

 Table 2 

presents the distribution of firms by starting year in APLs or treated municipality. The bulk of 

the cluster project started in 2004, and the number of firms participating in APLs before that year 

is negligible. Moreover, Table 3 and 4 show that the APL policy targeted firms mainly from the 

Leather industry and small firms.  

The outcomes of interest are level of employment, the log of exports and a dummy (dexport) that 

takes the value 1 if the firm exports and value 0 otherwise.
29

 Additional control variables include 

the log of firm’s age and a Herfindahl index, which is a measure of concentration. 

Table 5 and Figures 3-5 depict the evolution of the outcomes over time, which allows us to 

perform a preliminary analysis by comparing the performances of our three groups of interest. A 

salient feature highlighted by the figures is that, in all years under study, the treated group has 

better outcomes than the other two, and the indirect beneficiaries also perform better than the 

control group. For instance, in 2002, firms that will participate in the program later have on 

average 16 more workers than the indirect beneficiaries, which in turn have on average two more 

workers than the comparison group. A similar phenomenon is observed for the probability of 

exporting; in this case, in 2002 the cluster firms were three percentage points more likely to 

export than the indirect beneficiaries and five percentage points more likely than the control 

firms. This provides evidence of a selection bias where firms that participate in the program 

show a better performance even before treatment than the firms that do not participate, and thus 

would be expected to have higher outcomes in absence of the program. 

                                                           
27

 The RAIS is an annual survey including socio-economic information of firms in Brazil. It is an administrative 

record of the labor force profile which is mandatory in Brazil for all firms in all sectors. 
28

 The following sectors: agriculture, livestock and related products, extraction of metallic minerals, motor vehicles, 

accommodation and food, ground transportation, financial intermediation, computers, public administration, defense 

and social security, education and associative activities presented only one observation in the 2007 RAIS and were 

excluded from the tables because of confidentiality issues. We also eliminate paper products, metal products, 

medical instruments and chemical products industries because they have a negligible number of APL firms. 
29

  We replicate estimates using the log of employment as dependent variable and we find similar results to those 

presented in the paper in terms of the magnitude, sign and significance of the impact of the program on level of 

employment. For the sake of brevity we only present the results for level of employment for which the interpretation 

is more straightforward. For the outcome log of exports we assign the value of 0 when firms have 0 exports to avoid 

excluding non-exporting firms from our sample, which could bias the results by affecting the composition of the 

treatment and control groups (see Angrist and Pischke, 2008). 
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By looking at the changes in outcomes over time, we can find some evidence in favor of positive 

direct effects of the cluster policy. Employment of treated firms not only starts from a higher 

level but also increases more rapidly than for untreated firms, which after a slight decrease, 

nearly returns to its initial level from 2002. Indirect beneficiaries and control firms appear to 

move in tandem, which would suggest, at most, very modest indirect effects. As to the logarithm 

of exports, we also observe a much higher level for treated firms. The outcome for participating 

firms reveals a sharp increase around 2004 which stabilizes in an intermediate level after 2006, 

while non-participating firms show an almost constant level over the period under study, or, if 

anything, a slight rise or drop for indirect and non-beneficiaries respectively . Figure 5 suggests 

that most of the change in exports is driven by the probability of becoming an exporter. 

Importantly, these figures point to a time-varying impact of the cluster policy on export behavior 

of firms. 

Some back-of-the-envelope calculations may give us a sense of the magnitudes of these effects. 

We can collapse the data in table 5 by averaging the periods before (2002-2003) and after (2004-

2009) the treatment and compare the before-after changes for each group (see Tables 6-7). This 

simple diff-in-diff estimator yields positive direct effects on the three outcomes: we find an 

impact on employment of around 13 workers, a 64% increase in exports with a 5 percentage 

point increase in the probability of exporting. As to the indirect effects, these simple estimates 

are much more modest: a positive but small indirect effect of around 3 workers, a 11% increase 

in total exports and one percentage point increase in the probability of exporting. 

In sum, our preliminary analysis points to positive direct effects with, at most, very modest 

indirect effects on our three outcomes. However, these naïve diff-in-diff estimators may be 

seriously affected by several types of biases. First, the figures reveal that the three groups present 

very different behaviors in the pre-treatment period; for instance, the log of exports show a sharp 

increase for treated firms between 2002 and 2003, while non-participating firms barely move. 

This dissimilarity between pre-treatment trends casts doubts on the validity of the diff-in-diff 

method, and is in fact a pervasive problem in the literature first described by Ashenfelter (1978). 

