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2Portland State University, Department of Engineering and Technology Management, Portland, Oregon, USA 

 
Abstract--Often in science and engineering we are faced with 

complicated nonlinear problems in optimization that involve 
simultaneously minimizing or maximizing various non-
commensurate quantities. For example, a basic task in design 
engineering or technology management is to balance suitable 
measures of performance against the cost. We present a 
simplified approach for performing multiple objective 
optimization by combining standard single objective Evolution 
Strategies with Data Envelopment Analysis. This latter method 
employs linear programming to compute an L1 distance of a 
given solution from the Pareto frontier defined by the evolving 
population of solutions, or from a related frontier defined by 
DEA. This quantity is then used in a fitness function. Real 
variable linear programs must be solved for the optimization of 
convex problems, while the solution of mixed integer linear 
programs is required to optimize general non-convex problems. 
This hybrid method yields highly converged results with good 
coverage of the Pareto frontier when applied to a standardized 
suite of multiple objective problems. Several current 
applications will be discussed that employ a massively parallel 
program (MOES) written in C and MPI that runs on 
supercomputers.  This material was assigned a clearance of 
CLEARED, Case Number 88ABW-2015-0638.  
 

I. INTRODUCTION 
 

Often in science and engineering we are faced with 
complicated nonlinear problems in optimization that involve 
simultaneously minimizing or maximizing various non-
commensurate quantities. For example, in design engineering 
one typically seeks to minimize the cost but maximize several 
measures of performance; in aircraft design these could 
include the maximum speed, range, altitude and payload, as 
well as the rates of climb, turn and roll. In practice one is 
given a set of physical parameters that characterize each 
competing design – e.g., the total weight, the thrust of the 
engine, the length and thickness of the fuselage, and the 
dihedral and sweepback angles of the wings, etc. Then one 
solves a series of complicated nonlinear problems to 
determine each objective – i.e., the cost and the performance 
measures. This process is repeated for each competing 
design. The difficulty then becomes: How do we judge the 
“goodness” of a particular design against the others when we 
must compare multiple objectives that have different physical 
dimensions – e.g., weight, length, velocity, etc.? Furthermore, 
how do we use these comparisons to alter the physical 
parameters of the designs and obtain better solutions? 

One standard approach would be to develop some 
arbitrary weights that relate deviations of a given design’s 
performance measures from their desired goals: for example, 
one could say that a deviation of 100 knots from the desired 

maximum speed was worth a deviation of 1000 meters from 
the desired maximum altitude, etc. A numerical score could 
then be assigned to each design as a single objective to be 
minimized. There are many standard algorithms available for 
single objective optimization – e.g., simulated annealing [12] 
and various evolutionary algorithms [3][5] – and these could 
then be used to adjust the physical parameters of the 
competing designs in order to evolve the “best” solution as 
judged by this single objective. However the effects of 
imposing such arbitrary constraints on the design process 
through the introduction of arbitrary weights to compose a 
single objective – and in particular, the limitations this may 
impose on the final design itself – are in general unknown.  

An alternative is to use a multiple objective approach in 
which the deviations of all the non-commensurate quantities 
from their desired goals are minimized, or in which each 
attribute of a design is minimized (cost) or maximized 
(performance) without a specific goal. The difficulty now 
becomes how to balance the values of each objective of a 
given design with the corresponding objectives of the 
competing designs when trying to identify an optimal 
solution, and then manipulate the physical parameters of the 
designs to obtain a better solution. There are many proposed 
methods for multiple objective optimization [10][24] [25][26] 
but they are not as well-developed as are the algorithms for 
single objective optimization.  

A resolution of this difficulty is provided by Data 
Envelopment Analysis (DEA) [9][1]. This is a specialized 
application of linear programming [8] that can be used to 
assign an unambiguous numerical score (the DEA efficiency) 
to each candidate solution to a multiple objective 
optimization problem. Furthermore, this efficiency can then 
be used as a fitness function in a single objective evolutionary 
algorithm to solve the original multiple objective optimization 
problem. In particular, we have combined DEA with a very 
powerful and flexible evolutionary algorithm for parametric 
optimization, Evolution Strategies (ES) [3]. The resulting 
multiple objective optimization method yields significant 
algorithmic simplifications and is quite general.  

