
Portland State University Portland State University

PDXScholar PDXScholar

Engineering and Technology Management
Faculty Publications and Presentations Engineering and Technology Management

8-1-2015

Multiple Objective Evolution Strategies Using Data Multiple Objective Evolution Strategies Using Data

Envelopment Analysis Envelopment Analysis

James V. Lill
Department of Defense Supercomputing Resource Center

Timothy R. Anderson
Portland State University, tim.anderson@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/etm_fac

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Lill, J. V., & Anderson, T. (2015, August). Multiple objective Evolution Strategies using Data Envelopment
Analysis. In Management of Engineering and Technology (PICMET), 2015 Portland International
Conference on (pp. 1969-1977). IEEE.

This Article is brought to you for free and open access. It has been accepted for inclusion in Engineering and
Technology Management Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/etm_fac
https://pdxscholar.library.pdx.edu/etm_fac
https://pdxscholar.library.pdx.edu/etm
https://pdxscholar.library.pdx.edu/etm_fac?utm_source=pdxscholar.library.pdx.edu%2Fetm_fac%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=pdxscholar.library.pdx.edu%2Fetm_fac%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/etm_fac/73
mailto:pdxscholar@pdx.edu

Multiple Objective Evolution Strategies Using Data Envelopment Analysis

James V. Lill1, Timothy Anderson2
1Engility Corporation, Air Force Research Laboratory / Department of Defense Supercomputing Resource Center,

Wright-Patterson Air Force Base, Ohio, USA
2Portland State University, Department of Engineering and Technology Management, Portland, Oregon, USA

Abstract--Often in science and engineering we are faced with

complicated nonlinear problems in optimization that involve
simultaneously minimizing or maximizing various non-
commensurate quantities. For example, a basic task in design
engineering or technology management is to balance suitable
measures of performance against the cost. We present a
simplified approach for performing multiple objective
optimization by combining standard single objective Evolution
Strategies with Data Envelopment Analysis. This latter method
employs linear programming to compute an L1 distance of a
given solution from the Pareto frontier defined by the evolving
population of solutions, or from a related frontier defined by
DEA. This quantity is then used in a fitness function. Real
variable linear programs must be solved for the optimization of
convex problems, while the solution of mixed integer linear
programs is required to optimize general non-convex problems.
This hybrid method yields highly converged results with good
coverage of the Pareto frontier when applied to a standardized
suite of multiple objective problems. Several current
applications will be discussed that employ a massively parallel
program (MOES) written in C and MPI that runs on
supercomputers. This material was assigned a clearance of
CLEARED, Case Number 88ABW-2015-0638.

I. INTRODUCTION

Often in science and engineering we are faced with
complicated nonlinear problems in optimization that involve
simultaneously minimizing or maximizing various non-
commensurate quantities. For example, in design engineering
one typically seeks to minimize the cost but maximize several
measures of performance; in aircraft design these could
include the maximum speed, range, altitude and payload, as
well as the rates of climb, turn and roll. In practice one is
given a set of physical parameters that characterize each
competing design – e.g., the total weight, the thrust of the
engine, the length and thickness of the fuselage, and the
dihedral and sweepback angles of the wings, etc. Then one
solves a series of complicated nonlinear problems to
determine each objective – i.e., the cost and the performance
measures. This process is repeated for each competing
design. The difficulty then becomes: How do we judge the
“goodness” of a particular design against the others when we
must compare multiple objectives that have different physical
dimensions – e.g., weight, length, velocity, etc.? Furthermore,
how do we use these comparisons to alter the physical
parameters of the designs and obtain better solutions?

One standard approach would be to develop some
arbitrary weights that relate deviations of a given design’s
performance measures from their desired goals: for example,
one could say that a deviation of 100 knots from the desired

maximum speed was worth a deviation of 1000 meters from
the desired maximum altitude, etc. A numerical score could
then be assigned to each design as a single objective to be
minimized. There are many standard algorithms available for
single objective optimization – e.g., simulated annealing [12]
and various evolutionary algorithms [3][5] – and these could
then be used to adjust the physical parameters of the
competing designs in order to evolve the “best” solution as
judged by this single objective. However the effects of
imposing such arbitrary constraints on the design process
through the introduction of arbitrary weights to compose a
single objective – and in particular, the limitations this may
impose on the final design itself – are in general unknown.

An alternative is to use a multiple objective approach in
which the deviations of all the non-commensurate quantities
from their desired goals are minimized, or in which each
attribute of a design is minimized (cost) or maximized
(performance) without a specific goal. The difficulty now
becomes how to balance the values of each objective of a
given design with the corresponding objectives of the
competing designs when trying to identify an optimal
solution, and then manipulate the physical parameters of the
designs to obtain a better solution. There are many proposed
methods for multiple objective optimization [10][24] [25][26]
but they are not as well-developed as are the algorithms for
single objective optimization.

