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Executive Summary 
Damage in pile supported structures due to liquefaction and liquefaction induced deformation 

were reported in past earthquakes around the world (e.g., Ansal et al. 1999; Seed et al. 1990; 

EERI 2010, EERI 2011; GEER 2010a, GEER 2010b, GEER 2011). For example, a 

reconnaissance report from a recent subduction zone event, the 2010 Chile earthquake (Mw=8.8), 

showed the pervasive nature of liquefaction and liquefaction-induced lateral spreading damage to 

bridge foundations (GEER 2010a, Yen et al. 2011). In terms of seismic hazard, the Pacific 

Northwest shares similar conditions from a Cascadia Subduction Zone (CSZ) earthquake source 

with the expected earthquake magnitude of 9.0 (Mw) and return period of 300 years (Atwater et 

al. 1995, Atwater and Hemphill-Halley 1997). The risk and damage from a CSZ earthquake 

event is widely recognized by the Oregon Department of Transportation (ODOT) as presented in 

a report by ODOT (2009). A large number of bridges were found to be vulnerable to a CSZ 

event, and repair and replacement costs of Oregon bridges have been estimated at more than 1 

billion USD (ODOT 2009). Moreover, thousands of bridges require some kind of modification 

and/or seismic retrofitting to the foundation in order to improve seismic performance under 

liquefaction induced lateral spreading.  

To evaluate the seismic performance of bridge foundations and liquefaction mitigation 

alternatives, ODOT funded collaborative research between Oregon State University (OSU), 

University of California at Davis (UCD), University of California at San Diego (UCSD), 

Hayward Baker Inc., and Pacific Earthquake Engineering Research Center (PEER). The main 

objectives of the research were to develop design charts for different liquefaction mitigation 

alternatives and to develop methodologies for assessing the performance of bridge pile 

foundations in laterally spreading ground.  

The cooperative research focuses on two aspects of liquefaction and liquefaction induced 

lateral spreading: (1) ground improvement methods, particularly using stone columns and deep 

soil mixing (DSM) grids, and (2) assess the seismic performance of bridge foundations (e.g., 

drilled shaft, pile groups) and seismic retrofitting alternatives for the bridge foundation. Stone 

columns for liquefaction mitigation and pile groups foundation assessment were investigated by 

the OSU team, while DSM and large diameter piles/shafts alternatives were investigated by the 

UCD team. Research teams used OpenSees (http://opensees.berkeley.edu/), an open source 
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computational platform for three dimensional (3D) finite element (FE) modeling and analysis. 

OpenSeesPL, a graphical user interface developed by the UCSD team, was used to investigate 

liquefaction mitigation alternatives (i.e., stone columns and DSM grids) and the performance of 

pile foundations in liquefaction induced laterally spreading ground. 

This report presents a detailed literature review on stone columns and the behavior of pile 

groups under liquefaction induced lateral spreading (Chapter 1). For stone columns, literature 

reviews were conducted for methods of installation, working mechanisms in liquefaction 

mitigation, and performance during past earthquakes events. For pile groups, reviews were 

carried out on: 

o The parameters affecting the performance/response of piles (based on published 

experimental results on pile groups),  

o The state of practice to analyze numerically the pile group response under 

liquefaction induced lateral spreading, and  

o Design guidelines for bridge foundations recommended by CALTRANS (2011).  

The purpose of the literature review for stone columns was to identify gaps in our 

knowledge as a basis for research. From the literature review, no consensus was found on the 

contribution of the shear stress redistribution mechanism of stone columns to mitigating 

liquefaction. Some researchers (e.g., Baez 1995) argued that the shear redistribution mechanism 

is very effective to mitigate liquefaction, while others (Goughnour and Pestana 1998; Olgun and 

