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c© Institute of Mathematics of the National Academy of Sciences of Belarus

A Schwarz preconditioner for a hybridized

mixed method

Jayadeep Gopalakrishnan

University of Florida

Department of Mathematics, Gainesville, Florida 32611–8105.

E-mail: jayg@math.ufl.edu
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Abstract — In this paper, we provide a Schwarz preconditioner for the hybridized
versions of the Raviart-Thomas and Brezzi-Douglas-Marini mixed methods. The pre-
conditioner is for the linear equation for Lagrange multipliers arrived at by eliminating
the flux as well as the primal variable. We also prove a condition number estimate
for this equation when no preconditioner is used. Although preconditioners for the
lowest order case of the Raviart-Thomas method have been constructed previously by
exploiting its connection with a nonconforming method, our approach is different, in
that we use a new variational characterization of the Lagrange multiplier equation.
This allows us to precondition even the higher order cases of these methods.
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1. Introduction

The subject of this paper is a Schwarz preconditioner for efficiently solving linear systems
arising from the hybridized mixed method for the following Dirichlet problem:

−div a∇u = f on Ω,

u = g on ∂Ω.
(1.1)

Here Ω is a polygonal domain in R2, f ∈ L2(Ω), and g ∈ H1/2(∂Ω), and a(x) is a symmetric
2 × 2 matrix function of x ∈ Ω that is uniformly positive definite and bounded in Ω.

Efficient solution strategies for mixed methods have been investigated earlier by many
authors [3, 4, 6, 7, 11, 20, 22, 24] using a wide variety of techniques: V-cycle and W-cycle
methods were given in [4] and [3]. An equivalence of the mixed method with a nonconforming
method was utilized in [6]. In [24], it was shown that it suffices to precondition a spectrally
equivalent discontinuous Galerkin like bilinear form. All these works dealt with the non-
hybridized form of the mixed method. In contrast, in this paper we consider the hybridized
version of a mixed method. This paper also differs from other works that have dealt with
solution strategies after hybridization in the context of substructuring, notably [20]. The
situation we have in mind is one where hybridization is done at the element level, rather
than in a nonoverlapping domain decomposition method.
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There are a few earlier works on preconditioning the hybridized form of the mixed method
that we should note here. A balancing domain decomposition method for the hybridized
mixed method is discussed in [14]. More results on domain decomposition algorithms utilizing
the hybridization concepts can be found in [25]. While these works considered systems that
couple the so called Lagrange multiplier unknowns together with the primal variable, we
consider a system that involves only the Lagrange multiplier unknowns.

To precisely describe this system, we start by describing a hybridized mixed method.
The method is obtained by using Lagrange multipliers to enforce continuity constraints of a
vector finite element space in a standard mixed method. For the sake of definiteness let us
consider the hybridized version of the Raviart-Thomas (RT) mixed method [23]. As we shall
see, our considerations hold if the Brezzi-Douglas-Marini (BDM) mixed method [9] is used
instead. On any triangle τ , let Pd(τ) denote the set of polynomials (in the variable x ∈ R2)
of degree at most d on τ , and let Rd(τ) = xPd(τ)+ (Pd(τ))2. Let Th be a triangulation of Ω,
and Eh be the set of its interior edges. Let c(x) = a(x)−1, and 〈·, ·〉Z for any space Z denote
the duality pairing in Z. Define spaces

Rh = {r : r|τ ∈ Rd(τ) for all τ ∈ Th},

Th = {p : p|τ ∈ Pd(τ) for all τ ∈ Th},

Sh = {λ : λ|e ∈ Pd(e) for all e ∈ Eh},

and operators A : Rh 7→ R′
h, B : Rh 7→ T ′

h, and C : Rh 7→ S ′
h by

〈Aq, r〉 �
h

=

∫

Ω

c q · r dx

〈Bq, p〉Th
=
∑

τ∈ � h

−

∫

τ

p div q dx

〈Cq, µ〉Sh
=
∑

e∈ � h

∫

e

µ [[q]] ds.

Here, for any edge e ∈ Eh, if τ+, τ− ∈ Th are the triangles that share edge e with outward
normals n+ and n− respectively, then [[q]] on e equals (q|τ+ · n+) + (q|τ− · n−).

The hybridized mixed method using the above spaces defines an approximate solution
triple (qh, uh, λh) ∈ Rh × Th × Sh as the unique solution of




A Bt Ct

B 0 0
C 0 0






qh

uh

λh


 =




G

F

0


 , (1.2)

where G and F are functionals on Rh and Th, respectively, given by

〈G, r〉 �
h

= −

∫

∂Ω

g(r · n) ds,

〈F, p〉Th
= −

∫

Ω

fp dx.

As is well known [10], the variables qh and uh can be eliminated from (1.2) to yield an
equation involving just the multiplier λh:

(CA
−1

C
t − CA

−1
B

t(BA
−1

B
t)−1

BA
−1

C
t)λh

= −CA
−1

B
t(BA

−1
B

t)−1(BA
−1

G − F) + CA
−1

G.
(1.3)
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There are many reasons why one should design an implementation of the mixed method
that first solves (1.3). First of all, (1.3) can easily be proved to be a symmetric positive
definite system for λh. Therefore, it is more suited for modern iterative solution methods
(like the conjugate gradient method) compared to the indefinite system (1.2). Moreover, the
number of unknowns in (1.3) is clearly much less than that of (1.2). Yet another reason is
that once λh is computed, the other components of the solution triple, namely qh and uh can
be computed inexpensively in a completely local fashion [10] (element by element). Finally,
let us also note that implementing (1.3) is preferred over implementing the non-hybridized
mixed method, because the former yields the Lagrange multiplier λh which can be used to
arrive at a locally post-processed solution of enhanced accuracy, as shown in [2]. Therefore,
it is of considerable practical interest to design efficient solution methods for solving (1.3).