A resolution of this difficulty is provided by Data
Envelopment Analysis (DEA) [9][1]. This is a specialized
application of linear programming [8] that can be used to
assign an unambiguous numerical score (the DEA efficiency)
to each candidate solution to a multiple objective
optimization problem. Furthermore, this efficiency can then
be used as a fitness function in a single objective evolutionary
algorithm to solve the original multiple objective optimization
problem. In particular, we have combined DEA with a very
powerful and flexible evolutionary algorithm for parametric
optimization, Evolution Strategies (ES) [3]. The resulting
multiple objective optimization method yields significant
algorithmic simplifications and is quite general.

This brief report provides a qualitative discussion of the
combination of DEA with ES for the non-specialist. In
Section 2 we discuss the idea of Pareto dominance and its
relation to DEA. In Section 3 we describe ES and its
combination with DEA, as well as the concept of a training

set. Next in Section 4 we outline our implementation of the
combination of DEA with ES in the program MOES:
Multiple Objective Evolution Strategies. MOES is written in
standard C/C++ and parallelization is performed using the

1969

2015 Proceedings of PICMET '15: Management of the Technology Age

standard Message Passing Interface (MPI). Finally in Section
5 we present a numerical example of the application of
MOES to a standardized test problem and demonstrate the
importance of convex assumptions. Mathematical details of
the algorithm along with numerical comparisons of MOES to
other algorithms on a standardized suite of multiple objective
optimization problems [25][26] are presented elsewhere [16].
Also, additional details can be found in an application of
MOES to a difficult problem in computational chemistry that
has just been accepted for publication [14].

The first use of DEA in an evolutionary algorithm for
multiple objective optimization appears to have been by
Arakawa et al. [2] in 1998. Since then Yun, Nakayama,
Arakawa and colleagues have continued this research
[21][22][23]. (See also [17] and references therein.) A
common thread in this work has been use of a generalized
DEA (GDEA) model. This method includes an additional
adjustable parameter that in a sense allows GDEA to
interpolate between several basic DEA models [23]: the
Charnes-Cooper-Rhodes (CCR), Banker-Charnes-Cooper
(BCC) and the Free Disposal Hull (FDH) models [9]. MOES
employs these basic DEA models and we will offer a few
comments on this difference in approach later.

MOES began as a student project in the Engineering and
Technology Management Department at Portland State
University [15]. Its development continued under the
Department of Defense High Performance Computing
Modernization Program (http://www.hpc.mil/index.php) as
part of the User Productivity, Enhancement, Technology
Transfer and Training (PETTT) initiative
(http://www.hpc.mil/index.php/2013-08-29-16-03-
23/software-application-sas-overview/user-productivity-
enhancement-technology-transfer-and-training). MOES is
currently being used at the Army Research Laboratory (ARL)
at Aberdeen Proving Grounds in Aberdeen, MD, and at the
Air Force Research Laboratory (AFRL) at Wright-Patterson
Air Force Base in Dayton, OH.

II. DEA AND THE PARETO FRONTIER

Comparing solutions to a single objective optimization

problem is easy: In the case of minimization, one simply
orders the solutions according to their objectives and picks
the solution having the lowest objective. When more than one
objective is involved, the situation would appear to require
some arbitrary weights be introduced to form an appropriate
sum to be minimized. An alternative is provided by the
theory of Pareto dominance [16]. There are several ways to
formulate the idea of Pareto dominance; we find it convenient
to cast our definitions in the context solving of a multiple
objective optimization problem. In this case one is presented
with a population of solutions to the problem each
characterized by a set of objectives. How do we rank these
solutions without introducing arbitrary weights?

A solution to a multiple objective minimization problem
is called Pareto dominant if each of its objectives is less than
or equal to the corresponding objectives of every other
solutions in the population, and furthermore there exists at
least one objective that is strictly less than the corresponding
objective(s) of every other solution. We can similarly define
Pareto dominant solutions for multiple objective optimization
problems involving maximization, as well as for problems
that include some objectives that must be maximized and ad
other objectives that must be minimized.

In principal one can determine the set of all Pareto
dominant solutions in a population – the Pareto frontier –
through exhaustive comparisons [24], for example, but is
there an easier and more systematic algorithm that can scale
to higher dimensions? The answer is yes, and that algorithm –
or, rather, set of algorithms – is DEA [9][1].

DEA is a specialized application of linear programming,
that is, the algebraic solution of a set of equations that takes
the following canonical form [8]:

  1 1 2 2 3 3

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

1 1 2 2 3 3

1 2 3

max

, , , 0

N N

N N

N N

N N

M M M MN N M

N

c x c x c x c x

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

x x x x

  
   
   
   
   



















 (1.1)

The problem consists of finding the N variables  :1nx n N  such that the linear expressions with the

coefficients  :1nc n N  is maximized while the M
constraints characterized by the coefficients  :1 :1mna m M n N    and  :1mb m M 
constants are satisfied. On average the time required to solve
such a problem scales as N M , but one can encounter
pathological cases where the time required for solution is
exponential in the dimensions [8] or even when the algorithm
can cycle endlessly in rare pathological examples. When
applying DEA to problems in multiple objective optimization
using evolutionary algorithms, the number of rows (M) is
approximately equal to the number of objectives, and the
number of columns (N) is approximately equal to the number
of solutions in the evolving population. Generally N M฀ .
Details are provided elsewhere [16].