Furthermore, the figures suggest that by calculating an average effect over the whole period we 

may be masking some very complex dynamics and wasting relevant information on the 

interaction between the program and firm performance over time. With these initial estimates in 

mind, in the next section we will use the econometric methodology explained previously to 

account for these and other potential concerns such as differential trends by industry, and to 

carefully analyze the dynamic pattern of the effects. 
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V. ESTIMATION RESULTS 

Employment 

Using the full sample, our first set of results (Tables 8-9, Part A) show a positive and significant 

direct impact and a negative and significant indirect impact of the cluster program on 

employment;
30

 more precisely, the program increases the employment level by around ten 

workers for direct beneficiaries. However, the negative effect on indirect beneficiaries is almost 

negligible: less than one worker. This is in line with the descriptive statistics presented in Table 

5, which show that employment in APL firms grows on average faster than in non-beneficiaries 

while remains practically invariant in indirect beneficiaries.  

A typical interpretation of the positive direct impact on employment is that agglomeration 

economies on the labor markets as well as knowledge and input’s markets are direct externalities 

and are generally assumed to improve total factor productivity (TFP) and firm-level 

performance, and encourage the opening of new plants, the growing of existing plants or the 

attraction of other plants in the region.
31

 APL policy through labor market externalities may 

foster the creation of pools of specialized workers allowing APL firms to demand more workers 

for different jobs but around the same activity and to propose specific trainings that could 

improve workers’ efficiency. Moreover, knowing that they do not face ex post appropriation and 

that it is easier to recoup the cost of acquiring industry-specific human capital, workers join the 

cluster and invest in human capital (Rotemberg and Saloner, 2000). As Marshall stressed, 

workers learn skills quickly from each other in an industrial cluster. In this context, if APL 

workers have the risk of losing their jobs when there are shocks, they might be relocated more 

easily in other company inside the cluster moving to more productive firms.
32

 On the other 

hands, workers in indirect beneficiaries may see the cluster as a more promising job alternative, 

with higher possibilities of professional growth. Then, the cluster might also absorb workers 

from firms outside but close to it. Indeed, the strong direct effect of the cluster policy on 

employment could be in part reflected by a slight relocation of workers from indirect 

beneficiaries to direct beneficiaries. 

These estimates are robust to the inclusion of additional controls – log of firm’s age and 

Herfindahl index – and industry-year interactions that allow different sectors to have different 

trends over time. Moreover, if we consider the dynamic effects (see Table 10, Part A) the direct 

effect appears to be increasing over time, starting from a magnitude of around six workers in the 

first year after treatment and up to around seventeen workers after six years of treatment. 

                                                           
30

 It is worth mentioning that the fixed-effects method allows us to control for firm, municipality, state and industry 

non-observables that do not vary over time. 
31

 See Rosenthal and Strange (2001) and Ellison et al. (2010). Li et al. (2012) find that industrial agglomeration has 

a positive and statistically significant causal impact on firm size for the case of manufacturing firms in China. 
32

 Our results reinforce the idea that the benefits of labor pooling might prevail against the costs of labor poaching. 

This trade-off is addressed in Combes and Duranton (2006). 



15 
 

As mentioned above, a potential concern with this first set of results is that our database 

combines data from very heterogeneous firms, which could undermine the validity of our 

identification strategy. To account for this factor, we also run the previous regressions on a 

matched sample and on a reweighted sample as previously explained. The results are presented 

in Part B and C of Tables 8-9. Not only the magnitude of the estimated coefficients is similar, but 

also their statistical significance is maintained. These estimates are also robust to the inclusion of 

controls and industry-year interactions. Moreover, in Appendix I we show how the reweighting 

scheme allows making more similar the kernel density of the propensity score – estimated from a 

logit of the treatment variable on covariates – (Figure A) and balancing the covariates means 

(Figure B) between the direct beneficiaries and non-beneficiaries for the case of employment. 

Finally, in Table 11 we assessed the validity of the “Equal trends assumption” comparing 

changes in employment for the treatment and comparison groups before the program is 

implemented. While the estimates of the direct impact based on the full sample clearly do not 

pass the pre-treatment trends equality test, after matching or reweighting trends in employment 

in the pre-treatment period are more similar (see Figures 6-7). This test supports the assumption 

that mean employment of the treatment and control groups would have continued to move in 

tandem in the post-intervention period in absence of the cluster program.  