In this paper, we will construct a Schwarz preconditioner for efficiently solving (1.3). In
the next section we will show that (1.3), without any preconditioner, gives rise to badly
conditioned systems for small mesh sizes. When the Schwarz preconditioner is used, the
preconditioned system is uniformly well conditioned.

Schwarz preconditioners, sometimes known as overlapping domain decomposition pre-
conditioners, have been adapted to various applications ever since the early works of [16, 17]
showed its suitability for some standard applications. In adapting it to precondition (1.3),
one of the difficulties that we are faced with is that the multiplier spaces on refinements of
a mesh are not nested. In this paper we will overcome this difficulty in the context of an
“additive two-level” method, by introducing an intergrid transfer (or prolongation) operator
(see Section 3, and further examples in Section 5). We use a strategy for analysis similar to
that in [24], which in turn is based on techniques introduced in [16, 17].

Another difficulty is that the spectral nature of the operator in (1.3) is not obvious. It
is perhaps this difficulty that has thus far prevented the design of preconditioners for the
hybridized mixed method in the higher order case. In the case of the lowest order hybridized
RT method, it is possible to conclude from [2] that (1.3) is equivalent to a system arising from
the P1-nonconforming method. Then, it suffices to precondition the latter. This has been
exploited in earlier papers [6, 12, 19]. Nonetheless, the nature of the left hand side of (1.3)
in the higher order case remained unclear. However, we can now overcome this difficulty
because of a recently developed variational characterization of (1.3). We will briefly review
this characterization in the next section.

2. Equation for the Lagrange multiplier

In this section we investigate the equation determining the Lagrange multiplier, namely (1.3),
further. We will recall a recently developed variational characterization of (1.3) in terms of
certain lifting maps, provide a norm equivalence for the resulting bilinear form, and prove a
condition number estimate for (1.3).

Suppose we are given a nodal basis for Sh, say {ηi}
M
i=1, such that each ηi is supported on

a single edge of Eh. For example, ηi is one of the first d + 1 Legendre polynomials on one
edge and is zero on all the other edges. Equation (1.3) then yields a matrix equation for the
vector of coefficients of λh in the {ηi}-basis, which we denote by Λ:

EΛ = b. (2.1)

Obviously, the M × M matrix E can be computed once the matrices of the operators A,
B, and C are computed. However, there is an easier way to compute E. It turns out to be
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the stiffness matrix of a mesh dependent bilinear form ah(·, ·) defined below. After defining
ah(·, ·), we will estimate the condition number of E.

Define lifting operators Q : Sh 7→ Rh and U : Sh 7→ Th element by element: On each
τ ∈ Th, (Qλ)|τ and (Uλ)|τ are defined by

∫

τ

c (Qλ) · q dx −

∫

τ

(Uλ) div q dx = −

∫

∂τ\∂Ω

λq · nτ ds (2.2)

∫

τ

p div(Qλ) dx = 0 (2.3)

for all q ∈ Rd(τ) and p ∈ Pd(τ), where nτ denotes the outward unit normal vector on ∂τ .
Let

ah(λ, µ) =

∫

Ω

c (Qλ) · (Qµ) dx.

The following theorem shows that the nature of the discrete linear system (2.1) that deter-
mine λh is intimately related to the nature of the bilinear form ah(·, ·). A proof can be found
in [13].

Theorem 2.1. The Lagrange multiplier component of the hybridized mixed method so-
lution, namely λh, is the unique element of Sh that satisfies

ah(λh, µ) =

∫

Ω

f Uµ +

∫

∂Ω

g Qµ · n for all µ ∈ Sh, (2.4)

where n denotes the outward unit normal vector on ∂Ω. Moreover, Eij = ah(ηj , ηi) and
bi =

∫
Ω

f Uηi +
∫

∂Ω
g Qηi · n, for all i, j = 1, 2, . . . . , M .

In particular, it follows from this theorem that E is a sparse matrix. Indeed, the liftings
of ηi are supported only on the two triangles that share the edge which forms the support
of ηi. In the lowest order case, this means that the matrix E has at most four nonzero
off-diagonal entries. In the general case, E is a matrix of (d + 1) × (d + 1) blocks with at
most four off-diagonal blocks in each block column.

At this point, let us note that the definition of ah(·, ·) depends only on the divergence
free members of the RT-space. Specifically, the lifting operator Q in the definition of ah(·, ·)
can be given solely using R0

d(τ) = {r ∈ Rd(τ) : div r = 0} as follows: (Qµ)|τ for every
τ ∈ Th is the unique element of R0

d(τ) satisfying

∫

τ

cQµ · r dx = −

∫

∂τ\∂Ω

µ r · nτ ds for all r ∈ R0
d(τ).

It is well known that the divergence free subspaces of the vector BDM space and the vector
RT space (which we denoted by R0

d(τ)) on one triangle coincide. This means that the bilinear
form ah(·, ·) and the left hand side matrix in (2.1) are identical to the corresponding ones
arising in hybridization of the BDM-method. Therefore, for the purposes of preconditioning
the Lagrange multiplier equation, we can ignore the differences between the BDM and RT
methods.

We now clarify the nature of the norm generated by ah(·, ·). For any domain D we
denote by ‖ · ‖L2(D) the L2(D)-norm (or the (L2(D))2-norm, as appropriate). We identify
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λ ∈ Sh with its extension by zero to edges on ∂Ω for simplifying notation, so that e.g.,∫
∂τ\∂Ω

λ ds =
∫

∂τ
λ ds. Define

mτ (λ) =
1

|∂τ |

∫

∂τ

λ,

|||λ|||h,D =


 ∑

τ∈ � h, τ⊆D̄

‖λ − mτ (λ)‖2
L2(∂τ)

1

|∂τ |




1/2

, and

‖λ‖h,D =


 ∑

τ∈ � h, τ⊆D̄

‖λ‖2
L2(∂τ)|∂τ |




1/2

.