Martin 2008, Green et al. 2008) suggested not to rely on this mechanism for mitigating 

liquefaction. To resolve this issue, 3D FE analyses using OpenSees were carried out with 

different area replacement ratios of stone columns in a liquefiable soil profile. In the first phase 

of research, a linear elastic dry soil profile was investigated in order to gain insight on the 

distribution of shear stress/strain in soil. Since the current design relationship for stone columns 

is based on empirical relationships and linear elastic soil behavior, our linear elastic FE analysis 

results of this study are directly comparable to existing design relationship. Based on these 

results, modified design charts to account for the effect of shear stress redistribution were 

developed for stone columns in liquefiable soil. In the second phase, nonlinear FE analyses are 

being carried out, and preliminary results from the nonlinear analysis show similar trends for the 
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shear stress/strain distribution between stone columns and surrounding soils. Overall, the general 

conclusion made from linear elastic analysis results seems to be valid for nonlinear analysis 

results for liquefaction mitigation using stone columns. From the linear and nonlinear analyses 

results, it was found that stone columns are not effective in mitigating liquefaction through the 

shear reinforcement mechanisms. Therefore, shear stress reduction from stone columns should 

not be relied on for mitigation liquefaction. For ODOT to review entire body of work performed, 

all the publications (conferences and journal papers) from this stone column research are 

included as well (Appendix-E). 

In addition to the research for stone columns, as main requirement of ODOT, several step 

by step worked out examples are provided for:  

(1) assessing liquefaction and liquefaction induced lateral spreading for bridge foundation 

(Chapter 2);  

(2) assessing the seismic performance of drilled shaft foundations and pile group 

foundation for bridge interior bents along with different foundation retrofitting techniques 

(Chapter 3);  

(3) assessing the seismic performance of pile group foundations for bridge abutments 

along with foundation retrofitting techniques (Chapter 4); and liquefaction mitigation 

using stone columns and DSM grids for bridge foundations (Chapter 5). 

Parallel to the work of the OSU team, the UCD team also investigated the DSM grid on 

liquefiable soil using OpenSeesPL. The corresponding publications from their research are 

included in Appendix-E for ODOT to review. 
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Chapter 1: Review of Literature 

1.1. Introduction 

To reduce the risk for loss of life as well as damage of bridges different approaches can be used 

to make bridge foundations more resilient to liquefiable soils. The basic approaches that have 

been used are ground improvement techniques and/or structural modification. Ground 

improvement increases the liquefaction resistance of the liquefiable soil, while structural 

modification strengthens the foundation (e.g., drilled shaft, pile group) of the bridges to resist the 

loads generated due to liquefaction (e.g. lateral spreading displacement). This chapter presents a 

literature review of ground improvement techniques using stone columns and pile group 

foundations in liquefaction induced lateral spreading ground.  

1.2. Ground Improvement Methods for Liquefaction Mitigation 

Several soil improvement methods are used to mitigate the liquefaction potential of liquefiable 

ground by partially/fully replacing the liquefiable soil with non-liquefiable engineered fill. 

Generally, the selection of ground improvement techniques depends upon acceptable limits of 

geotechnical/structural performance, acceptable level of risk, soil conditions, and project cost. 

The most common soil treatment techniques used in practice are based on soil types, ideal depth 

of treatment, and relative costs (Table 1.1). The state of practice for using these techniques to 

mitigate soil liquefaction can be found in published literature (Stewart et al. 1997, Boulanger et 

al. 1998, Mitchell et al. 1998, Mitchell 2008). 

The most common methods for liquefaction mitigation involve densification, drainage, and 

cementation/reinforcing or a combination of these approaches. The utilization of the particular 

technique depends upon the in-situ soil type (e.g., clean sand, silty sand, no-plastic silts). Figure 

1.1 shows the applicability of liquefaction mitigation techniques for different sizes of soil 

particles (Mitchell 2008). Though most of the techniques can be applied to most types of soil, 

some methods are found to be more effective when treating within a particular range of particle 

size. Particularly, the stone column method is suitable for a wide range of soils such as sand, silt, 

and clay with particle size from 4.75mm to 0.0001mm (shown in dotted box). The wide range 

applicability of stone columns in different soil conditions makes it popular for liquefaction 

mitigation purposes. From Table 1.1, it can be seen that stone columns are relatively moderate in 

terms of cost to mitigate liquefaction in a variety of soil types and is suitable for relatively high 
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depth of liquefiable soil. The pros and cons of each liquefaction mitigation technique are 

described in Mitchell (2008).  