Exports and likelihood of exporting 

Tables 12 and 13 show the results for the log of exports. We find large, positive and statistically 

significant average direct effects between 40% and 60% depending on the specification. If we 

correct the estimates to account for the fact that the treatment is a dummy variable, we get 

estimates ranging from around 50% to 80%.
33

 Moreover, the dynamics of these effects for the 

full sample are consistent with what we described graphically in the previous section. The impact 

on exports is large and significant, but decreasing over time. However, as mentioned before, the 

control group does not seem to be a good comparison, since it exhibits a very different pre-

treatment behavior than the treatment group. After correcting this issue, we get a different pattern 

of the effects. The reweighted sample reveals an increasing effect over time, although the 

increase in the impact is not monotonic. 

As to the spillovers, table 13 reveals some modest but significant positive average indirect 

effects, which range from around 2% to 4%. According to table 14, these impacts seem to 

become relevant only after the second year, which is reasonable since spillover effects are 

expected to take time to materialize.
34

 The estimates show a positive trend, reaching the value of 

around 10% in the sixth year. 

                                                           
33

 The correction is b*=(exp(b)-1)*100. 
34

 See Jaffe et al. (1993). 
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Table 15 tests whether trends were similar before treatment. As suspected from the 

aforementioned figures, trends of APL firms and non-beneficiaries are statistically different for 

the full sample. Although our matching procedure reduces this difference, it does not manage to 

make it disappear. The reweighting procedure, on the other hand, successfully equalizes the 

trends, which suggests that the results based on this method would be the preferred ones (see 

Figure 8). With respect to indirect effects, we find no evidence of differential ex-ante trends (see 

Figure 9). 

In sum, even if our data does not allow us to draw precise conclusions on the exact magnitude of 

the effects, all our results point to large but time-varying direct impacts and modest but time-

increasing indirect effects on exports. 

Two different factors could be driving these results. While the most straightforward one is that 

exporting firms could increase their level of exports because of the program, the cluster policy 

could also be an incentive for non-exporting firms to start exporting their products. In fact, our 

visual analysis in the previous section suggested that a higher proportion of exporting firms 

could be an important determinant of the change in average exports. To further explore this 

possibility, we analyze the effect of the program on the probability of exporting. The results can 

be seen in tables 16 and 17. Indeed, we find strongly significant increases in the likelihood of 

exporting of about 4 to 5 percentage points for direct beneficiaries. The ex-ante trends, which are 

different for both the full and matched samples, are equalized by reweighting procedure (see 

Table 19 and Figure 10). In this case, the effects are increasing over time, getting as high as 

seven percentage points (Table 18). As to indirect effects, the probability of exporting is 

increased for indirect beneficiaries by around one percent point, which is significant from a 

statistical point of view but modest from an economic perspective. Again, these effects become 

significant after the second year of the program and there is no evidence of differential ex-ante 

trends (Figure 11). 

Thus, we find that the increase in exports is driven not only by the change in the level of exports 

but also by a higher proportion of exporting firms. These results are in line with the idea that 

APL firms are expected to have more advantages to compete in international markets and more 

likely to engage in export activities than non-beneficiaries that operate in isolated areas due to 

knowledge, skills, new technology and network creation through clustering. As mentioned 

before, these externalities may improve productivity and it has been pointed out in the literature 

(see Bernard et al., 2003, and Bernard and Jensen, 2004) that high productivity leads a firm to 

export. Even thought the results suggest that firms located outside the cluster but in the same 

municipality may also benefit from the cluster and its agglomeration externalities, they need 

more time to assimilate such benefits. 
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VI. FINAL REMARKS 

In this paper, we present what is to our knowledge the first evaluation of the direct and spillover 

effects of a specific cluster policy in Latin America. Our first set of results on the Brazilian APL 

policy is positive and has interesting policy implications. 

First, we show that firm-level performance benefits from the cluster policy. We find positive 

direct average effects of the program on employment, level of exports and likelihood of 

exporting with an increasing pattern over time. These findings compare favorably with the 

results obtained for the industrial clusters in France (Martin et al., 2011a) where the policy had 

no robust effect on employment or exports, and are in line with the intuition that small firms 

benefit more and generate more agglomeration economies as pointed out by Henderson (2003), 

Rosenthal and Strange (2003, 2010) and Martin et al. (2011b). Second, we also find the presence 

of positive spillovers through geographical proximity on both export outcomes which gain 

relevance in the medium and long-term. Third, our dynamic analysis reinforces the importance 

of correctly accounting for the timing and considering gestation periods when assessing the 

impact of clusters policies to allow both the direct and indirect effects of such policies to 

materialize.  

This study is only the first step towards a better understanding of the impacts of cluster policies 

in developing countries. Further research is required to rationalize the impacts of clusters policies 

and to explore its mechanisms in depth. Many of the limitations of our study are related to data 

availability, and a lot of interesting insights on these issues could be obtained from a richer set of 

data. A more comprehensive approach would benefit from controlling for other characteristics of 

the firms, industries and regions.  