This brief report provides a qualitative discussion of the 
combination of DEA with ES for the non-specialist. In 
Section 2 we discuss the idea of Pareto dominance and its 
relation to DEA. In Section 3 we describe ES and its 
combination with DEA, as well as the concept of a training 

set. Next in Section 4 we outline our implementation of the 
combination of DEA with ES in the program MOES: 
Multiple Objective Evolution Strategies. MOES is written in 
standard C/C++ and parallelization is performed using the 

1969

2015 Proceedings of PICMET '15: Management of the Technology Age



standard Message Passing Interface (MPI). Finally in Section 
5 we present a numerical example of the application of 
MOES to a standardized test problem and demonstrate the 
importance of convex assumptions. Mathematical details of 
the algorithm along with numerical comparisons of MOES to 
other algorithms on a standardized suite of multiple objective 
optimization problems [25][26] are presented elsewhere [16]. 
Also, additional details can be found in an application of 
MOES to a difficult problem in computational chemistry that 
has just been accepted for publication [14].  

The first use of DEA in an evolutionary algorithm for 
multiple objective optimization appears to have been by 
Arakawa et al. [2] in 1998. Since then Yun, Nakayama, 
Arakawa and colleagues have continued this research 
[21][22][23]. (See also [17] and references therein.) A 
common thread in this work has been use of a generalized 
DEA (GDEA) model. This method includes an additional 
adjustable parameter that in a sense allows GDEA to 
interpolate between several basic DEA models [23]: the 
Charnes-Cooper-Rhodes (CCR), Banker-Charnes-Cooper 
(BCC) and the Free Disposal Hull (FDH) models [9]. MOES 
employs these basic DEA models and we will offer a few 
comments on this difference in approach later.  

MOES began as a student project in the Engineering and 
Technology Management Department at Portland State 
University [15]. Its development continued under the 
Department of Defense High Performance Computing 
Modernization Program (http://www.hpc.mil/index.php) as 
part of the User Productivity, Enhancement, Technology 
Transfer and Training (PETTT) initiative 
(http://www.hpc.mil/index.php/2013-08-29-16-03-
23/software-application-sas-overview/user-productivity-
enhancement-technology-transfer-and-training). MOES is 
currently being used at the Army Research Laboratory (ARL) 
at Aberdeen Proving Grounds in Aberdeen, MD, and at the 
Air Force Research Laboratory (AFRL) at Wright-Patterson 
Air Force Base in Dayton, OH.  

 
II. DEA AND THE PARETO FRONTIER 

 
Comparing solutions to a single objective optimization 

problem is easy: In the case of minimization, one simply 
orders the solutions according to their objectives and picks 
the solution having the lowest objective. When more than one 
objective is involved, the situation would appear to require 
some arbitrary weights be introduced to form an appropriate 
sum to be minimized. An alternative is provided by the 
theory of Pareto dominance [16]. There are several ways to 
formulate the idea of Pareto dominance; we find it convenient 
to cast our definitions in the context solving of a multiple 
objective optimization problem. In this case one is presented 
with a population of solutions to the problem each 
characterized by a set of objectives. How do we rank these 
solutions without introducing arbitrary weights?  

A solution to a multiple objective minimization problem 
is called Pareto dominant if each of its objectives is less than 
or equal to the corresponding objectives of every other 
solutions in the population, and furthermore there exists at 
least one objective that is strictly less than the corresponding 
objective(s) of every other solution. We can similarly define 
Pareto dominant solutions for multiple objective optimization 
problems involving maximization, as well as for problems 
that include some objectives that must be maximized and ad 
other objectives that must be minimized.  

In principal one can determine the set of all Pareto 
dominant solutions in a population – the Pareto frontier – 
through exhaustive comparisons [24], for example, but is 
there an easier and more systematic algorithm that can scale 
to higher dimensions? The answer is yes, and that algorithm – 
or, rather, set of algorithms – is DEA [9][1].  