A numerically more challenging linear program includes
the additional restriction that the variables be integers:

1970

2015 Proceedings of PICMET '15: Management of the Technology Age

 1 1 2 2 3 3

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

1 1 2 2 3 3

1 2 3

1 2 3

max

, , , 0
, , , integers

N N

N N

N N

N N

M M M MN N M

N

N

c x c x c x c x

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

x x x x

x x x x

  
   
   
   
   






















 (1.2)

It turns out that solving integer linear programs requires

generally requires orders of magnitude more computation
than solving linear programs with only continuous variables.
Although it is not immediately obvious, the problem of
determining the Pareto frontier in a population of solutions to
a multiple objective optimization problem can be cast in such
a numerical form [8]. The actual linear programs involved are
only slightly more complicated than the above examples and
we will not go into any details here – a rigorous mathematical
discussion is given elsewhere [16] – but we can provide a
qualitative discussion of what the DEA algorithm does by
citing a simple two-dimensional example.

Imagine randomly sticking pins into a cork bulletin board
within a region where x- and y-axes have been drawn. Each
pin represents the solution of a two-objective minimization
problem. The DEA algorithm can be envisioned as stretching
a string around the perimeter of the lower left-hand portion of
the collections of pins. The string then traces out the Pareto
frontier and the pins it actually touches are the “best”
solutions the population that minimize the x- and y-values
simultaneously. Qualitatively, this is the “envelopment” in
Data Envelopment Analysis. Several comments are now in
order.

First, this method of ranking the solutions is relative.
DEA cannot determine the best solution that is possible, it
can only identify the best possible solutions within the
population at a given time. If we have an evolving
populations of solutions we would expect that from
generation to generation the pins in the bulletin board would
move to the lower left to minimize x and y, and DEA can be
used within each generation to determine a relative ranking of
the solutions based on Pareto Dominance.

Secondly, DEA not only identifies the solutions on the
Pareto frontier, it assigns a numerical value to each solution
that is based on a certain L1 distance from the frontier. The
details are unimportant here, but this so-called DEA
efficiency (solutions on the frontier are typically assigned
unit efficiency) can then serve as a fitness function when we
are solving a multiple objective optimization problem using
an Evolutionary algorithm.

Thirdly, the regions on the frontier on our bulletin board
between the pins, where our string has been stretched from

pin to pin, includes an assumption of “convexity” which is
built into several DEA models. Convexity indicates convex
combinations of each “pin” are possible but as yet unrealized.
Convexity is assumed in the Charnes-Cooper Rhodes (CCR)
and Banks-Charnes-Cooper (BCC) models [9], but in general
complex nonlinear multiple objective optimization problems
are not convex [25][26]. There exists a more general
formulation of DEA that does not assume convexity, the so-
called “Free Disposal Hull (FDH). This is numerically
unfortunate because the CCR and BCC models can be
formulated using real linear programs whereas the FDH
demands that we solve mixed integer linear programs.

The GDEA of Yun and colleagues [23] interpolates
between the CCR, BCC, and FDH through the addition of an
extra parameter. We have not seen the GDEA used with an
evolutionary algorithm to solve explicitly non-convex test
problems in multiple objective optimization [25][26].
However when we use the BCC model to evaluate the fitness
of such problems we do not recover the entire Pareto frontier;
the algorithm only converges to the convex hull of the true
Pareto frontier. When using the FDH model to compute
fitness, we can converge to the true Pareto frontier and
achieve results consistent with another application –
specifically, the Strength Pareto Evolutionary Algorithm
(SPEA) of Zitzler [24] – that computes fitness using a
completely different method. The absence of any assumptions
of convexity in the FDH model thus appears crucial for
MOES to converge to the true Pareto frontier and to compare
our results with those of other Pareto-based methods when
the problem is not convex.

By default we therefore employ the FDH models in
MOES to evolve solutions to arbitrary problems in multiple
objective optimization. We have found that when addressing
complicated problems even solving the mixed integer linear
programs associated with the FDH models is typically much
faster than evaluating the training set. One more technical
detail is that DEA demands that there be both input variables
to be minimized and output variables to be maximized;
otherwise the linear programs are ill-posed. The typical
problem we have addressed involves minimizing a set of
RMS (root mean square) errors. In this case we perform DEA
using the input-oriented FDH model [9] with the RMS errors
as inputs and a single additional “dummy” output variable
that is held constant. Under these conditions we can compare
the Pareto frontiers we obtain directly with those in the
evolutionary literature.