In the same direction, future extensions of this study could focus on the heterogeneity of impact 

for different types of firms and industries, and also how different kind of industries can interact 

to generate different types of externalities. Moreover, there are several mechanisms that create 

spillovers and therefore indirect beneficiaries. For example, indirect beneficiaries could also be 

defined as non-treated firms that hired workers that were working in a treated firm i.e. labor 

mobility is the channel for spillovers.
35

 Worker-level data would allow identifying indirect 

effects through this channel and for instance, to determine whether workers are moving inside 

the cluster from outside. Finally, it would be interesting to extend the analysis of spillover effects 

using geospatial data on firm location, which can help not only to use more precise definitions of 

clustering but also to explore how indirect effects vary with distance to the cluster. Only a 

significantly expanded set of information will allow these research extensions.  

                                                           
35

 See Maliranta et al. (2009). 
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Figure 1 – Spatial distribution of APLs in Minas Gerais 

 

                      Source: Instituto de Pesquisa Econômica Aplicada 

Figure 2 – Spatial distribution of APLs in São Paulo 

 

                       Source: Instituto de Pesquisa Econômica Aplicada 
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Table 1. Temporal composition of the sample 

            

   
Observations 

Year Observations % APL firms Indirect Beneficiaries Non-beneficiaries 

2002 61,665 10.63 455 29,937 31,273 

2003 71,354 12.30 499 34,643 36,212 

2004 74,425 12.83 508 35,014 38,903 

2005 75,468 13.01 515 33,061 41,892 

2006 73,433 12.66 494 29,912 43,027 

2007 75,133 12.95 505 28,853 45,775 

2008 76,967 13.27 511 28,060 48,396 

2009 71,638 12.35 496 26,614 44,528 

Total 580,083 100.00 3,983 246,094 330,006 

* The first column (APL firms) displays the observed number of firms in each year that will be eventually treated between 2004 

and 2009. The second column displays the observed number of firms in each year that will become indirect beneficiaries 

between 2004 and 2009. The third column represents the observed number of firms in each year that are non-beneficiaries for 

the whole period. 

 

Table 2. Number of firms by starting year in APLs or treated municipality 

      

Starting year  APL firms IB 

2004 396 29,621 

2005 66 3,827 

2006 14 387 

2007 3 430 

2008 9 97 

2009 60 6,206 

Total 548 40,568 

* “IB” is indirect beneficiaries. 

 

 

Table 3. Number of firms by industry                 

          

Industry APL firms IB NB Total 

Clothing 25 4,053 5,207 9,285 

Leather 285 1,562 956 2,803 

Non-metallic minerals 48 256 1,524 1,828 

Machinery & Equipment 19 4,028 5,364 9,411 

Electronics & Computer equipment 21 398 285 704 

Furniture 130 1,678 2,968 4,776 

Retail & Wholesale 20 28,593 53,181 81,794 

Total 548 40,568 69,485 110,601 

                       * “IB” is indirect beneficiaries and “NB” is non-beneficiaries. 
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Table 4. Number of firms by size                    

          

Firm Size APL firms IB NB Total 

Small 517 39,764 68,655 108,936 

Medium 31 804 830 1,665 

Total 548 40,568 69,485 110,601 

                                     * “IB” is indirect beneficiaries and “NB” is non-beneficiaries. 

 

Table 5. Evolution of average outcomes 

 
                  

  Direct Beneficiaries Indirect Beneficiaries Non-Beneficiaries 

Year / Outcome Em Le De Em Le De Em Le De 

2002 36.618 0.772 0.075 20.043 0.477 0.045 18.348 0.268 0.024 

2003 38.268 1.572 0.146 19.379 0.451 0.041 17.837 0.265 0.023 

2004 43.115 1.995 0.181 20.393 0.485 0.044 17.829 0.268 0.023 

2005 46.375 1.966 0.175 21.632 0.473 0.042 17.968 0.232 0.020 

2006 48.714 1.732 0.154 22.520 0.534 0.050 17.609 0.222 0.020 

2007 52.429 1.620 0.143 23.548 0.554 0.052 17.969 0.213 0.019 

2008 55.057 1.645 0.145 24.629 0.557 0.052 18.344 0.196 0.017 

2009 54.421 1.670 0.147 24.677 0.557 0.052 19.074 0.202 0.018 

* “Em” is employment, “Le” is log of exports and “De” is dexport. 