DEA is a specialized application of linear programming, 
that is, the algebraic solution of a set of equations that takes 
the following canonical form [8]:  

  1 1 2 2 3 3

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

1 1 2 2 3 3

1 2 3

max

, , , 0

N N

N N

N N

N N

M M M MN N M

N

c x c x c x c x

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

x x x x

  
   
   
   
   



















  (1.1) 

 
The problem consists of finding the N variables  :1nx n N   such that the linear expressions with the 

coefficients  :1nc n N   is maximized while the M 
constraints characterized by the coefficients  :1 :1mna m M n N     and  :1mb m M   
constants are satisfied. On average the time required to solve 
such a problem scales as N M , but one can encounter 
pathological cases where the time required for solution is 
exponential in the dimensions [8] or even when the algorithm 
can cycle endlessly in rare pathological examples. When 
applying DEA to problems in multiple objective optimization 
using evolutionary algorithms, the number of rows (M) is 
approximately equal to the number of objectives, and the 
number of columns (N) is approximately equal to the number 
of solutions in the evolving population. Generally N M฀ . 
Details are provided elsewhere [16].  

A numerically more challenging linear program includes 
the additional restriction that the variables be integers: 
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 1 1 2 2 3 3

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

1 1 2 2 3 3

1 2 3

1 2 3

max

, , , 0
, , ,  integers

N N

N N

N N

N N

M M M MN N M

N

N

c x c x c x c x

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

x x x x

x x x x

  
   
   
   
   






















   (1.2) 

 
It turns out that solving integer linear programs requires 

generally requires orders of magnitude more computation 
than solving linear programs with only continuous variables. 
Although it is not immediately obvious, the problem of 
determining the Pareto frontier in a population of solutions to 
a multiple objective optimization problem can be cast in such 
a numerical form [8]. The actual linear programs involved are 
only slightly more complicated than the above examples and 
we will not go into any details here – a rigorous mathematical 
discussion is given elsewhere [16] – but we can provide a 
qualitative discussion of what the DEA algorithm does by 
citing a simple two-dimensional example.  

Imagine randomly sticking pins into a cork bulletin board 
within a region where x- and y-axes have been drawn. Each 
pin represents the solution of a two-objective minimization 
problem. The DEA algorithm can be envisioned as stretching 
a string around the perimeter of the lower left-hand portion of 
the collections of pins. The string then traces out the Pareto 
frontier and the pins it actually touches are the “best” 
solutions the population that minimize the x- and y-values 
simultaneously. Qualitatively, this is the “envelopment” in 
Data Envelopment Analysis. Several comments are now in 
order.  

First, this method of ranking the solutions is relative. 
DEA cannot determine the best solution that is possible, it 
can only identify the best possible solutions within the 
population at a given time. If we have an evolving 
populations of solutions we would expect that from 
generation to generation the pins in the bulletin board would 
move to the lower left to minimize x and y, and DEA can be 
used within each generation to determine a relative ranking of 
the solutions based on Pareto Dominance.  

Secondly, DEA not only identifies the solutions on the 
Pareto frontier, it assigns a numerical value to each solution 
that is based on a certain L1 distance from the frontier. The 
details are unimportant here, but this so-called DEA 
efficiency (solutions on the frontier are typically assigned 
unit efficiency) can then serve as a fitness function when we 
are solving a multiple objective optimization problem using 
an Evolutionary algorithm.  

Thirdly, the regions on the frontier on our bulletin board 
between the pins, where our string has been stretched from 

pin to pin, includes an assumption of “convexity” which is 
built into several DEA models. Convexity indicates convex 
combinations of each “pin” are possible but as yet unrealized. 
Convexity is assumed in the Charnes-Cooper Rhodes (CCR) 
and Banks-Charnes-Cooper (BCC) models [9], but in general 
complex nonlinear multiple objective optimization problems 
are not convex [25][26]. There exists a more general 
formulation of DEA that does not assume convexity, the so-
called “Free Disposal Hull (FDH). This is numerically 
unfortunate because the CCR and BCC models can be 
formulated using real linear programs whereas the FDH 
demands that we solve mixed integer linear programs.  