III. EVOLUTIONARY ALGORITHMS AND

EVOLUTION STRATEGIES

The category of “Evolutionary Algorithms” includes a
very wide variety of mathematical methods inspired, to one
degree or another, by biology. However they all include at
least two aspects of Darwinian evolution: descent with

modification and natural selection. We must first prepare an
initial population of solutions to our problem. (When using

1971

2015 Proceedings of PICMET '15: Management of the Technology Age

MOES, each solution is represented by a set of real and/or
integer parameters.) We must then produce a new generation
of solutions while introducing a degree of randomness in the
process, the descent with modification. (In MOES this
randomness can be due to either a random mutation of the
parameters of a single solution, or a random mixing – or
“crossover” – of parameters from multiple solutions.) We
must then evaluate the fitness of the solutions in the
population, including the possibility that solutions can die off
with old age. (In MOES the fitness is an explicitly relative
measure of the population at a specific time as evaluated
using DEA.) We must then perform natural selection and
eliminate bad solutions while retaining good solutions. (In
MOES this can be accomplished using a strictly deterministic
ordering of the solutions according to their DEA fitness and
killing off a specified number of the lowest scoring
parameters sets; or we can introduce a degree of randomness
in selection as well and choose individuals at random and
compare their fitness in a tournament to decide who survives
and who dies.) We then iterate this process until some kind of
termination criterion is reached, for example, until a
maximum number of generations have been evolved.

MOES employs an additional termination criterion that
we have found to be very effective in reducing the overall
number of generations that need to be evolved in order to
obtain a given degree of convergence. Typically,
convergence of Evolutionary Algorithms begins rapidly and
then slows down drastically – it is said to “plateau”. Many
generations can evolve after the plateau has been reached
with little further improvement to the best solutions. We keep
a list of the best Nelite solutions obtained so far in the
evolution – the so-called “elite” solutions – and keep running
averages of each objective of these elite solutions over the
past, say, 50 generations. When the changes in the averages
for each objective drop below a specified tolerance we
consider the convergence to be stalled and the evolution is
terminated. Finally, such evolutions can be repeated many
times with different initial conditions and the final results
averaged.

While Evolutionary Algorithms have become part of the
standard repertoire of applied mathematics and have now
been employed in a wide number of disciplines [3][5] it is
still true to say that implementations to solve problems in
multiple objective optimization [10][24] [25] [26] are less
developed than are the algorithms for single objective
optimization. The use of DEA in multiple objective
optimization gives us the freedom to choose whichever single
objective algorithm we feel is most appropriate and apply it
directly to our particular multiple objective problem. Since
we are primarily interested in parameter optimization we
have chosen a particular Evolutionary Algorithm called
“Evolution Strategies” [3]. However, it must be emphasized
that if you have a multiple objective problem where some
other form of Evolutionary Algorithm is more appropriate,
DEA can still be used to compute fitness. Which
Evolutionary Algorithm you choose is largely dictated by the

form of the desired solution. For example, if the solution to
your problem is more easily represented by a computer code
than by a parameter set, then the use of Genetic Programming
[13] would be indicated. However DEA could still be used to
compute the fitness of individual computer codes as judged
by some multiple objective criteria within an alternative
Evolutionary Algorithm.

ES is a particularly flexible and powerful method for
parameter optimization in part because it is self-adaptive; that
is to say, the algorithm changes the manner in which it
searches through parameter space as the evolution proceeds
[3]. This is accomplished by adding additional parameters to
the problem. ES includes one additional strategy parameter
for every physical parameter that describes the actual
problem being solved. These strategy parameters are standard
deviations that describe the sizes of the (Gaussian) random
mutations of the corresponding physical variables that are
currently allowed. Furthermore, the strategy parameters
themselves evolve along with the physical parameters. The
standard deviations are themselves subject to log-normal
mutations so the subsequent mutations of the physical
parameters remains Gaussian. At first this sounds crazy: How
can doubling the size of the parameter space help? It turns out
that in most cases this is a very good idea because the
strategy parameters can help guide the algorithm through
parameter space to find optima more efficiently.

For converged evolutions, the typical observed behavior
of the strategy parameters is that they are initialized at some
small value; in the early stages of the evolution they grow as
the algorithm examines more and more of parameter space
using larger mutations; then in the latter stages of the
evolution the strategy parameters decrease rapidly as the
evolving population becomes concentrated upon some
minimum in parameter space. If you are familiar with
simulated annealing [12] one way to look at a “mutation-
only” ES algorithm is that is like simulated annealing only
each parameter has its own temperature and follows its own
annealing schedule. However ES is in fact much more
general and flexible because of the many possible mutation
and crossover (mixing) operations that are possible in
addition to the fact that each parameter is treated
independently.

For convergence to occur in ES these standard deviations
must ulitmately be driven towards zero. This is because if the
population is indeed concentrated at some minimum, then
any small mutation of the parameters will cause the solution
to try to climb out of that minimum and yield a worse fitness.
Evolution will then drive the standard deviations towards
zero. This is a great numerical advantage of the algorithm
because we can monitor the standard deviations of all the
physical paramters and determine with confidence if
convergence is actually occurring.