 

Table 6. Before-After comparisons 

 
                  

 
Direct Beneficiaries Indirect Beneficiaries Non-Beneficiaries 

  Em Le De Em Le De Em Le De 

Before 37.443 1.172 0.111 19.711 0.464 0.043 18.092 0.267 0.024 

After 50.018 1.771 0.157 22.900 0.527 0.049 18.132 0.222 0.019 

Difference 12.575 0.599 0.047 3.189 0.063 0.006 0.040 -0.045 -0.004 

* “Em” is employment, “Le” is log of exports and “De” is dexport. 

 

 

Table 7. Naïve diff-in-diff estimates 

 
      

  Employment Log(exports) Pr(export) 

Direct 12.54 0.64 0.05 

Indirect 3.15 0.11 0.01 
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Figure 3. Evolution of average employment 

 

Figure 4. Evolution of average log of exports

 
 

Figure 5. Evolution of average likelihood of exporting
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Impact on Employment 

 
Direct impact on employment 

 

 
Figure 6.  Mean employment for each group over time (DB vs. NB) 

              a- Full Sample                               b- Matched Sample                      c- Reweighted Sample 

 

 

 

 

Table 8 - Direct effect on employment 

  A - Full sample B - Matched sample C - Reweighted sample 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

C 9.6953*** 9.6123*** 9.4563*** 7.3737*** 6.7961*** 6.2989*** 9.2933*** 8.4325*** 8.9041*** 

 

(1.545) (1.540) (1.578) (1.806) (1.801) (2.057) (1.926) (1.782) (1.899) 

Constant 15.1206*** -14.8586*** -14.9929*** 35.9960*** 8.6899 8.1755 37.0556*** 1.6381 -4.3763 

 

(0.099) (1.531) (1.525) (1.152) (28.827) (31.368) (0.976) (27.409) (29.318) 

          
Observations 333,989 333,989 333,989 5,001 5,001 5,001 186,586 186,586 186,586 

R-squared 0.034 0.045 0.050 0.052 0.057 0.091 0.044 0.056 0.078 

Number of firms 70,033 70,033 70,033 694 694 694 29,951 29,951 29,951 

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Controls No Yes Yes No Yes Yes No Yes Yes 

Industry trends No No Yes No No Yes No No Yes 

Reweighting scheme No No No No No No Yes Yes Yes 

a) Fixed-effects estimates reported with Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.  

b) “C” is the treatment variable. 
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Indirect impact on employment  

 

Figure 7. Mean employment for each group over time (IB vs. NB) 

            a- Full Sample                                b- Matched Sample                        c- Reweighted Sample 

 

 

 

Table 9 - Indirect effect on employment 

  A - Full sample B - Matched sample C - Reweighted sample 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

C -0.3227*** -0.5050*** -0.5086*** -0.8934*** -1.0757*** -0.9645*** -0.6911*** -0.8490*** -0.8179*** 

 

(0.110) (0.110) (0.109) (0.169) (0.171) (0.169) (0.144) (0.146) (0.146) 

Constant 16.7326*** -14.2319*** -15.0885*** 21.4787*** -6.6594** -8.7506*** 21.3203*** -3.5949 -5.3704** 

 

(0.067) (1.226) (1.224) (0.078) (2.838) (2.840) (0.068) (2.329) (2.327) 

          
Observations 576,100 576,100 576,100 255,026 255,026 255,026 372,552 372,552 372,552 

R-squared 0.030 0.039 0.044 0.023 0.027 0.032 0.024 0.027 0.032 

Number of firms 110,053 110,053 110,053 38,659 38,659 38,659 57,702 57,702 57,702 

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Controls No Yes Yes No Yes Yes No Yes Yes 

Industry trends No No Yes No No Yes No No Yes 

Reweighting scheme No No No No No No Yes Yes Yes 

a) Fixed-effects estimates reported with Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.  

b) “C” is the treatment variable. 
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Table 10. Dynamics effects on employment 

     

    

  A- Full sample B - Matched sample C- Reweighted sample 

  Direct Indirect Direct  Indirect Direct  Indirect 

C1 5.6711*** -0.1593* 3.4767** -0.5364*** 6.1735*** -0.4961*** 

 

(0.886) (0.088) (1.581) (0.130) (1.361) (0.111) 

C2 7.4725*** -0.7357*** 5.2488** -1.1537*** 7.8666*** -0.9645*** 

 

(1.362) (0.124) (2.218) (0.193) (1.831) (0.157) 

C3 8.8454*** -0.8715*** 6.8189** -1.3250*** 8.4316*** -1.0536*** 

 

(1.864) (0.156) (2.674) (0.245) (2.220) (0.199) 

C4 11.3108*** -0.9400*** 8.9975*** -1.5260*** 10.3994*** -1.2131*** 

 