The GDEA of Yun and colleagues [23] interpolates 
between the CCR, BCC, and FDH through the addition of an 
extra parameter. We have not seen the GDEA used with an 
evolutionary algorithm to solve explicitly non-convex test 
problems in multiple objective optimization [25][26]. 
However when we use the BCC model to evaluate the fitness 
of such problems we do not recover the entire Pareto frontier; 
the algorithm only converges to the convex hull of the true 
Pareto frontier. When using the FDH model to compute 
fitness, we can converge to the true Pareto frontier and 
achieve results consistent with another application – 
specifically, the Strength Pareto Evolutionary Algorithm 
(SPEA) of Zitzler [24] – that computes fitness using a 
completely different method. The absence of any assumptions 
of convexity in the FDH model thus appears crucial for 
MOES to converge to the true Pareto frontier and to compare 
our results with those of other Pareto-based methods when 
the problem is not convex.  

By default we therefore employ the FDH models in 
MOES to evolve solutions to arbitrary problems in multiple 
objective optimization. We have found that when addressing 
complicated problems even solving the mixed integer linear 
programs associated with the FDH models is typically much 
faster than evaluating the training set. One more technical 
detail is that DEA demands that there be both input variables 
to be minimized and output variables to be maximized; 
otherwise the linear programs are ill-posed. The typical 
problem we have addressed involves minimizing a set of 
RMS (root mean square) errors. In this case we perform DEA 
using the input-oriented FDH model [9] with the RMS errors 
as inputs and a single additional “dummy” output variable 
that is held constant. Under these conditions we can compare 
the Pareto frontiers we obtain directly with those in the 
evolutionary literature.  

 
III. EVOLUTIONARY ALGORITHMS AND 

EVOLUTION STRATEGIES 
 

The category of “Evolutionary Algorithms” includes a 
very wide variety of mathematical methods inspired, to one 
degree or another, by biology. However they all include at 
least two aspects of Darwinian evolution: descent with 

modification and natural selection. We must first prepare an 
initial population of solutions to our problem. (When using 

1971

2015 Proceedings of PICMET '15: Management of the Technology Age



MOES, each solution is represented by a set of real and/or 
integer parameters.) We must then produce a new generation 
of solutions while introducing a degree of randomness in the 
process, the descent with modification. (In MOES this 
randomness can be due to either a random mutation of the 
parameters of a single solution, or a random mixing – or 
“crossover” – of parameters from multiple solutions.) We 
must then evaluate the fitness of the solutions in the 
population, including the possibility that solutions can die off 
with old age. (In MOES the fitness is an explicitly relative 
measure of the population at a specific time as evaluated 
using DEA.) We must then perform natural selection and 
eliminate bad solutions while retaining good solutions. (In 
MOES this can be accomplished using a strictly deterministic 
ordering of the solutions according to their DEA fitness and 
killing off a specified number of the lowest scoring 
parameters sets; or we can introduce a degree of randomness 
in selection as well and choose individuals at random and 
compare their fitness in a tournament to decide who survives 
and who dies.) We then iterate this process until some kind of 
termination criterion is reached, for example, until a 
maximum number of generations have been evolved.  

MOES employs an additional termination criterion that 
we have found to be very effective in reducing the overall 
number of generations that need to be evolved in order to 
obtain a given degree of convergence. Typically, 
convergence of Evolutionary Algorithms begins rapidly and 
then slows down drastically – it is said to “plateau”. Many 
generations can evolve after the plateau has been reached 
with little further improvement to the best solutions. We keep 
a list of the best Nelite solutions obtained so far in the 
evolution – the so-called “elite” solutions – and keep running 
averages of each objective of these elite solutions over the 
past, say, 50 generations. When the changes in the averages 
for each objective drop below a specified tolerance we 
consider the convergence to be stalled and the evolution is 
terminated. Finally, such evolutions can be repeated many 
times with different initial conditions and the final results 
averaged.  