Comprehensive information about ground improvement methods shown in Figure 1.1 can 

be found elsewhere (Iai et al. 1994, Yasuda et al. 1996, Boulanger and Hayden 1995, Stewart et 

al. 1997, Boulanger et al. 1998, Francis and Gorski 1998, Bruce 2000). In the following section, 

liquefaction mitigation using stone columns is reviewed in detail due to ODOT’s particular 

interest in utilizing stone columns as a potential liquefaction mitigation method.  

1.2.1. Liquefaction Mitigation using Stone Columns 

Stone column construction involves the partial replacement of liquefiable soils with a vertical 

column of gravel or crushed stone or sand as backfill. The most common method of stone 

column installation is vibro-replacement method, while the auger-casing system method is also 

used in other countries such as Japan (Adalier and Elgamal 2004). 

Vibro-replacement columns are generally constructed using either an electric or hydraulic 

actuated cylindrical shaped vibrating probe which is inserted to the desired depth by vibration. 

The system utilizes a water jet or air to advance the vibrator to the design penetration depth. 

Thereafter, gravel or crushed stone backfill is fed in increments either from the surface or from 

the tip of the vibrating probe. Along with vibration, which tends to push the stones out into the 

soil, this further densifies the surrounding soil. The extent of densification is a function of soil 

type, fines content, vibrator type, stone shape, area of replacement, and spacing of stone columns 

(Adalier and Elgamal 2004). The typical vibro-replacement construction method is shown in 

Figure 1.2. More information regarding the construction of stone columns by vibro-replacement 

methods are available in Baez (1997).  

The auger-casing systems are generally constructed without the use of significant vibration 

to the gravel and the process does not densify the surrounding soil. In this method, a hollow 

auger is inserted in the ground to the design depth. A charge of gravel is placed through the stem 

of the hollow auger, and then the auger is withdrawn. Stone column construction by the auger 

casing method is popular in Japan, where the stone columns (also referred to as gravel drains) are 

used primarily to dissipate excess pore water pressure. However, current Japanese practice 

utilizes auger casing with an internal gravel feeding and compaction-rod system shown in Figure 
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1.3, which adds an important densification effect on the surrounding soil (Adalier and Elgamal 

2004).  

 

Table 1.1: Liquefaction mitigation methods (after Dickenson et al. 2002; Ferritto 1997) 

Method Principle Ideal Soil 
Conditions 

Suitable 
Depth 

Relative 
Cost 

Excavation and/or 
Compaction 

Excavate and dispose of liquefiable soils; Compact 
with new fill. 

All Unlimited High 

Vibratory Probe 
(e.g.,Terraprobe, 
Virbrorods) 

Densification by vibration; liquefaction-induced 
settlement and settlement in dry soil under 
overburden to produce a higher density.  

Saturated or 
dry clean sand  

20 – 40m   Moderate  

Vibro-compaction (e.g. 
Vibrofloat, Vibro-
composer) 

Densification by vibration and compaction of 
backfill material of sand or gravel.  

Cohesionless 
soils with 
<20% fines 

> 20 m Low to 
Moderate 

Compaction Piles Densification by vibration and soil displacement 
during driving. 

Loose sandy 
soil; partially 
saturated 
clayey soil 

> 20 m Moderate to 
High 

Dynamic Compaction  Repeated application of high-intensity impacts at 
surface. 

Cohesionless 
soils 

30 m Low 

Displacement 
(Compaction grout) 

Highly viscous grout pumped at high pressure to act 
as radial hydraulic jack to displace soil. 

All soils Unlimited Low to 
Moderate 

Surcharge or Buttress Added weight increases effective confining 
pressures, increasing resistance. 

Any soil 
surface 

Dependent 
on size of 
surcharge/bu
ttress 

Moderate if 
vertical drains 
are used 

Drains (e.g. Gravel, 
Sand, Wick, Wells) 

Relief of excess pore water pressure. Sand, silt, and 
clay 

Gravel & 
Sand: >30m 
Wick: > 45m 

Moderate to 
High 

Particulate Grouting Penetration grouting to fill void space with soil, 
cement, lime, and/or clay. 

Medium to 
coarse sand 
and gravel 

Unlimited Lowest of 
Grout 
Methods 

Chemical Grouting Void space filled with gel or solid precipitate Medium silts 
and coarser 

Unlimited High 

Pressure injected lime Penetration grouting- fill soil pores with lime.  Medium to 
coarse sand 
and gravel.  