(2.378) (0.177) (3.122) (0.282) (2.864) (0.226) 

C5 14.1919*** -0.5926*** 12.3965*** -1.1975*** 13.2967*** -0.9294*** 

 

(2.924) (0.203) (3.902) (0.327) (3.616) (0.263) 

C6 16.7360*** -0.2154 15.2751*** -0.9164** 17.3583*** -0.5601* 

 

(3.530) (0.231) (4.663) (0.382) (4.479) (0.300) 

   

  

 

  

 
Constant -15.2314*** -15.3454*** 10.2686 -8.8231*** -2.3577 -5.3750** 

 

(1.519) (1.247) (31.516) (2.842) (29.287) (2.328) 

Observations 333,989 576,100 5,001 255,026 186,586 372,552 

R-squared 0.051 0.044 0.096 0.032 0.083 0.033 

Number of firms 70,033 110,053 694 38,659 29,951 57,702 

a) Fixed-effects estimates with controls and industry trends. 

 b) Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 

 c) “Ck” indicates if the firm received the program k years ago. 

 

Table 11. Pre-treatment trends equality test on employment 

     

    

  A- Full sample B - Matched sample C- Reweighted sample 

  Direct Indirect Direct  Indirect Direct  Indirect 

Cs_2003 4.3367*** 0.0724 0.7947 -0.0901 -0.1244 -0.0065 

 

(0.684) (0.078) (1.538) (0.117) (1.324) (0.091) 

   

  

 

  

 
Constant -35.8139*** -40.0245*** -22.6056 -46.6899*** -2.2046 -40.2645*** 

 

(3.406) (2.371) (41.683) (3.097) (26.882) (2.673) 

Observations 68,439 132,065 1,388 77,318 59,902 115,404 

R-squared 0.025 0.027 0.079 0.030 0.083 0.025 

Number of firms 38,488 74,363 694 38,659 29,951 57,702 

a) Fixed-effects estimates with controls and industry trends. 

b) Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 

c) “Cs_year” is the interaction between the treatment variable and the respective pre-treatment year. 
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Impact on level of exports 

Direct impact on log of exports  

Figure 8.  Mean log of exports for each group over time (DB vs. NB) 

               a- Full Sample                              b- Matched Sample                        c- Reweighted Sample 

 

 

 

          

 
Table 12 - Direct effect on log of exports 

  A - Full sample B - Matched sample C - Reweighted sample 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

C 0.5790*** 0.5787*** 0.5104*** 0.4781*** 0.4543*** 0.3983*** 0.6485*** 0.6180*** 0.5935*** 

 

(0.118) (0.118) (0.118) (0.141) (0.141) (0.141) (0.160) (0.156) (0.154) 

Constant 0.1858*** 0.0444 0.0468 0.6203*** 3.3350* 3.4565** 0.8109*** 0.3169 0.1221 

 

(0.006) (0.060) (0.060) (0.103) (1.707) (1.741) (0.107) (2.297) (2.166) 

          
Observations 333,989 333,989 333,989 4,955 4,955 4,955 186,586 186,586 186,586 

R-squared 0.003 0.003 0.008 0.035 0.038 0.067 0.042 0.044 0.066 

Number of firms 70,033 70,033 70,033 697 697 697 29,951 29,951 29,951 

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Controls No Yes Yes No Yes Yes No Yes Yes 

Industry trends No No Yes No No Yes No No Yes 

Reweighting scheme No No No No No No Yes Yes Yes 

a) Fixed-effects estimates reported with Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.  

b) “C” is the treatment variable. 
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Indirect impact on log of exports 

Figure 9. Mean log of exports for each group over time (IB vs. NB) 

             a- Full Sample                                b- Matched Sample                       c- Reweighted Sample 

 

 

 
Table 13 - Indirect effect on log of exports 

  A - Full sample B - Matched sample C - Reweighted sample 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

C 0.0234*** 0.0226*** 0.0215*** 0.0158 0.0136 0.0246* 0.0437*** 0.0424*** 0.0446*** 

 

(0.008) (0.008) (0.008) (0.013) (0.013) (0.013) (0.011) (0.011) (0.011) 

Constant 0.2843*** 0.1983*** 0.1577** 0.5079*** 0.4160** 0.3178* 0.4923*** 0.3837*** 0.2895** 

 

(0.005) (0.062) (0.061) (0.007) (0.185) (0.184) (0.006) (0.143) (0.143) 

          
Observations 576,100 576,100 576,100 237,224 237,224 237,224 372,552 372,552 372,552 

R-squared 0.002 0.002 0.005 0.002 0.002 0.005 0.002 0.002 0.004 

Number of firms 110,053 110,053 110,053 35,834 35,834 35,834 57,702 57,702 57,702 