A representative example of the convergence of an ES
evolution is shown in Figure 1. This is taken from a
publication that applied MOES to fit a subset of the
parameters for a reactive force field (ReaxFF) describing

1972

2015 Proceedings of PICMET '15: Management of the Technology Age

energetic materials at the atomic and molecular level [14].
These classical approximations are useful in large scale
molecular dynamics simulations of material properties,
including crystal structure. This is a very complicated
problem having more than 500 ReaxFF parameters total; we
choose to modify approximately 50 of these parameters
dealing with the long range contributions of the
intermolecular forces with the goal of describing the structure
of the molecular crystals of RDX more accurately. In fact this
graph represents the average of the standard deviations of this
subset of ReaxFF parameters as a function of the generation
of the evolution. (In thse calculations we optimized 5
objectives – charges, geometric variables, heats of formation,
bond energies, and non-bonded dimer energies – evolving
sets of 46 real parameters that contrl the long-range portion of
the ReaxFF potential.) In order to be certain of convergence
we must examine the evolutions of each individual standard
deviation, but their average is useful as a quick and dirty
indication of convergence. We can rationalize the behavior of
the average standard deviation in this graph by saying that the
standard deviations start at some very small pre-assigned
values and then grow as the evolutionary algorithm explores
more and more of parameter space. When the algorithm
settles upon some minimum the standard deviations decrease
rapidly – because any mutation then tends to increase the
error – indicating convergence. The evolution in fact
resulting in a substantial improvement of the density of RDX
as computed using ReaxFF [14].

Figure 1: Trajectory for the averaged standard deviation during an evolution

of ReaxFF parameters

ES has been demonstrated to be a powerful and flexible

algorithm and had been applied to a wide variety of
problems. We have incorporated nearly all the features of ES
as discussed by Bäck in his comprehensive treatment [3]. We
have also included features to allow for finite lifetimes of
solutions [4]. Typical implementations of ES allow for
optimization of problems described by only real parameters
but we have also included extensions to integer parameters
[18]. In this case the strategy variables corresponding to the

integer parameters are mutation probabilitites rather than
standard deviations; these control the likelihood of an integer
parameter making a discrete jump to another value.

The notation (,,) has been adopted to describe
evolutions using ES [3][4]. Here  is the number of parents, 
is the number of children, and  is the maximum lifetime in
generations. As a rule of thumb we try to keep the number of
children  four or five times the number of parents , and the
total size of the evolving population  at least an order of
magnitude larger than the number of parameters that
characterize the solutions to be optimzied. Thus for a probem
of 50 parameters we would want to have an evolving
population of at least  and approximately 
and , however this is only a rough guide.

Before using MOES to optimize a particular problem one
must first construct the “training set”. This is a code that can
be called from a C function and accepts a set of mutated
parameters. The training set then performs a series of
calculations and computes all the quantities that are relevant
to the “goodness” of the parameter set. For example, if the
parameters characterize some model calculation that must be
compared against experimental results the training set would
compute a series of errors between the predictions of the
emodel and the corresponding experimental results. All the
errors having the same physical units could then be
combined, for example, as RMS errors, and these would then
be returned to MOES as the objectives to be minimized. If we
carry through with the biological analogy, MOES only knows
about the genotype and the training set only knows about the
phenotype. The interface between the MOES and the training
set is typically a C function of at most a few hundred lines.

Finally, to avoid any possible confusion, we say we are
evolving solutions to complex nonliear problems in
parameter optimization because the training set typically
involves evaluating complicated nonlinear functions of the
parameters. However we are employing a technique from
linear programming (DEA) to assign the fitness of the
solutions – i.e., the parameter sets – by comparing their
objectives. So the calculations we are performing are
nonlinear in parameter space and linear in objective space.

IV. MOES: MULTIPLE OBJECTIVE EVOLUTION
STRATEGIES

MOES is a large body of massively parallel C/C++/MPI

code we have written to optimize parameters that govern
complex nonlinear models. Ideally, if you have a model
governed by up to about 100 parameters and can provide a
serial code that computes all the errors you wish to minimize,
we can incorporate it into our process by writing a single C
function as an interface. This interface takes a set of mutated
parameters from our evolutionary algorithm, passes them to
your code (i.e., the “training set”), and then returns all the
errors or “objectives” that are to be minimized by the
evolutionary algorithm. The “evaluation of the training set”

1973

2015 Proceedings of PICMET '15: Management of the Technology Age

must include all the calculations involving the model that you
wish to compare with known results in order to judge the
accuracy of the model. The minimum requirements for our
algorithm to get started are the training set, the interface
function, and a set of strict [a,b] bounds for each parameter.

We employ a master-slave paradigm, in which the
evolution is performed on the master processor, and all the
objectives are computed on the slave processors; each slave
processor gets one set of mutated parameters at a time,
computes the objectives for that particular parameter set, and
then moves on to the next task. Parallelization is performed
using MPI thus assuring compatibility modern massively
parallel machines running Linux.