Unlimited  Low  

Electrokinetic Injection Stabilizing chemical fills void space by electro-
osmosis or colloids through electrophoresis 

Saturated 
sands, silts, 
silty clays 

Unknown Expensive 

Jet Grouting High-speed jets excavate, inject & mix stabilizer to 
form columns or panels 

Sands, silts, 
clays 

Unknown High 

Mix-in-place piles and 
walls 

Lime, cement or asphalt introduced through rotating 
auger or special in-place mixer.  

Sands, silts, 
clays, all soft 
or loose 
inorganic soils.  

>20 m High 

Vibro-replacement 
Stone/Sand Columns 
(Grouted and not 
grouted) 

Hole jetted into fine-grained soil and backfilled with 
densely compacted gravel  

Sands, silts, 
clays 

> 30 m 
(limited by 
vibratory 
equipment 

Moderate 

Root piles, soil nailing Small-diameter inclusions used to carry tension, 
shear and compression.  

All soils Unknown Low  

Blasting  (Explosive 
Compaction) 

Shock waves and vibrations cause liquefaction, 
displacement  and settlement to higher density 

Saturated, 
clean sand 

> 40 m Low 
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Figure 1.1: Ground improvement methods for mitigating liquefaction (Mitchell 2008) 

 

Though there are different methods for the construction of stone column, in the United 

States, the vibro method is the most popular, and hereafter in this report stone column will refer 

to vibro-stone columns. Generally, stone columns are constructed in a grid pattern (e.g., 

triangular, square) where each stone column affects a tributary area as shown in Figure 1.4. The 

amount of soil replaced by the stone column is quantified by the area replacement ratio, Ar, 

which is the ratio between the cross-section area of the stone column and the tributary area of the 

stone column. The Ar is the important parameter used in the design of stone columns and governs 

the overall cost of the stone column installation. 

In terms of working mechanisms, stone columns help to mitigate liquefaction through 

one or more of these ways (Baez 1995; Adalier and Elgamal 2004). 

1) The construction process for stone columns densifies the surrounding soil, which 

increases the liquefaction resistance of the soil.  

2) Stone columns act as drains due to higher permeability than the liquefiable soil 

and allow the rapid dissipation of excess pore water pressure from the soil. 

3) Stone columns act as reinforcing elements due to higher stiffness than the 

surrounding soil. The stone columns attract higher shear stresses and thereby reduce stresses in 

the liquefiable soil. 
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The mechanisms of a stone column to mitigate liquefaction depend largely on the soil 

type. The effective mechanism and design consideration of stone columns for different soils are 

given by Baez (1995) are shown in Table 1.2. A detailed literature review on each mechanism is 

explained in the next section. 

Table 1.2: Mechanisms of stone column for mitigating liquefaction in different soil (Baez 1995) 

Soil type/ criteria Clean 
sands 

Silty sands with 
<15% fines 

Silty sands with 
>=15% fines 

Non plastic silts 

Densification  XX X   
Drainage  XX X X  
Shear Stress Redistribution X X XX XX 

 
 Note: XX means strong contribution factor 

 X means potential contributing factor from the particular mechanism 

 

 

Figure 1.2: Stone column construction by vibro-replacement (Adalier and Elgamal 2004) 
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Figure 1.3: Stone columns constructed by auger-casing with internal gravel feeding compaction-rod 
system (after Sonu et al. 1993; Adalier and Elgamal 2004) 

 

 

Figure 1.4: Stone column arrangement and tributary area 

 

1.2.1.1. Densification Mechanism of Stone Columns 

The stone column installation process involves insertion of a vibratory probe into the hole, then 

compacting stone (or gravel) and surrounding soil by vibration. Baez (1995) described the four 

mechanisms of densification of surrounding soil by stone columns. The first mechanism is the 

development of controlled vibration induced liquefaction in the surrounding soils that leads to 

densifying the soil due to the dissipation of excess pore water pressure. The second mechanism 

involves densification by the vibratory probe which tends to displace the soil even without the 

generation of excess pore water pressure. The third mechanism is the confining effect of 
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installing columns in groups instead of installing columns as single members. The fourth 

mechanism is the effect of improved resistance with time. The extent of densification in the 

surrounding soil is a function of the distance from the point of the installed stone column, in 

which densification effect is inversely proportional to the distance from the center of installed 

columns. In the United States, densification of soil using stone columns is the most widely 

accepted mechanisms contributing to liquefaction mitigation (Adalier and Elgamal 2004).  