When the domain under consideration is Ω we use ||| · |||h and ‖·‖h to denote ||| · |||h,Ω and ‖·‖h,Ω

respectively. The following theorem shows that the norm generated by ah(·, ·) is equivalent
to the more transparent norm ||| · |||h.

Theorem 2.2. For any triangle K, there are positive constants C1 and C2 depending
only on d, c, and the minimal angle of K, such that

C1|||λ|||
2
h,K 6

∫

K

c |Qλ|2 dx 6 C2|||λ|||
2
h,K , for all λ ∈ Sh.

Before we prove this theorem, we state one other theorem that we will prove in this sec-
tion. Although the main use of Theorem 2.2 is in the analysis of our Schwarz preconditioner,
as one of its immediate applications, we can estimate the condition number of the stiffness
matrix E when no preconditioner is used. It is generally accepted that the condition number
of (1.3) must be O(h−2) on a quasiuniform mesh on mesh size h, although we have not been
able to locate a precise statement to this effect in the literature. The following heuristic
argument is often given: Since the Lagrange multipliers approximate the exact solution on
the edges of the mesh [2], Equation (1.3) should be a discretization of the elliptic second
order equation in (1.1), and hence should exhibit the same growth in condition number that
other discretizations suffer. We give a precise bound in the following theorem. We adopt the
convention of denoting by C (with or without subscripts) a generic constant independent of
h. In general, its value differs at different occurrences.

Theorem 2.3. Suppose Th is a quasiuniform mesh of mesh size h. Then, there are
positive constants C3 and C4 independent of h such that

C3‖λ‖
2
h 6 ah(λ, λ) 6 C4h

−2‖λ‖2
h for all λ ∈ Sh. (2.5)

Consequently, the spectral condition number of E in (2.1) is O(h−2).

In the remainder of this section we prove Theorems 2.2 and 2.3. The proof of Theorem 2.2
is based on the following lemma.

Lemma 2.1. The function Qλ is zero on K ∈ T if and only if λ is constant on ∂K.

Proof. From the definition of Qλ, note that
∫

K

c (Qλ)·(Qλ) dx = −

∫

∂K

λ (Qλ)·nK ds. (2.6)
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By integration by parts, the right hand side above equals −λ
∫

K
div(Qλ) dx, whenever λ is

constant on ∂K. Since div(Qλ|K) = 0, the right hand side vanishes, so Qλ is zero on K.
Conversely, suppose Qλ is zero on K. Then (2.2) becomes

∫

K

(Uλ) div r dx =

∫

∂K

λ r·nK ds, for all r ∈ Rd(K),

After integrating by parts,

−

∫

K

r·∇(Uλ) dx +

∫

∂K

(r ·nK)Uλ ds =

∫

∂K

λ r·nK ds, (2.7)

for all r ∈ Rd(K). In this equation, we can choose r such that
∫

K

r ·pd−1 dx = 0, for all pd−1 ∈ Pd−1(K)2, and

r ·nK = λ − (Uλ)|∂K , on ∂K.

Then, (2.7) gives ∫

∂K

(λ − Uλ)2 ds = 0,

so Uλ coincides with λ on the boundary ∂K. Resorting to (2.7) again, and using the fact
(Uλ − λ)|∂K = 0, we find that

∫

K

r·∇(Uλ) dx = 0, for all r ∈ Rd(τ),

so Uλ is constant on K. Since λ coincides with Uλ on ∂K, this implies that λ is constant
on ∂K.

We can now prove Theorem 2.2 using this lemma.

Proof. (Proof of Theorem 2.2.) Let us first prove the upper bound of the theorem.
From (2.6), we have

∫

K

c |Qλ|2 dx = −

∫

∂K

(λ − mK(λ))(nK ·Qλ) ds

It follows by a scaling argument using the Piola map, a trace theorem on a fixed reference
triangle, and Cauchy-Schwarz inequality that

∫

K

c |Qλ|2 dx 6 C|∂K|−1/2‖λ − mK(λ)‖L2(∂K)‖Qλ‖L2(K),

thus proving the upper bound.
To prove the lower bound, we use Lemma 2.1, and a scaling argument. Let K̂ denote

a fixed reference triangle. For any symmetric positive definite 2 × 2 matrix valued function
α(x̂) on K̂, define liftings Q̂ � λ̂ ∈ Rd(K̂) and Û � λ̂ ∈ Pd(K̂) on K̂ by

∫

K̂

α (Q̂ � λ̂ )·r dx −

∫

K̂

( Û � λ̂ ) div r dx = −

∫

∂K̂

λ̂ r ·nK̂ ds,

∫

K̂

v div(Q̂ � λ̂ ) dx = 0,
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for all r ∈ Rd(K̂) and v ∈ Pd(K̂). By Lemma 2.1, Q̂ � λ̂ = 0 implies that λ̂ is constant on
∂K̂. Therefore,

‖Q̂ � λ̂ ‖L2(K̂) > Ĉ(α) inf
κ∈

� ‖λ̂ − κ‖L2(∂K̂), (2.8)

for some constant Ĉ(α) independent of λ̂. We now relate the liftings on K with these liftings
on the reference element. Let x̂ 7→ x ≡ DKx̂ + dK be the affine isomorphism that maps K̂

one-one onto K. For scalar valued functions µ(x), we define µ̂(x̂) = µ(x), while for vector
valued functions r(x), we define r̂(x̂) = | detDK |D−1

K r(x). Then, it is easily seen that if we
set ĉ(x̂) = | det DK |−1Dt

Kc(x)DK , we have

Q̂� � λ̂ = Q̂λ. (2.9)

In view of (2.8) and (2.9), we get by a scaling argument that

C‖Qλ‖L2(K) > ‖Q̂λ‖L2(K̂) = ‖Q̂ �̂ λ̂ ‖L2(K̂)

> Ĉ(ĉ) inf
κ∈

� ‖λ̂ − κ‖L2(∂K̂).