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Controls No Yes Yes No Yes Yes No Yes Yes 

Industry trends No No Yes No No Yes No No Yes 

Reweighting scheme No No No No No No Yes Yes Yes 

a) Fixed-effects estimates reported with Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.  

b) “C” is the treatment variable. 
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Table 14. Dynamics effects on log of exports   

     

    

  A- Full sample B - Matched sample C- Reweighted sample 

  Direct Indirect Direct  Indirect Direct  Indirect 

C1 0.6238*** -0.0003 0.5149*** 0.0040 0.4805*** 0.0096 

 

(0.113) (0.007) (0.140) (0.012) (0.160) (0.010) 

C2 0.6385*** -0.0123 0.4440** -0.0044 0.5810*** 0.0085 

 

(0.145) (0.010) (0.192) (0.017) (0.217) (0.014) 

C3 0.4004*** 0.0472*** 0.2382 0.0475** 0.5064** 0.0697*** 

 

(0.152) (0.012) (0.218) (0.020) (0.219) (0.016) 

C4 0.4097*** 0.0615*** 0.3091 0.0814*** 0.8180*** 0.0959*** 

 

(0.157) (0.013) (0.197) (0.022) (0.242) (0.017) 

C5 0.3882** 0.0705*** 0.2694 0.0957*** 0.6946*** 0.1012*** 

 

(0.159) (0.014) (0.205) (0.024) (0.235) (0.018) 

C6 0.4156** 0.0778*** 0.3454 0.1051*** 0.7561*** 0.1074*** 

 

(0.171) (0.015) (0.236) (0.027) (0.261) (0.019) 

   

  

 

  

 
Constant 0.0514 0.1102* 3.4168* 0.3386* 0.1750 0.2833** 

 

(0.060) (0.062) (1.742) (0.185) (2.143) (0.143) 

Observations 333,989 576,100 4,955 237,224 186,586 372,552 

R-squared 0.009 0.005 0.068 0.006 0.067 0.005 

Number of firms 70,033 110,053 697 35,834 29,951 57,702 

a) Fixed-effects estimates with controls and industry trends. 

 b) Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 

c) “Ck” indicates if the firm received the program k years ago. 

 

 

Table 15. Pre-treatment trends equality test on log of exports       

     

    

  A- Full sample B - Matched sample C- Reweighted sample 

  Direct Indirect Direct  Indirect Direct  Indirect 

Cs_2003 0.7865*** -0.0039 0.4841** 0.0155 -0.0018 -0.0055 

 

(0.152) (0.011) (0.207) (0.018) (0.280) (0.012) 

   

  

 

  

 
Constant 0.0668 -0.0271 12.8835** 0.0333 3.9742 -0.0112 

 

(0.292) (0.238) (5.793) (0.367) (9.294) (0.273) 

Observations 68,439 132,065 1,394 71,668 59,902 115,404 

R-squared 0.015 0.001 0.100 0.001 0.103 0.001 

Number of firms 38,488 74,363 697 35,834 29,951 57,702 

a) Fixed-effects estimates with controls and industry trends. 

b) Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 

c) “Cs_year” is the interaction between the treatment variable and the respective pre-treatment year. 
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Impact on the likelihood of exporting 

Direct impact on dexport 

 

Figure 10. Mean dexport for each group over time (DB vs. NB) 

 
              a- Full Sample                                b- Matched Sample                        c- Reweighted Sample 

 

 

 

 

 
Table 16 - Direct effect on the likelihood of exporting 

  A - Full sample B - Matched sample C - Reweighted sample 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

C 0.0454*** 0.0454*** 0.0388*** 0.0490*** 0.0491*** 0.0414*** 0.0581*** 0.0559*** 0.0536*** 

 

(0.011) (0.011) (0.011) (0.014) (0.013) (0.014) (0.015) (0.014) (0.014) 

Constant 0.0171*** -0.0012 -0.0004 0.0731*** 0.3194* 0.2984* 0.0792*** 0.0275 0.0100 

 

(0.001) (0.006) (0.006) (0.009) (0.165) (0.172) (0.009) (0.178) (0.176) 

          
Observations 333,989 333,989 333,989 4,994 4,994 4,994 186,586 186,586 186,586 

R-squared 0.002 0.002 0.006 0.027 0.030 0.049 0.036 0.037 0.053 

Number of firms 70,033 70,033 70,033 690 690 690 29,951 29,951 29,951 

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Controls No Yes Yes No Yes Yes No Yes Yes 