Using stone columns alone to mitigate liquefaction is suitable for clean sands and sands 

with up to 20% fines, as the densification mechanism becomes ineffective as the percentage of 

fines increases in the soil (Baez 1995, Adalier et al. 2003). Silty soils are difficult to densify 

using stone columns because these soils are associated with a low coefficient of consolidation (or 

low hydraulic conductivity). The lower hydraulic conductivity of soil results in slower pore 

pressure dissipation during installation of stone columns, which prevents the densification of the 

soils (Shenthan, 2005). 

Baez (1995) developed an empirical relationship based on in-situ tests [e.g. Cone 

Penentration Test (CPT), Standard Penentration Test (SPT)] for the design of stone columns in 

sand with less than 15% fines content. Baez used pre- and post-improvement SPT data from 18 

case histories to determine the relationship between pre- and post-improvement SPT blow 

counts. An improvement factor, n, measured as the normalized post-SPT blow count divided by 

the normalized pre-SPT blow count, was developed. The plot of n versus pre-SPT blow count is 

shown in Figure 1.5. The relationship between pre- and post-improvement SPT blow counts for a 

set of area replacement ratios, Ar, of 5, 10, 15, and 20% is shown in Figure 1.6. The trends show 

that the lower the pre-SPT value (<20), the greater the improvement factor with higher values of 

Ar. However, at the higher pre-SPT values (>20), there is not a significant improvement with 

increase in Ar.  

Recent case histories show that the stone column technique may be used effectively to 

densify silty sands that contain fines exceeding 15% by using pre-installed supplementary wick 

drains. The supplementary drains help to relieve excess pore pressures developed during stone 

column installation (Andrews 1998, Luehring et al. 2001) and improve soil densification. 

Shenthan et al. (2004a and 2004b) developed an analytical procedure to evaluate soil 

response during stone columns installation and to assess the effect of various construction/design 
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choices and soil parameters on the degree of improvement achieved. Their analytical model 

simulated the pore pressure generation in the soil for the input vibrating energy during the 

installation, concurrent dissipation of pore pressure, and the resulting consolidation and 

densification of soil. Shenthan et al. (2004a and 2004b) found that area replacement ratio, 

hydraulic conductivity, and silt content are the important factors governing the densification of 

soil.  

 

Figure 1.5: Site improvement factor (n) vs normalized pre-SPT for different values Ar, for uniform 
fine to medium silty sands (<15% fine) (Baez, 1995) 

 

 

Figure 1.6: Prediction of post-SPT values based on pre-SPT for different values of  Ar for uniform 
fine to medium silty sands (<15% fine) (Baez, 1995) 
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1.2.1.2. Drainage Mechanism of Stone Columns 

As liquefaction is attributed to generation of excess pore water pressure during an earthquake, 

the performance of stone columns is directly related to their capacity to dissipate excess pore 

water pressure. Generally, the horizontal permeability of stone columns is much higher than the 

permeability of the surrounding soil. The spacing of the stone columns can be less than the 

distance required for water to drain vertically to the soil surface, so that the drainage will 

essentially occur in radial directions. Hence, due to the stone columns, excess pore water 

pressure generated due to cyclic loading can be dissipated as soon as they are generated. Baez 

and Martin (1992) conducted a field study of a stone column liquefaction mitigation site where 

they observed that the stone column provides a drainage path even during installation. 

Seed and Brooker (1977) proposed a simple radial flow analytical model to analyze pore 

water pressure dissipation through installed stone columns. Seed and Brooker presented a design 

chart, based on the stone column diameter and spacing, accounting for generation of excess pore 

water pressure between stone columns and earthquake parameters (e.g., number of uniform cycle 

representing possible earthquake records). It was suggested that the permeability of stone 

columns should be at least two times greater than the permeability of the native soil in order to 

reduce the development of high excess pore water pressure inside the stone columns. However, 

their model was limited by assuming infinite stone column permeability (no drain resistance), so 

that the excess pore water pressure in the stone columns is effectively zero and the hydraulic 

conductivity of the surrounding soil is constant.  