While Evolutionary Algorithms have become part of the 
standard repertoire of applied mathematics and have now 
been employed in a wide number of disciplines [3][5] it is 
still true to say that implementations to solve problems in 
multiple objective optimization [10][24] [25] [26]  are less 
developed than are the algorithms for single objective 
optimization. The use of DEA in multiple objective 
optimization gives us the freedom to choose whichever single 
objective algorithm we feel is most appropriate and apply it 
directly to our particular multiple objective problem. Since 
we are primarily interested in parameter optimization we 
have chosen a particular Evolutionary Algorithm called 
“Evolution Strategies” [3]. However, it must be emphasized 
that if you have a multiple objective problem where some 
other form of Evolutionary Algorithm is more appropriate, 
DEA can still be used to compute fitness. Which 
Evolutionary Algorithm you choose is largely dictated by the 

form of the desired solution. For example, if the solution to 
your problem is more easily represented by a computer code 
than by a parameter set, then the use of Genetic Programming 
[13] would be indicated. However DEA could still be used to 
compute the fitness of individual computer codes as judged 
by some multiple objective criteria within an alternative 
Evolutionary Algorithm.  

ES is a particularly flexible and powerful method for 
parameter optimization in part because it is self-adaptive; that 
is to say, the algorithm changes the manner in which it 
searches through parameter space as the evolution proceeds 
[3]. This is accomplished by adding additional parameters to 
the problem. ES includes one additional strategy parameter 
for every physical parameter that describes the actual 
problem being solved. These strategy parameters are standard 
deviations that describe the sizes of the (Gaussian) random 
mutations of the corresponding physical variables that are 
currently allowed. Furthermore, the strategy parameters 
themselves evolve along with the physical parameters. The 
standard deviations are themselves subject to log-normal 
mutations so the subsequent mutations of the physical 
parameters remains Gaussian. At first this sounds crazy: How 
can doubling the size of the parameter space help? It turns out 
that in most cases this is a very good idea because the 
strategy parameters can help guide the algorithm through 
parameter space to find optima more efficiently.  

For converged evolutions, the typical observed behavior 
of the strategy parameters is that they are initialized at some 
small value; in the early stages of the evolution they grow as 
the algorithm examines more and more of parameter space 
using larger mutations; then in the latter stages of the 
evolution the strategy parameters decrease rapidly as the 
evolving population becomes concentrated upon some 
minimum in parameter space. If you are familiar with 
simulated annealing [12] one way to look at a “mutation-
only” ES algorithm is that is like simulated annealing only 
each parameter has its own temperature and follows its own 
annealing schedule. However ES is in fact much more 
general and flexible because of the many possible mutation 
and crossover (mixing) operations that are possible in 
addition to the fact that each parameter is treated 
independently.  

For convergence to occur in ES these standard deviations 
must ulitmately be driven towards zero. This is because if the 
population is indeed concentrated at some minimum, then 
any small mutation of the parameters will cause the solution 
to try to climb out of that minimum and yield a worse fitness. 
Evolution will then drive the standard deviations towards 
zero. This is a great numerical advantage of the algorithm 
because we can monitor the standard deviations of all the 
physical paramters and determine with confidence if 
convergence is actually occurring.  

A representative example of the convergence of an ES 
evolution is shown in Figure 1. This is taken from a 
publication that applied MOES to fit a subset of the 
parameters for a reactive force field (ReaxFF) describing 
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energetic materials at the atomic and molecular level [14]. 
These classical approximations are useful in large scale 
molecular dynamics simulations of material properties, 
including crystal structure. This is a very complicated 
problem having more than 500 ReaxFF parameters total; we 
choose to modify approximately 50 of these parameters 
dealing with the long range contributions of the 
intermolecular forces with the goal of describing the structure 
of the molecular crystals of RDX more accurately. In fact this 
graph represents the average of the standard deviations of this 
subset of ReaxFF parameters as a function of the generation 
of the evolution. (In thse calculations we optimized 5 
objectives – charges, geometric variables, heats of formation, 
bond energies, and non-bonded dimer energies – evolving 
sets of 46 real parameters that contrl the long-range portion of 
the ReaxFF potential.) In order to be certain of convergence 
we must examine the evolutions of each individual standard 
deviation, but their average is useful as a quick and dirty 
indication of convergence. We can rationalize the behavior of 
the average standard deviation in this graph by saying that the 
standard deviations start at some very small pre-assigned 
values and then grow as the evolutionary algorithm explores 
more and more of parameter space. When the algorithm 
settles upon some minimum the standard deviations decrease 
rapidly – because any mutation then tends to increase the 
error – indicating convergence. The evolution in fact 
resulting in a substantial improvement of the density of RDX 
as computed using ReaxFF [14].  