Mapping back, we have

C‖Qλ‖2
L2(K) >

Ĉ(ĉ)2

|∂K|
inf
κ∈

� ‖λ − κ‖2
L2(∂K) =

Ĉ(ĉ)2

|∂K|
‖λ − mK(λ)‖2

L2(∂K).

Thus, the estimate of the theorem will follow provided we can show that Ĉ(ĉ) is bounded
uniformly away from zero. It is easily seen that we can choose Ĉ(·) to be a positive continuous
function. Moreover, all ĉ obtained by transforming c(x), lie in a compact set {α : C5 6

‖α‖`2 6 C6}, because a(x) is uniformly positive definite and bounded on Ω. Taking the
minimum of the function Ĉ(α) over this compact set, we have the required result.

Next, we prove Theorem 2.3. We shall use the inverse estimate

|||λ|||h,τ 6
2

|∂τ |
‖λ‖h,τ , (2.10)

which immediately follows from the definition of our norms:

|||λ|||2h,τ =
1

|∂τ |
‖λ − mτ (λ)‖2

L2(∂τ)

6
2

|∂τ |

(
‖λ‖2

L2(∂τ) +

(
1

|∂τ |

∫

∂τ

λ

)2

|∂τ |

)
6

4

|∂τ |
‖λ‖2

L2(∂τ).

Proof. (Proof of Theorem 2.3.) The upper bound is a direct consequence of (2.10) and
Theorem 2.2. To prove the lower bound, define uλ for any λ ∈ Sh element by element as
follows: On any τ ∈ Th, uλ|τ ∈ Pd+1(τ) satisfies

∫

τ

∇uλ · ∇v dx +
1

|∂τ |

∫

∂τ

uλv ds =
1

|∂τ |

∫

∂τ

λv ds for all v ∈ Pd+1(τ). (2.11)

Obviously, given any λ ∈ Sh, such a uλ is uniquely defined. In the remainder of this proof
we show that

‖λ‖h 6 C‖uλ‖L2(Ω) 6 C|||λ|||h for all λ ∈ Sh. (2.12)
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Clearly this will prove the required lower bound.
The first inequality of (2.12) follows easily from a local scaling argument, so we will only

prove that ‖uλ‖L2(Ω) 6 C|||λ|||h. Choosing v ≡ 1 in (2.11), we have
∫

∂τ

(uλ − λ) ds = 0.

This implies that

1

|∂τ |

∫

∂τ

(uλ − λ)2 ds = −

∫

τ

|∇uλ|
2 dx +

1

|∂τ |

∫

∂τ

λ(uλ − λ) ds

= −

∫

τ

|∇uλ|
2 dx +

1

|∂τ |

∫

∂τ

(λ − mτ (λ))(uλ − λ) ds

6
1

|∂τ |

∫

∂τ

(λ − mτ (λ))(uλ − λ) ds.

Therefore,
1

|∂τ |
‖uλ − λ‖2

L2(∂τ) 6 |||λ|||2h,τ . (2.13)

Now, it is readily verified that when λ is constant on ∂τ , uλ is constant on τ , so a scaling
argument shows that

‖∇uλ‖
2
L2(τ) 6 C|||λ|||2h,τ . (2.14)

Moreover, on an interior edge e shared by two triangles τ+, τ− ∈ Th, the jump of uλ across e,
denoted by [uλ], satisfies

1

|e|
‖ [uλ] ‖

2
L2(e) =

1

|e|
‖(uλ|τ+ − λ) − (uλ|τ− − λ)‖2

L2(e) 6 C|||λ|||2h,τ+∪ τ−
,

because of (2.13). Thus,

(∑

τ∈ � h

‖∇uλ‖
2
L2(τ) +

∑

e∈ � h

1

|e|
‖ [uλ] ‖

2
L2(e)

)1/2

6 C|||λ|||h.

The left hand side of the inequality above defines a norm previously studied [24]. In par-
ticular, the following Poincaré inequality is well known (see [24, Theorem 3.1], [18], [1,
Lemma 2.1], or [8]):

C‖uλ‖
2
L2(Ω) 6

∑

τ∈ � h

‖∇uλ‖
2
L2(τ) +

∑

e∈ � h

1

|e|
‖ [uλ] ‖

2
L2(e).

This, together with the estimates above, yields (2.12), and the lower bound of the theorem
follows.

The assertion on the spectral condition number of E follows from (2.5): Expand λ ∈ Sh

in the basis {ηi} as

λ =

M∑

i=1

`i ηi.

The vector of coefficients ` = (`1, `2, . . . , `M)t ∈ RM satisfies C(` · `)h2 6 ‖λ‖2
h 6 C(` · `)h2,

because the basis functions ηi are local. Consequently, Ch2(` · `) 6 E` · ` 6 C(` · `) for all
` ∈ RM .