Sasaki and Taniguchi (1982) performed large scale shake table tests using clean sands 

and demonstrated that excess pore water pressure varies spatially inside the stone columns, 

contrary to the assumption made by Seed and Brooker (1977) that excess pore water pressure is 

constant. Sasaki and Taniguchi (1982) also found that high frequency strong motion earthquakes 

would lead to a quick buildup of excess pore water pressure in native soils. 

Millea (1990) conducted a numerical investigation using FE analysis to evaluate the 

effectiveness of stone columns for mitigating liquefaction with and without foundation footing. 

The FE model was calibrated with a centrifuge test on a saturated sand deposit. It was found that 

stone columns are effective in reducing pore water pressure up to a distance of one diameter 

(without footing) and two diameters (with footing) away from the stone columns when compared 

to the pore water pressure without stone columns and footing. Full scale blast-induced 
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liquefaction of a site improved using stone columns in loose cohesionless soils indicate that 

excess pore water pressure generation can be reduced and the rate of pore pressure dissipation 

increases due to stone columns (Ashford et al. 2000a and 2000b). 

In contrast to the work of Seed and Brooker (1977), Onoue (1988) developed design 

charts for stone columns by taking into consideration the finite permeability of gravel drains. 

Research showed that drainage resistance is important and should be considered in practical 

problems (Onoue 1988). On the other hand, Boulanger et al. (1998) investigated drainage effects 

of the stone column in layered soil conditions (with different hydraulic conductivity). They 

concluded that intermixing of stone column and native soil can substantially reduce the 

permeability of stone columns, potentially down to 0.01 times the original permeability. As a 

result, they recommend that the primary mechanism of liquefaction mitigation is densification 

without regard to drainage and any possible contribution due to drainage should be considered as 

a secondary effect. 

1.2.1.3. Reinforcement Mechanism of Stone Columns 

Installation of stone columns partially replaces the low stiffness liquefiable soil with relatively 

stiffer stone columns. This increases the overall stiffness of the treated ground. When the treated 

ground is subjected to earthquake ground motion, the stone column and surrounding soil deform 

laterally, thereby distributing the stress based on their relative stiffness. The stone column acts as 

a reinforcing element in the soil and, being relatively stiffer than the surrounding soil, attracts 

greater shear stress than soil, thereby reducing the overall shear stresses in the surrounding soil 

(Baez 1995). 

Baez (1995) developed theoretical concepts and equations to account for the distribution 

of shear stresses between stone column and the surrounding soil. Baez proposed that the stone 

column deforms in pure shear along with the surrounding soil. Shear strain compatibility is the 

primary assumption used to formulate the shear stress distribution between stone column and 

surrounding soil. Baez supported his idea of shear strain compatibility by assuming no loading 

from superstructure directed to the stone columns which can cause displacements in directions 

other than that of the ground motion. The basic equation used by Baez is 

s s sc scA A Aτ τ τ= +      (1.1) 
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where τ is total input shear stress, A is total plan area, As is area of soils, Asc is area of stone 

columns, τs is shear stress in soils and τsc is shear stress in stone columns. Baez introduced the 

concept of a cyclic stresses ratio (CSR) reduction factor, KG, to quantify the level of shear stress 

reduction in the native soil after installing stone columns as shown in Equation 1.2.  

( )
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     (1.2) 

where Gr= Gsc/Gs and Ar = Asc/A; Gsc and Gs are the shear stiffnesses of the stone columns 

material and soils, respectively. The factor, KG, is used as a shear reduction factor when 

liquefaction potential of the soil is evaluated. The average value of τ is computed using the 

simplified approach proposed by Seed and Idriss (1971). The effect of Ar and Gr on the CSR 

reduction factor, as proposed by Baez (1995), is shown in Figure 1.7. Increases in Ar or Gr can 

decrease shear stresses in the surrounding soil. 