Our implementation of the master-slave approach uses the
“bag of tasks” technique [19] in which each processor
announces when it is available to compute the objectives for
the next available set of mutated parameters within a simple
“for” loop; load balancing is accomplished automatically.
Since there are typically many more sets of parameters in the
evolving population than available processors, on each pass
through the loop the slave processors are queried to
determine who among them has finished evaluating his last
set of objectives and are therefore available to receive the
next set of mutated parameters in the queue. Typically the
communication overhead associated with querying the slave
processors, sending the parameter sets and receiving the

objectives can be completely masked by the computational
load of evaluating the training sets.

In practice we have found that while evolving large
populations (e.g., thousands of parameter sets) we can obtain
good scaling on HPC systems when the “evaluation of the
training set” takes several minutes on a single processor. The
only time we have encountered difficulties with this approach
occurred in the evolution of reactive force fields [14] when
certain “pathological” parameter sets caused the time
required to evaluate the training set to increase by several
orders of magnitude. This would destroy load balancing and
in such cases the calculation of the objectives were
terminated early and bad fitness values were assigned to the
troublesome parameter sets; the evolution then continued
normally. A simplified representation of MOES and the
master-slave paradigm is shown in Figure 2.

In practice DEA is also performed in parallel, although for
simplicity this is not indicated in the figure. Since DEA
requires that we solve one linear program for each parameter
set in the evolving population to evaluate its fitness, and since
each such linear program is independent of the others, the
calculation labeled “Compute Fitness” in Figure 2 is also
“naturally parallel” – see [6] and references therein for other
parallel DEA implementations – and the individual linear
programs for distinct parameter sets are assigned to different
processors.

Figure 2: Schematic outline of the MOES program; in the actual code the DEA calculation is also parallelized

1974

2015 Proceedings of PICMET '15: Management of the Technology Age

The code we use to solve the real and mixed integer linear
programs in DEA is the freely available serial program
lpsolve 5.5 [7]. We have found this program to be stable; it is
well-maintained and has an active user group, and the
documentation for the programming interface is excellent.
We wrote C code to compute the possible basic DEA models
(the input- and output-oriented CCR, BCC, and FDH models)
by initializing the corresponding linear programs and then
solving them in parallel using separate instantiations of
lpsolve on each processor. We therefore had to make no
alterations to the lpsolve source code; after experimentation
we hardwired most of the numerical switches controlling the
options we used in lpsolve. The raw data from MOES
(principally the objectives computed in the training set) must
first be scaled so that the entries in the tableau constructed in
lpsolve are all of the same magnitude. We have found a
logarithmic scaling to be most effective. In our experience the
time required to perform DEA and evaluate the fitness of the
evolving population has been trivial compared to the time
required to evaluate the objectives of each solution, but this
will depend on the particular problem being solved and on the
number of calculations performed in the training set.

Typically millions of linear programs must be solved
during an evolution and there is no guarantee that a solution
exists for each. Even with logarithmic scaling of the
objectives we monitor the return code provided by lpsolve
and check to see if a solution was actually found. In those
rare cases where lpsolve fails to converge within a specified
time limit – well under 1% of the calculations in our
experience – we assign bad fitness values to the solutions
whose objectives caused lpsolve to fail, and the evolution
continues.

In 1997 Barr and Durchholz [6] presented an alternative
DEA scheme (PIONEER) designed to solve large
envelopment models whose tableaux have many columns.
The improvements include both serial and parallel
components. The principal improvement involves the early
identification of inefficient solutions followed by the use of
“restricted basis entry” to reduce the size of the subsequent
linear programs to be solved. Once a solution has been
identified as inefficient – that is, it is seen to be dominated in
the Pareto sense by another solution – it can be eliminated
from the tableau for subsequent calculations. Thus as the
calculations proceed the linear programs that must be solved
become smaller. In their parallel implementation each
processor (solving independent linear programs) must be
given the “current” list of inefficient solutions, and this list
changes as more independent linear programs are solved.
They relied on shared memory (on the machine they used in
1997) to communicate the (changing) list of inefficient
solutions to each processor while the (independent) linear
programs were solved on local memory. Recent trends in
high performance computing have emphasized increasing the
core count per CPU and moving to distributed memory
architectures [20]. While the algorithm in PIONEER could be
implemented on distributed memory systems using MPI, the

fundamental loop in the bag-of-tasks paradigm would now
have to include MPI broadcasts of the current list of
inefficient solutions to all the processors. The efficiency of
the resulting algorithm would be strongly machine-dependent
as well as problem-dependent. Finally PIONEER would also
have to be generalized to include the FDH model.