Preconditioning hybridized mixed method 9

3. A Schwarz preconditioner

A basic assumption in Schwarz algorithms [16, 17] is that the mesh wherein solution is
sought, namely Th, is a refinement of a coarser mesh, say TH , consisting of coarse elements
{Ωi}

N
i=1. We assume for the purposes of analysis that Th is quasiuniform of mesh size h,

and that TH is quasiuniform of mesh size H (H > h). Schwarz algorithms use solutions on

overlapping subdomains Ω̃i, i = 1, . . . , N , that cover Ω. The closure of each Ω̃i is a union of
triangles of Th, and contains the coarse triangle Ωi. (By definition, Ω and Ω̃i are open sets.)
We assume that there are fixed numbers δ and ρ such that

dist (∂Ω̃i ∩ Ω, ∂Ωi ∩ Ω) > δH for all i = 1, . . .N, and (3.1)

every point of Ω is in at most ρ subdomains in {Ω̃i}
N
i=1. (3.2)

The preconditioner we describe in this section uses solutions on the coarse mesh TH using
the lowest order space of multipliers S0

H . The generally accepted intuitive reason for using a
coarse space is that it helps global propagation of information during an iterative solution
process. It is therefore intuitive to set a coarse space based on the lowest order space S0

H ,
although the fine space Sh is not in general of lowest order.

The main difficulty in incorporating information from coarse solutions into the precon-
ditioner arises from the fact that S0

H * Sh. We overcome this by introducing intergrid
transfer operators Ih : S0

H 7→ Sh. To this end, we exploit a relationship between the P1-
nonconforming space V 0

h and the lowest order space of multipliers S0
h. Recall that S0

h = {
λ : λ|e is a constant for every e ∈ Eh}, and V 0

h = { v : v|τ is linear for all τ ∈ Th, v is
continuous at midpoints of all e ∈ Eh and zero at midpoints of edges e ⊆ ∂Ω}. We establish
an isomorphism between these spaces, namely Xh : S0

h 7→ V 0
h , by

(Xhλ)(xe) = λ|e,

where xe denotes the midpoint of edge e. Obviously X−1
h : V 0

h 7→ S0
h is well-defined, and

actions of both Xh and X−1
h are easily implementable in computations. Define a seminorm

| · |H1( � h) by

|w|2H1( � h) =
∑

τ∈ � h

‖∇w‖2
L2(τ).

The following lemma is established easily by means of scaling arguments, so we omit its
proof.

Lemma 3.1. For all w ∈ V 0
h and λ ∈ S0

h,

|||X−1
h w|||h 6 C|w|H1( � h),

‖X−1
h w‖h 6 C‖w‖L2(Ω),

|Xhλ|H1( � h) 6 C|||λ|||2h.

We can now define an intergrid transfer operator Ih : S0
H 7→ Sh by

Ih = X−1
h IV

h XH , (3.3)

where IV
h : V 0

H 7→ V 0
h is an intergrid transfer operator for P1-nonconforming spaces (see

Fig 1) defined as follows: Let zi, i = 1, . . .MH , denote the interior vertices of TH , and let
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� �6

-

6

?

6

?

V 0
H

S0
H

X−1
H XH

V 0
h

IV
h

S0
h

X−1
hXh

↪→Sh

Ih

Figure 1. Operators connecting various spaces

τ(zi) be one of the triangles of TH which has zi as a vertex. For every w ∈ V 0
H , IV

h w is the
continuous function that is linear on every τ ∈ TH , vanishes on ∂Ω, and satisfies

(IV
h w)(zi) = lim

z→zi

z∈τ(zi)

w(z). (3.4)

In general w can have different limiting values at a vertex zi, depending on from which
triangle we approach zi. We have set IV

h w at zi to equal (any) one of such values. Note that
IV
h w is a continuous function that is linear on each triangle of the fine mesh Th. In particular,

it is in V 0
h . (We will give more examples of intergrid transfer operators in Section 5.)

Let aH(·, ·) be defined analogously to ah(·, ·), but with respect to TH . Define Si ={λ ∈ Sh :

support of λ is contained in Ω̃i}. We denote by 〈·, ·〉h, 〈·, ·〉H, and 〈·, ·〉i the duality pairing
in spaces Sh, S0

H and Si repectively. We identify functions in Si by their extension by zero,
so we will often use 〈·, ·〉h for 〈·, ·〉i. Denoting dual spaces by primes, let the operators

Ah : Sh 7→ S ′
h, AH : S0

H 7→ (S0
H)′, Ai : Si 7→ S ′

i, Qi : S ′
h 7→ S ′

i, and Q̃H : S ′
h 7→ (S0

H)′ be
defined by

〈Ahλ, µ〉h = ah(λ, µ) for all λ, µ ∈ Sh,

〈AHλ, µ〉H = aH(λ, µ) for all λ, µ ∈ S0
H ,

〈Aiλ, µ〉h = ah(λ, µ) for all λ, µ ∈ Si,

〈Qiα, µ〉h = 〈α, µ〉h for all α ∈ S ′
h, µ ∈ Si,

〈Q̃Hα, µ〉H = 〈α, Ihµ〉h, for all α ∈ S ′
h, µ ∈ S0

H . (3.5)

The additive Schwarz preconditioner Bh : S ′
h 7→ Sh is given by

Bh =

N∑

i=1

A−1
i Qi + IhA

−1
H Q̃H , (3.6)

where Ih is as defined by (3.3) and (3.4). A functional g ∈ S ′
h is completely represented

by its action on a nodal basis of Sh, say {ηj}. Indeed, in computations, g is represented
by a vector whose components are 〈g, ηi〉h (just as the right hand side of stiffness matrix
equation (2.1) represents the functional in the right hand side of (1.3)). In iterative solution
of (2.4), say by the preconditioned conjugate gradient method, one is required to compute
Bhg, given the vector with components 〈g, ηi〉h. From (3.6), it is clear that to compute Bhg,
we need to solve subdomain problems as well as a coarse grid problem, i.e., we need to solve
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for vi ∈ Si, and vH ∈ S0
H , given by

ah(vi, µ) = 〈g, µ〉h for all µ ∈ Si, and

aH(vH , µ) = 〈g, Ihµ〉h for all µ ∈ SH .