 
Figure 1: Trajectory for the averaged standard deviation during an evolution 

of ReaxFF parameters 
 
ES has been demonstrated to be a powerful and flexible 

algorithm and had been applied to a wide variety of 
problems. We have incorporated nearly all the features of ES 
as discussed by Bäck in his comprehensive treatment [3]. We 
have also included features to allow for finite lifetimes of 
solutions [4]. Typical implementations of ES allow for 
optimization of problems described by only real parameters 
but we have also included extensions to integer parameters 
[18]. In this case the strategy variables corresponding to the 

integer parameters are mutation probabilitites rather than 
standard deviations; these control the likelihood of an integer 
parameter making a discrete jump to another value.  

The notation (,,) has been adopted to describe 
evolutions using ES [3][4]. Here  is the number of parents,  
is the number of children, and  is the maximum lifetime in 
generations. As a rule of thumb we try to keep the number of 
children  four or five times the number of parents , and the 
total size of the evolving population  at least an order of 
magnitude larger than the number of parameters that 
characterize the solutions to be optimzied. Thus for a probem 
of 50 parameters we would want to have an evolving 
population of at least  and approximately  
and , however this is only a rough guide.  

Before using MOES to optimize a particular problem one 
must first construct the “training set”. This is a code that can 
be called from a C function and accepts a set of mutated 
parameters. The training set then performs a series of 
calculations and computes all the quantities that are relevant 
to the “goodness” of the parameter set. For example, if the 
parameters characterize some model calculation that must be 
compared against experimental results the training set would 
compute a series of errors between the predictions of the 
emodel and the corresponding experimental results. All the 
errors having the same physical units could then be 
combined, for example, as RMS errors, and these would then 
be returned to MOES as the objectives to be minimized. If we 
carry through with the biological analogy, MOES only knows 
about the genotype and the training set only knows about the 
phenotype. The interface between the MOES and the training 
set is typically a C function of at most a few hundred lines.  

Finally, to avoid any possible confusion, we say we are 
evolving solutions to complex nonliear problems in 
parameter optimization because the training set typically 
involves evaluating complicated nonlinear functions of the 
parameters. However we are employing a technique from 
linear programming (DEA) to assign the fitness of the 
solutions – i.e., the parameter sets – by comparing their 
objectives. So the calculations we are performing are 
nonlinear in parameter space and linear in objective space.  
 

IV. MOES: MULTIPLE OBJECTIVE EVOLUTION 
STRATEGIES 

 
MOES is a large body of massively parallel C/C++/MPI 

code we have written to optimize parameters that govern 
complex nonlinear models. Ideally, if you have a model 
governed by up to about 100 parameters and can provide a 
serial code that computes all the errors you wish to minimize, 
we can incorporate it into our process by writing a single C 
function as an interface. This interface takes a set of mutated 
parameters from our evolutionary algorithm, passes them to 
your code (i.e., the “training set”), and then returns all the 
errors or “objectives” that are to be minimized by the 
evolutionary algorithm. The “evaluation of the training set” 

1973

2015 Proceedings of PICMET '15: Management of the Technology Age



must include all the calculations involving the model that you 
wish to compare with known results in order to judge the 
accuracy of the model. The minimum requirements for our 
algorithm to get started are the training set, the interface 
function, and a set of strict [a,b] bounds for each parameter.  

We employ a master-slave paradigm, in which the 
evolution is performed on the master processor, and all the 
objectives are computed on the slave processors; each slave 
processor gets one set of mutated parameters at a time, 
computes the objectives for that particular parameter set, and 
then moves on to the next task. Parallelization is performed 
using MPI thus assuring compatibility modern massively 
parallel machines running Linux.  