Industry trends No No Yes No No Yes No No Yes 

Reweighting scheme No No No No No No Yes Yes Yes 

a) Fixed-effects estimates reported with Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.  

b) “C” is the treatment variable. 
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Indirect impact on dexport  

Figure 11. Mean dexport for each group over time (IB vs. NB) 

            a- Full Sample                                b- Matched Sample                          c- Reweighted Sample 

 

 

 
Table 17 - Indirect effect on the likelihood of exporting 

  A - Full sample B - Matched sample C - Reweighted sample 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

C 0.0026*** 0.0025*** 0.0023*** 0.0032** 0.0031** 0.0037*** 0.0062*** 0.0062*** 0.0061*** 

 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Constant 0.0264*** 0.0133** 0.0106* 0.0473*** 0.0269 0.0220 0.0464*** 0.0195 0.0155 

 

(0.001) (0.006) (0.006) (0.001) (0.018) (0.018) (0.001) (0.014) (0.014) 

          
Observations 576,100 576,100 576,100 237,582 237,582 237,582 372,552 372,552 372,552 

R-squared 0.002 0.002 0.004 0.002 0.002 0.004 0.001 0.001 0.003 

Number of firms 110,053 110,053 110,053 35,888 35,888 35,888 57,702 57,702 57,702 

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Controls No Yes Yes No Yes Yes No Yes Yes 

Industry trends No No Yes No No Yes No No Yes 

Reweighting scheme No No No No No No Yes Yes Yes 

a) Fixed-effects estimates reported with Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.  

b) “C” is the treatment variable. 
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Table 18. Dynamics effects on likelihood of exporting 

     

    

  A- Full sample B - Matched sample C- Reweighted sample 

  Direct Indirect Direct  Indirect Direct  Indirect 

C1 0.0516*** -0.0001 0.0443*** 0.0011 0.0446*** 0.0021* 

 

(0.011) (0.001) (0.013) (0.001) (0.015) (0.001) 

C2 0.0516*** -0.0017* 0.0450** 0.0005 0.0559*** 0.0019 

 

(0.014) (0.001) (0.018) (0.002) (0.021) (0.001) 

C3 0.0280** 0.0057*** 0.0352* 0.0074*** 0.0470** 0.0094*** 

 

(0.014) (0.001) (0.021) (0.002) (0.021) (0.002) 

C4 0.0272* 0.0068*** 0.0413** 0.0099*** 0.0675*** 0.0119*** 

 

(0.014) (0.001) (0.020) (0.002) (0.021) (0.002) 

C5 0.0255* 0.0077*** 0.0345* 0.0110*** 0.0605*** 0.0125*** 

 

(0.015) (0.001) (0.020) (0.002) (0.021) (0.002) 

C6 0.0286* 0.0086*** 0.0461* 0.0124*** 0.0669*** 0.0135*** 

 

(0.016) (0.001) (0.024) (0.003) (0.023) (0.002) 

   

  

 

  

 
Constant 0.0001 0.0054 0.2975* 0.0241 0.0134 0.0148 

 

(0.006) (0.006) (0.172) (0.018) (0.174) (0.014) 

Observations 333,989 576,100 4,994 237,582 186,586 372,552 

R-squared 0.006 0.004 0.049 0.005 0.053 0.004 

Number of firms 70,033 110,053 690 35,888 29,951 57,702 

a) Fixed-effects estimates with controls and industry trends 

 b) Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 

c) “Ck” indicates if the firm received the program k years ago. 

 

 

Table 19. Pre-treatment trends equality test on likelihood of exporting 

     

    

  A- Full sample B - Matched sample C- Reweighted sample 

  Direct Indirect Direct  Indirect Direct  Indirect 

Cs_2003 0.0709*** -0.0007 0.0374* 0.0007 -0.0001 -0.0005 

 

(0.015) (0.001) (0.020) (0.002) (0.025) (0.001) 

   

  

 

  

 
Constant 0.0039 -0.0111 1.1862** -0.0119 0.6272 -0.0114 

 

(0.029) (0.024) (0.586) (0.037) (0.701) (0.028) 

Observations 68,439 132,065 1,380 71,776 59,902 115,404 

R-squared 0.012 0.001 0.090 0.001 0.090 0.001 

Number of firms 38,488 74,363 690 35,888 29,951 57,702 

a) Fixed-effects estimates with controls and industry trends. 

b) Cluster-robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 

c) “Cs_year” is the interaction between the treatment variable and the respective pre-treatment year. 
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Appendix I. Example of outputs of the reweighting scheme. Direct impact on employment  

 

Figure A. Kernel density of propensity score before and after reweighting 

 
 

Figure B. Standardized difference between Treated and Control group 
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