Then Bhg =
∑N

i=1 vi + IhvH . The expense of such a computation is justifed whenever the
subdomain and coarse problems are small enough to permit their fast solution. Note that
implementing the action of operators Qi and Q̃H in (3.6) do not require Gramm matrix
inversions.

The following theorem proves that Bh is a uniform preconditioner. The next section is
devoted to a proof of this result.

Theorem 3.1. The spectral condition number of the preconditioned operator BhAh is
bounded independently of h and H.

4. Analysis of the preconditioner

In this section we prove Theorem 3.1. We use tools from previous analysis of Schwarz
algorithms (cf. [16, 17, 24]), but a number of changes are necessitated due to our nontrivial
intergrid transfer operator and mesh dependent bilinear form. The following four lemmas
allow us to prove Theorem 3.1.

Lemma 4.1. B−1
h : Sh 7→ S ′

h exists and for all λ ∈ Sh,

〈B−1
h λ, λ〉h = min

λi,λH

(
N∑

i=1

ah(λi, λi) + aH(λH , λH)

)
,

where the minimum is taken over all decompositions of λ of the form

λ = λ1 + λ2 + . . . + λN + IhλH ,

with λi ∈ Si and λH ∈ S0
H .

Lemma 4.2. For any λ ∈ Sh, there exists a decomposition λ =
∑N

i=1 λi with λi ∈ Si

such that

C

N∑

i=1

ah(λi, λi) 6 H−2‖λ‖2
h + ah(λ, λ).

Lemma 4.3. For all λ ∈ S0
H ,

ah(Ihλ, Ihλ) 6 CaH(λ, λ).

Lemma 4.4. For any λ ∈ Sh there exists a λH ∈ S0
H such that

‖λ − IhλH‖h 6 CHah(λ, λ)1/2, and (4.1)

aH(λH , λH) 6 Cah(λ, λ). (4.2)
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Before we prove these lemmas, let us show how the theorem follows from them.

Proof. (Proof of Theorem 3.1.) First let us prove that the smallest eigenvalue of BhAh is
uniformly bounded away from zero. Let λ ∈ Sh, and λH be as given by Lemma 4.4 applied
to λ. Furthermore, let ηi be as given by Lemma 4.2 applied to λ − IhλH . Then

λ − IhλH =
N∑

i=1

ηi,

and by the estimates of Lemmas 4.3 and 4.4,

N∑

i=1

〈Aiηi, ηi〉h 6 C
(
H−2‖λ − IhλH‖

2
h + ah(λ − IhλH , λ − IhλH)

)

6 Cah(λ, λ).

Thus we have found a decomposition λ =
∑N

i=1 ηi + IhλH , with ηi ∈ Si, and λH ∈ S0
H such

that
N∑

i=1

〈Aiηi, ηi〉h + aH(λH , λH) 6 Cah(λ, λ).

Consequently by Lemma 4.1, 〈B−1
h λ, λ〉h 6 C〈Ahλ, λ〉h, and the assertion on the minimum

eigenvalue of BhAh follows.
It now remains to prove that the spectrum of BhAh is bounded independently of h and

H. We prove this by establishing that

ah(BhAhλ, λ) 6 Cah(λ, λ) for all λ ∈ Sh. (4.3)

Introducing operators Pi : Sh 7→ Si and P̃H : Sh 7→ SH defined by

ah(Piλ, µ) = ah(λ, µ) for all λ ∈ Sh, µ ∈ Si and

aH(P̃Hλ, µ) = ah(λ, Ihµ), for all λ ∈ Sh, µ ∈ SH ,

and observing that QiAh = AiPi and Q̃HAh = AHPH we get that

BhAh =
N∑

i=1

Pi + IhP̃H . (4.4)

The required upper bound involving BhAh will follow if we show that P̃H and Pi are
bounded in aH(·, ·)1/2 and ah(·, ·)

1/2 norms respectively. Since

aH(P̃Hλ, P̃Hλ) = ah(λ, IhP̃Hλ)

6 ah(λ, λ)1/2ah(IhP̃Hλ, IhP̃Hλ)1/2,

by Lemma 4.3 it follows that

aH(P̃Hλ, P̃Hλ) 6 Cah(λ, λ). (4.5)
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A similar bound also holds for Pi. Indeed,

ah(Piλ, Piλ) =

∫
�

Ωi

c Q(Piλ) · Qλ dx

6 Cah(Piλ, Piλ)1/2

(∫
�

Ωi

c |Qλ|2 dx

)1/2

,

so by Theorem 2.2 we get
ah(Piλ, Piλ) 6 C|||λ|||2

h,
�

Ωi

. (4.6)

Now, by usual arguments involving Assumption (3.2), the estimates (4.5) and (4.6) together
with the identity (4.4) implies (4.3).

In the remainder of this section, we prove Lemmas 4.2, 4.3, and 4.4. Proof of Lemma 4.1
involves only minor modifications of well known arguments and we omit it (cf. [5, 16, 21, 22]).
The proof of Lemma 4.2 we now give is based on the standard Schwarz analyses [15, 16], so
we will be brief.

Proof. (Proof of Lemma 4.2.) There exists a partition of unity {θi(x)}, 0 6 θi(x) 6 1,

such that the support of θi is contained in Ω̃i, θi(x) is infinitely differentiable,

N∑

i=1

θi(x) = 1, and ‖∇θi‖L∞(
�

Ωi)
6 CH.

It is well known that the last inequality bounding the L∞(Ω̃i)-norm of ∇θi holds due to
Assumption (3.1). Furthermore, there exists a nodal interpolant of Sh, which we denote
by Πh, satisfying Πhλ|∂τ = λ|∂τ for all λ ∈ Sh, and ‖Πhu‖h,τ 6 C‖u‖h,τ for all continuous
functions u on ∂τ . Define λi ∈ Si by

λi = Πh(θiλ).