Our implementation of the master-slave approach uses the 
“bag of tasks” technique [19] in which each processor 
announces when it is available to compute the objectives for 
the next available set of mutated parameters within a simple 
“for” loop; load balancing is accomplished automatically. 
Since there are typically many more sets of parameters in the 
evolving population than available processors, on each pass 
through the loop the slave processors are queried to 
determine who among them has finished evaluating his last 
set of objectives and are therefore available to receive the 
next set of mutated parameters in the queue. Typically the 
communication overhead associated with querying the slave 
processors, sending the parameter sets and receiving the 

objectives can be completely masked by the computational 
load of evaluating the training sets.  

In practice we have found that while evolving large 
populations (e.g., thousands of parameter sets) we can obtain 
good scaling on HPC systems when the “evaluation of the 
training set” takes several minutes on a single processor. The 
only time we have encountered difficulties with this approach 
occurred in the evolution of reactive force fields [14] when 
certain “pathological” parameter sets caused the time 
required to evaluate the training set to increase by several 
orders of magnitude. This would destroy load balancing and 
in such cases the calculation of the objectives were 
terminated early and bad fitness values were assigned to the 
troublesome parameter sets; the evolution then continued 
normally. A simplified representation of MOES and the 
master-slave paradigm is shown in Figure 2.  

In practice DEA is also performed in parallel, although for 
simplicity this is not indicated in the figure. Since DEA 
requires that we solve one linear program for each parameter 
set in the evolving population to evaluate its fitness, and since 
each such linear program is independent of the others, the 
calculation labeled “Compute Fitness” in Figure 2 is also 
“naturally parallel” – see [6] and references therein for other 
parallel DEA implementations – and the individual linear 
programs for distinct parameter sets are assigned to different 
processors.  

 
Figure 2: Schematic outline of the MOES program; in the actual code the DEA calculation is also parallelized 
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The code we use to solve the real and mixed integer linear 
programs in DEA is the freely available serial program 
lpsolve 5.5 [7]. We have found this program to be stable; it is 
well-maintained and has an active user group, and the 
documentation for the programming interface is excellent. 
We wrote C code to compute the possible basic DEA models 
(the input- and output-oriented CCR, BCC, and FDH models) 
by initializing the corresponding linear programs and then 
solving them in parallel using separate instantiations of 
lpsolve on each processor. We therefore had to make no 
alterations to the lpsolve source code; after experimentation 
we hardwired most of the numerical switches controlling the 
options we used in lpsolve. The raw data from MOES 
(principally the objectives computed in the training set) must 
first be scaled so that the entries in the tableau constructed in 
lpsolve are all of the same magnitude. We have found a 
logarithmic scaling to be most effective. In our experience the 
time required to perform DEA and evaluate the fitness of the 
evolving population has been trivial compared to the time 
required to evaluate the objectives of each solution, but this 
will depend on the particular problem being solved and on the 
number of calculations performed in the training set.  

Typically millions of linear programs must be solved 
during an evolution and there is no guarantee that a solution 
exists for each. Even with logarithmic scaling of the 
objectives we monitor the return code provided by lpsolve 
and check to see if a solution was actually found. In those 
rare cases where lpsolve fails to converge within a specified 
time limit – well under 1% of the calculations in our 
experience – we assign bad fitness values to the solutions 
whose objectives caused lpsolve to fail, and the evolution 
continues.  

In 1997 Barr and Durchholz [6] presented an alternative 
DEA scheme (PIONEER) designed to solve large 
envelopment models whose tableaux have many columns. 
The improvements include both serial and parallel 
components. The principal improvement involves the early 
identification of inefficient solutions followed by the use of 
“restricted basis entry” to reduce the size of the subsequent 
linear programs to be solved. Once a solution has been 
identified as inefficient – that is, it is seen to be dominated in 
the Pareto sense by another solution – it can be eliminated 
from the tableau for subsequent calculations. Thus as the 
calculations proceed the linear programs that must be solved 
become smaller. In their parallel implementation each 
processor (solving independent linear programs) must be 
given the “current” list of inefficient solutions, and this list 
changes as more independent linear programs are solved. 
They relied on shared memory (on the machine they used in 
1997) to communicate the (changing) list of inefficient 
solutions to each processor while the (independent) linear 
programs were solved on local memory. Recent trends in 
high performance computing have emphasized increasing the 
core count per CPU and moving to distributed memory 
architectures [20]. While the algorithm in PIONEER could be 
implemented on distributed memory systems using MPI, the 