The use of the early identification of inefficient solutions
and restricted basis entry were studied again in 2006 by Dulá
who solved large envelopment models with 10,000 to
100,000 columns [11]. The sophisticated commercial LP
solver CPLEX was used within a serial formulation of the
DEA problem. Additionally Dulá considered the effects of
using “hot starts”. Like restricted basis entry, this involves
modifications of the tableaux for the solution of subsequent
linear programs based on the results obtained when solving
earlier linear programs in the DEA protocol. Substantial
speedups were observed with the combination of “hot starts”
and restricted basis entry, and the savings in time became
dramatic as the numbers of columns in the tableaux were
increased. Again, a parallel implementation on a distributed
memory machine would require the broadcast of all the
information required to perform the “hot starts” to all the
processors. Additionally the methods of Barr and Durchholz
and of Dulá would have to be generalized to include the FDH
model. However as we look at larger and larger problems we
may have to revisit issues involving the efficiency of
performing DEA to compute fitness within MOES. Whether
the increase in communication and algorithmic complexity
can be offset by the speedups in computing fitness within
MOES will depend upon the problem, the size of the
evolving population and the computer architecture.

V. NUMERICAL EXAMPLE

We have applied MOES to a series of standardized
multiple objective test problems [25][26]; details will be
presented elsewhere [16]. Here we want to emphasize the
effects of assumptions concerning convexity and how this
relates to the choice of DEA models. We have chosen
problem “T2”, a non-convex problem, and followed the
general protocol used in [26]: we performed a series of 30
evolutions, each of 250 generations, with an evolving
population of 100, keeping 20 solutions in the external “elite”
set. The evolution strategy used was    , , 20,5,80    .
The results of the SPEA of Zitzler and Thiel are shown in
Figure 3.

The SPEA was demonstrated to perform better than
number of competing algorithms for multiple objective
optimization [25][26]. If we (mistakenly) assume the Pareto
frontier to be convex and apply MOES using the BCC model
we get the results in Figure 4. Note that coverage of the
frontier is very poor.

1975

2015 Proceedings of PICMET '15: Management of the Technology Age

Figure 3: SPEA results for a non-convex test problem

Figure 4: MOES results using the BCC model for a non-convex test problem

If we apply MOES using the FDH model we get the
results in Figure 5. Using MOES with the FDH model is seen
to yield results comparable to those obtained with the SPEA,
even though the algorithms used to compute fitness are very
different. Results for additional test problems and more
details are presented elsewhere [16].

In general we do not know a priori whether the Pareto
frontier for an arbitrary problem will be convex or not, in
which case the FDH model should be employed. Otherwise it
is clear that poor results can be obtained, especially in terms
of the coverage of the Pareto frontier. Practically this means
that solutions that might offer a particularly desirable balance
between minimizing (and/or maximizing) the various
objectives will not be obtained. To date we have encountered
no difficulties in using the FDH model because the evaluation
of the training set has completely dominated the calculations

[14]. Furthermore, no failures of lpsolve were encountered in
any of the BCC or FDH computations. We are nonetheless
considering possibly more efficient alternatives. [16]

Figure 5: MOES results using the FDH model for a non-convex test problem

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the Department
of Defense High Performance Computing Modernization
Program and the PETTT initiative. We also gratefully
acknowledge the support of Dr. Betsy Rice’s MSRM (Multi-
Scale Reactive Modeling) Software Institute at ARL/WMRD
(Army Research Laboratory / Weapons and Materials
Research Directorate). Dr. James Lill (Engility Corporation)
is the principal author of MOES but over the years he has
received substantial assistance from Dr. Shawn Brown (of the
Pittsburgh Supercomputing Center), Dr. Anthony Yau (who
is now working for another government agency), as well as
Dr. James Larentzos and Dr. Ross Smith (both of Engility
Corporation and the PETTT initiative).

REFERENCES

[1] Anderson, Timothy, A Data Envelopment Analysis (DEA) Home Page

http://www.emp.pdx.edu/dea/homedea.html [Accessed 03/26/2015]
[2] Arakawa, Masao, H. Nakayama, I. Hagiwara and H. Yamakawa,

"Multiple Objective Optimization Using Adaptive Range Genetic
Algorithms with Data Envelopment Analysis", Multidisciplinary
Analysis and Optimization 3, 2074-2082, 1998.

[3] Bäck, Thomas, Evolutionary Algorithms in Theory and Practice:

Evolution Strategies, Evolutionary Programming, Genetic Algorithms;
Oxford University Press, New York, 1996.

[4] Bäck, Thomas, and H-P. Schwefel, Evol. Comput., 1993, 1, 1-23.
[5] Bäck, Thomas, D.B. Fogel and Z. Michalewicz (Editors), Evolutionary

Computation 1: Basic Algorithms and Operators and Evolutionary

Computation 2: Advanced Algorithms and Operations; Institute of
Physics Publishing, Philadelphia, 2000.

[6] Barr, Richard S., and M. L. Durchholz, “Parallel and hierarchical
decomposition approaches for solving large-scale Data Envelopment
Analysis models”, Annals of Operations Research 73, 339-372, 1997.

1976

2015 Proceedings of PICMET '15: Management of the Technology Age

[7] Berkelaar, Michel, K. Eikland, and P. Notebaert, lpsolve5.5, Open

source (Mixed-Integer) Linear Programming system 2014.
http://sourceforge.net/projects/lpsolve/ [Accessed 03/26/2015]

[8] Chvátal, Václav, Linear Programming; W.H. Freeman and Company:
New York, 1983.