Clearly,
∑N

i=1 λi = λ. We will now show that this decomposition satisfies the estimate of the
lemma.

Let θτ
i denote the average of θi on any τ ∈ Th, i.e., θτ

i = |τ |−1
∫

τ
θi dx. Then, using (2.10),

the identity Πh(θ
i
τλ)|∂τ = λ|∂τ , and the approximation properties of averages,

|||Πh(θiλ)|||h,τ 6 |||Πh(θi − θτ
i )λ|||h,τ + |||Πh(θ

i
τλ)|||h,τ

6 Ch−1‖(θi − θτ
i )λ‖h,τ + |||λ|||h,τ

6 Ch−1‖θi − θτ
i ‖L∞(τ)‖λ‖h,τ + |||λ|||h,τ

6 Ch−1(h‖∇θi‖L∞(τ))‖λ‖h,τ + |||λ|||h,τ

6 CH−1‖λ‖h,τ + |||λ|||h,τ

Squaring and summing over triangles τ ∈ Th, we obtain the required estimate.

To prove Lemmas 4.3 and 4.4, we first establish separately the following estimates for IV
h .

Lemma 4.5. The operator IV
h : V 0

H 7→ Vh satisfies

|IV
h w|H1( � h) 6 C|w|H1( � H), and (4.7)

‖IV
h w − w‖L2(Ω) 6 CH|w|H1( � H), for all w ∈ V 0

H . (4.8)



14 J. Gopalakrishnan

Proof. We first show the second estimate. Let zi be an interior vertex of TH , and τ be a
triangle connected to zi. (In general, τ 6= τ(zi).) Then,

(IV
h w − w)|τ(zi) ≡ lim

z→zi

z∈τ(zi)

IV
h w(z) − w(z)

can be expressed as a telescoping sum of jumps of w across a few of the edges connected to
zi evaluated at zi. Let [w]e(y) be the function defined for all y ∈ e as the jump of w across e.
(Its sign will not matter in the ensuing arguments.) Let [w]e(zi) = limy→zi

[w]e(y). Then,

∣∣(IV
h w − w)|τ(zi)

∣∣ 6 C
∑

e∈ � (i)

∣∣ [w]e(zi)
∣∣2,

where E(i) is the set of all edges connected to zi. Consequently,

‖IV
h w − w‖2

L2(Ω) 6 CH2
∑

e∈ � h

∣∣ [w]e(zi)
∣∣2,

as cardinalities of E(i) are bounded independently of H.
Now, since w ∈ V 0

H , the jump [w]e(y) has zero average for all edges e ∈ Eh. If τ+(e) and
τ−(e) are the two triangles that share the edge e, then

‖ [w]e‖
2
L2(e) 6 CH

(
|∇w|2L2(τ+(e)) + |∇w|2L2(τ−(e))

)
.

Therefore,

‖IV
h w − w‖2

L2(Ω) 6 CH
∑

e∈ � h

‖ [w]e‖
2
L2(e) 6 CH2|w|2H1( � H),

thus proving (4.8).
Estimate (4.7) follows from (4.8) as we now show:

|IV
h w|2H1( � h) = |IV

h w|2H1( � H)

6
∑

τ∈ � H

2
(
‖∇(IV

h w − w)‖2
L2(τ) + ‖∇w‖2

L2(τ)

)

6 CH−2‖IV
h w − w‖2

L2(Ω) + 2|w|2H1( � H)

6 C|w|2H1( � H),

by using a standard inverse inequality and (4.8).

Proof. (Proof of Lemma 4.3.) For any η ∈ S0
H , using Lemmas 3.1 and 4.5, we have

|||Ihη|||
2
h = |||X−1

h IV
h XHη|||2h

6 C|IV
h XHη|2H1( � h) 6 C|XHη|2H1( � H)

6 C|||η|||2H .

To prove Lemma 4.4, we need the following additional result.
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Lemma 4.6. The L2-orthogonal projection QV
H into V 0

H satisfies

|QV
Hw|H1( � H) 6 C|w|H1( � h) and (4.9)

‖w − QV
Hw‖L2(Ω) 6 CH|w|H1( � h) for all w ∈ V 0

h . (4.10)

Proof. Let Wh ≡{ v : v is continuous on Ω, v is zero on ∂Ω, and v is linear on every
τ ∈ Th}. By a straightforward modification of the proof of Lemma 4.5 we can prove that
there is a w̄ ∈ Wh such that

‖w − w̄‖L2(Ω) 6 Ch|w|H1( � h)

‖∇w‖0,Ω 6 C|w|H1( � h)

It is easy to see, e.g., by using the well known properties of the L2-orthogonal projection
into WH , that there exists a w̄H ∈ WH such that

‖w − w̄H‖L2(Ω) 6 CH‖∇w̄‖L2(Ω)

‖∇w̄H‖L2(Ω) 6 C‖∇w̄‖L2(Ω).