fundamental loop in the bag-of-tasks paradigm would now 
have to include MPI broadcasts of the current list of 
inefficient solutions to all the processors. The efficiency of 
the resulting algorithm would be strongly machine-dependent 
as well as problem-dependent. Finally PIONEER would also 
have to be generalized to include the FDH model.  

The use of the early identification of inefficient solutions 
and restricted basis entry were studied again in 2006 by Dulá 
who solved large envelopment models with 10,000 to 
100,000 columns [11]. The sophisticated commercial LP 
solver CPLEX was used within a serial formulation of the 
DEA problem. Additionally Dulá considered the effects of 
using “hot starts”. Like restricted basis entry, this involves 
modifications of the tableaux for the solution of subsequent 
linear programs based on the results obtained when solving 
earlier linear programs in the DEA protocol. Substantial 
speedups were observed with the combination of “hot starts” 
and restricted basis entry, and the savings in time became 
dramatic as the numbers of columns in the tableaux were 
increased. Again, a parallel implementation on a distributed 
memory machine would require the broadcast of all the 
information required to perform the “hot starts” to all the 
processors. Additionally the methods of Barr and Durchholz 
and of Dulá would have to be generalized to include the FDH 
model. However as we look at larger and larger problems we 
may have to revisit issues involving the efficiency of 
performing DEA to compute fitness within MOES. Whether 
the increase in communication and algorithmic complexity 
can be offset by the speedups in computing fitness within 
MOES will depend upon the problem, the size of the 
evolving population and the computer architecture.  
 

V. NUMERICAL EXAMPLE 
 

We have applied MOES to a series of standardized 
multiple objective test problems [25][26]; details will be 
presented elsewhere [16]. Here we want to emphasize the 
effects of assumptions concerning convexity and how this 
relates to the choice of DEA models. We have chosen 
problem “T2”, a non-convex problem, and followed the 
general protocol used in [26]: we performed a series of 30 
evolutions, each of 250 generations, with an evolving 
population of 100, keeping 20 solutions in the external “elite” 
set. The evolution strategy used was    , , 20,5,80    . 
The results of the SPEA of Zitzler and Thiel are shown in 
Figure 3.  

The SPEA was demonstrated to perform better than 
number of competing algorithms for multiple objective 
optimization [25][26]. If we (mistakenly) assume the Pareto 
frontier to be convex and apply MOES using the BCC model 
we get the results in Figure 4. Note that coverage of the 
frontier is very poor.  
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Figure 3: SPEA results for a non-convex test problem 

 

 
Figure 4: MOES results using the BCC model for a non-convex test problem  
 

If we apply MOES using the FDH model we get the 
results in Figure 5. Using MOES with the FDH model is seen 
to yield results comparable to those obtained with the SPEA, 
even though the algorithms used to compute fitness are very 
different. Results for additional test problems and more 
details are presented elsewhere [16].  

In general we do not know a priori whether the Pareto 
frontier for an arbitrary problem will be convex or not, in 
which case the FDH model should be employed. Otherwise it 
is clear that poor results can be obtained, especially in terms 
of the coverage of the Pareto frontier. Practically this means 
that solutions that might offer a particularly desirable balance 
between minimizing (and/or maximizing) the various 
objectives will not be obtained. To date we have encountered 
no difficulties in using the FDH model because the evaluation 
of the training set has completely dominated the calculations 

[14]. Furthermore, no failures of lpsolve were encountered in 
any of the BCC or FDH computations. We are nonetheless 
considering possibly more efficient alternatives. [16] 

 

 
Figure 5: MOES results using the FDH model for a non-convex test problem 
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