[9] Cooper, W.W., L.M. Seiford, and K. Tone, Data Envelopment

Analysis: A Comprehensive Text with Models, Applications, References

and DEA-Solver Software (Second Edition), Kluwer: Boston, 2000.
[10] Deb, Kalyanmoy, Multi-Objective Optimization using Evolutionary

Algorithms; Wiley: New York, 2001.
[11] Dulá, J. H., “A computational study of DEA with massive data sets”,

Computers & Operations Research 35 (4), 1191-1203, 2006.
[12] Kirkpatrick, Scott, C.D.Gelatt, M.P. Vecchi, Science, 1983, 220, 671-

680.
[13] Koza, John, Genetic Programming: On the Programming of Computers

by Means of Natural Selection (Complex Adaptive Systems), MIT Press,
Cambridge (1992).

[14] Larantzos, J.P., B.M. Rice, E.F.C. Byrd, N.S. Weingarten and J.V. Lill,
“Parameterizing complex reactive force fields using Multiple Objective
Evolutionary Strategies (MOES): Part 1, ReaxFF models for
cyclotrimethylene trinitramine (RDX) and 1,1-diamino-2,2-
dinitroethene (FOX-7)” (manuscript to appear in The Journal of

Chemical Theory and Computation).
[15] Lill, James, “On the Incorporation of Data Envelopment Analysis in

Evolutionary Algorithms for Multiple Objective Optimization”, MS
project submitted to the Department of Engineering and Technology
Management, Portland State University, Portland, Oregon, 2001.

[16] Lill, James, T. Anderson, et al. (manuscript in preparation).
[17] Nakayama, Hirotaka, Y. Yun, M. Yoon, Sequential Approximate

Multiobjective Optimization Using Computational Intelligence (Vector

Optimization), Springer-Verlag, Berlin, 2009.
[18] Schwefel, Hans-Paul, and G. Rudolph, “Contemporary Evoluation

Strategies”, In Advances in Artificial Life: Third European Conference

on Artificial Life, Granada, Spain, June 4-6, 1995 Proceedings; Morán,
F., Moreno, A., Merelo, J.J., Chacón, P., Eds.; Lecture Notes in
Computer Science 929; Springer: Berlin, 1995; pp 891-907.

[19] da Silva, F.A.B., H. Senger, Parallel Comput. 35, 57-71, 2009.
[20] http://www.top500.org/statistics/overtime/ Interested readers can

visit the “TOP500” website and make a plot of “Architecture – Systems
Share” for themselves: choose “Architecture” under “Category” and
“Systems share” under “Type”. The entries labeled “Cluster” and
“MPP” (Massively Parallel Processors) represent distributed memory
architectures. The entries labeled “Single Processor” and “SMP”
(Symmetric Multi-Processing) and “SIMD” (Same Instruction Multiple
Data, e.g. vector machines) all represent shared memory architectures.
The entries labeled “Constellations” represent a kind of hybrid
architecture in which the “compute nodes” are composed of shared
memory multiprocessors; computations involve shared memory within
nodes and message passing between nodes. [Accessed 03/26/2015]

[21] Yun, Yeboon, H. Nakayama, T. Tanino, M. Arakawa: “Generation of
efficient frontiers in multi-objective optimization problems by
generalized data envelopment analysis”, European Journal of
Operational Research 129(3), 586-595, 2001.

[22] Yun, Yeboon, M. Arakawa, H. Nakayama: “Fitness evaluation using
generalized data envelopment analysis in MOGA”, in IEEE Congress
on Evolutionary Computation , 464-471, 2004.

[23] Yun, Yeboon, H. Nakayama and T. Tanino, "A generalized model for
data envelopment analysis", European Journal of Operational Research
157, 87-105, 2004.

[24] Zitzler, Eckart, Evolutionary Algorithms for Multiobjective

Optimization: Methods and Applications. Ph.D. Dissertation, Swiss
Federal Institute of Technology (ETH), Zurich, November 1999.
http://www.tik.ee.ethz.ch/sop/publications/

[25] Zitzler, Eckart, K. Deb, and L. Thiele, “Comparison of Multiobjective
Evolutionary Algorithms on Test Functions of Different Difficulty.” In
Proceedings of the GECCO-1999 Genetic and Evolutionary

Computation Conference, Orlando, 1999; Banzhaf, W., Daida, J.,
Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E., Eds.;
Morgan Kaufmann, 1999.

[26] Zitzler, Eckart, K. Deb, and L. Thiele, “Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results”, Evol. Comput., 2000, 8,
173-195.

1977

2015 Proceedings of PICMET '15: Management of the Technology Age

	Multiple Objective Evolution Strategies Using Data Envelopment Analysis
	Let us know how access to this document benefits you.
	Citation Details

	Multiple Objective Evolution Strategies Using Data Envelopment Analysis