Therefore,

‖w − QV
Hw‖L2(Ω) 6 ‖w − w̄H‖L2(Ω)

6 ‖w − w̄‖L2(Ω) + ‖w̄ − w̄H‖L2(Ω)

6 CH|w|H1( � h).

Moreover,

|QV
Hw|H1( � H) 6 |QV

Hw − w̄H |H1( � H) + |w̄H|H1( � H)

6 CH−1‖QV
Hw − w̄H‖L2(Ω) + C|w|H1( � h)

6 CH−1
(
‖QV

Hw − w‖L2(Ω) + ‖w − w̄H‖L2(Ω)

)
+ C|w|H1( � h)

6 C|w|H1( � h).

Proof. (Proof of Lemma 4.4.) For any λ ∈ Sh we set λH = X−1
H QV

HXhQ
S,0
h λ where Q

S,0
h

is the L2-orthogonal projection into S0
h. We will now show that the λH so defined satisfies

both the estimates of the lemma, namely (4.1) and (4.2). First, note that the Q
S,0
h satisfies

|||QS,0
h λ|||h 6 C|||λ|||h, and (4.11)

‖λ − Q
S,0
h λ‖h 6 Ch|||λ|||h, (4.12)

for all λ ∈ Sh. Both these estimates follow from straightforward scaling arguments and the
observation that whenever λ is a constant along the perimeter of a triangle τ ∈ Th, Q

S,0
h λ

coincides with λ on ∂τ .
To prove (4.2), we use Lemmas 4.6 and 3.1, and (4.11):

|||λH |||H 6 C|QV
HXhQ

S,0
h λ|H1( � H)

6 C|XhQ
S,0
h λ|H1( � h)

6 C|||QS,0
h λ|||h 6 C|||λ|||h.
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Estimate (4.2) now follows from Theorem 2.2.
To prove (4.1), we start by using (4.12)

‖λ − IhλH‖h 6 ‖λ − Q
S,0
h λ‖h + ‖QS,0

h λ − IhλH‖h

6 Ch|||λ|||h + ‖QS,0
h λ − IhλH‖h

We now estimate the last term. By Lemma 3.1,

‖QS,0
h λ − IhλH‖h = ‖X−1

h (XhQ
S,0
h λ − IV

h XHλH)‖h

6 C‖XhQ
S,0
h λ − IV

h XHλH‖h.

Moreover, applying Lemmas 4.6, 4.5, and 3.1,

‖XhQ
S,0
h λ − IV

h XHλH‖h 6 ‖XhQ
S,0
h λ − XHλH‖h + ‖XHλH − IV

h XHλH‖h

= ‖(I − QV
H)XhQ

S,0
h λ‖h + ‖(I − IV

h )XHλH‖h

6 CH|XhQ
S,0
h λ|H1( � h) + CH|XHλH |H1( � H)

6 CH|||QS,0
h λ|||h + CH|||λH |||H

An application of (4.11) and (4.2) now completes the proof.

5. Concluding remarks

We now briefly mention a few corollaries of our analysis. The IV
h we introduced in this paper

can be used as an intergrid transfer operator in an additive Schwarz algorithm to define a
preconditioner for the P1-nonconforming method. It can be proved, either by the general
strategy here, or by verifying conditions stated in [7], that the resulting preconditioner is
uniform with respect to fine and coarse mesh sizes. The critical estimates involved are those
given by Lemma 4.5.

We have shown how the intergrid transfer operator IV
h between the P1-nonconforming

spaces can be combined with the isomorphism Xh to yield intergrid transfer operators suit-
able for the hybridized mixed method. The analysis continues to hold if our IV

h is substituted
with some other intergrid transfer operators for the P1-nonconforming method developed
elsewhere. More precisely, abstracting the properties of IV

h used in our analysis, we have the
following theorem:

Theorem 5.1. If Ih = X−1
h ĨV

h XH for some ĨV
h : V 0

H 7→ V 0
h satisfying

|ĨV
h w|H1( � h) 6 C|w|H1( � H), and (5.1)

‖ĨV
h w − w‖L2(Ω) 6 CH|w|H1( � H), for all w ∈ V 0

H , (5.2)

and if Q̃H is as defined by (3.5), then the operator Bh defined by (3.6) is a uniform precon-
ditioner for Ah.

To consider a few applications of this theorem, let w ∈ V 0
H , and let zi be a vertex of TH .

In general, on different triangles τ ∈ TH connected to zi, the limit

lim
z→zi

z∈τ

w(z)

will differ. Let us denote by wi the average of these limiting values.
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Example 5.1. The following ĨV
h was defined in [7]: ĨV

h w is the unique function in V 0
h

whose values at the midpoints of e ∈ Eh coincide with those of the function w̃ that is
continuous on Ω, zero on ∂Ω, quadratic on every τ ∈ TH , equals w at midpoints of e ∈ EH ,
and equals wi at vertices zi of TH . It is proved in [7] that it satisfies (5.1) and (5.2).

Example 5.2. The following intergrid transfer operator was defined in [3] for use in a

multilevel algorithm: ĨV
h w is the unique function in V 0

h satisfying

∫

Ω

(ĨV
h w)vh =

∫

Ω

wvh dx for all vh ∈ V 0
h .

It follows from Lemma 4.5 that ĨV
h satisfies (5.1):

‖ĨV
h w − w‖2

L2(Ω) =

∫

Ω

(ĨV
h w − w)(IV

h w − w) dx

6 CH‖ĨV
h w − w‖L2(Ω)|w|H1( � H).

Proof of (5.2) is similar to that of (4.7). Note that implementation of this intergrid transfer
operator requires Gramm matrix inversions.

Example 5.3. The IV
h we have introduced (see (3.4)) is computationally less expensive

than the intergrid transfers of the previous two examples. However, it does not use informa-
tion from all available coarse grid degrees of freedom. Therefore, we introduce the following
modified operator: ĨV

h w is the unique function in WH which equals wi at all interior vertices
zi of TH . By arguments essentially similar to those in the proof of Lemma 4.5, we can prove
that (5.1) and (5.2) holds for this ĨV

h .

Unfortunately, it is difficult to assert using the analysis of this paper, that any one of
the intergrid transfer operators above is better than another. Such a comparison is probably
best done computationally.

It is possible to consider higher order coarse spaces instead of S0
H . Obviously, in such

cases, the isomorphism with lowest order nonconforming space that we used here will not
suffice. An analysis in the higher order case of a multilevel algorithm can be found in a
sequel.
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