 

Figure 1.7: Effects of area replacement ratio and shear modulus on the cyclic stress reduction 
factor (Baez 1995) 

 

Shear strain compatibility is the fundamental assumption used by Baez (1995), which is 

the basis for the design of stone column in current practice for mitigating liquefaction in silty 

soils. However, other researchers found that the shear strain compatibility assumption may not 
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be applicable for shear stresses distribution. Goughnour and Pestana (1998) studied the effect of 

slenderness ratio of stone columns and found that stone column behavior is mostly governed by 

bending and the surrounding soil behaves as a shear beam as shown in Figure 1.8. Goughnour 

and Pestana (1998) determined the shear stress in the stone column using the flexural 

deformation and derived the equivalent shear modulus, Gscm, which is defined as the shear stress 

divided by the shear strain experienced by the stone column as given by Equation 1.3. 
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where dsc is diameter of stone column, Vsavg is average shear velocity of the composite column 

and soil, T is period of earthquake ground motion, and υ is Poisson’s ratio. This modulus can be 

used to compute the shear stress reduction in the surrounding soil due to stone columns. 

Moreover, Goughnour and Pestana (1998) modified KG by incorporating the vertical stress ratio, 

n (defined as the ratio of vertical stress within the stone column and the in-situ soil) as shown in 

Equation 1.4. 
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Goughnour and Pestana (1998) found that the reinforcing effect of stone columns for the 

mitigation of liquefaction potential of surrounding soil is very small or negligible. Based on their 

research, it seems that there are no significant benefits from stone columns for liquefaction 

mitigation, if the design only relies on shear reinforcement mechanism.  

Olgun and Martin (2008) conducted 3D dynamic FE analysis using DYNAFLOW to 

better understand column deformation and shear stress reduction behavior. They considered a 

linear elastic stress strain relationship for the stone column and soil and came to the conclusion 

that the stone column deforms in a combination of shear and flexure during an earthquake. The 

deformed shape of the stone column and soil in their model is shown in Figure 1.9. The 

efficiency of the stone column to behave as a shear beam decreases as the stiffness of the stone 

column increases and thereby higher stiffness column limits the shear stress redistribution 

mechanism of stone column. Finally, Olgun and Martin (2008) conclude that the assumption of 
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using shear compatibility in stone column design approaches may greatly overestimate the actual 

level of seismic improvement in terms of shear stress reduction. 

 

 

Figure 1.8: Shear and flexural deformation modes of a stone column (after Goughnour and Pestana 
1998; Olgun and Martin 2008) 

 

 

Figure 1.9: Deformed shape of the soil-column system (Olgun and Martin 2008) 

 

Green et al. (2008) also performed 2-D finite element numerical analyses to understand 

seismically induced shear stresses between stone columns (e.g., Impact Rammed Aggregate Pier) 

and liquefiable soil. A soil profile of loose sand was considered with a stone column. They 



17 

 

provided large spacing (20 m) in their analysis in order to achieve the free field conditions at the 

halfway point between the stone columns. A linear elastic stress strain relationship for the stone 

column and soil was assumed and the model was subjected to an artificially generated 

earthquake ground motion. From the numerical analysis, they calculated the cumulative shear 

deformations (CSD) and cumulative flexural deformations (CFD) and percentage contribution of 

shear strain and flexural strains as  

100%
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=
+

=
+

     (1.5) 

The relative contribution of shear and flexure deformation in the stone column along the 

depth is shown in Figure 1.10. Green et al. (2008) conclude that the percentage contribution of 

shear and flexural deformation of stone column varies with depth, with the stone column 

deforming predominately in flexure near the ground surface and predominately in shear at 

greater depths. 

Green et al. (2008) derived a pseudo shear modulus of a stone column that deforms in a 

combination of flexure and shear (GIPflex+shear) by Equation 1.6  

IP flex shear CFD IPflex CSD IPshearG P G P G+ = ⋅ + ⋅      (1.6) 

where GIPflex is the equivalent shear modulus of stone column deforming in flexure, derived by 

Goughnour and Pestana (1998); GIPshear is the shear modulus of stone column deforming in shear 

The modified shear modulus can be used to evaluate shear stress reduction in surrounding soil 

due to stone column.  

Very limited experimental research has been published on the shear stress distribution 

behavior of stone columns. Adalier et al. (2003) conducted centrifuge tests to investigate shear 

stress redistribution between stone columns and non-plastic silty deposits under shallow 

foundations. In the free field condition (i.e. in the absence of surcharge loading), stone columns 

are only effective to reduce shear stress in the surrounding soil below 5-m depth from the ground 

surface and very ineffective near the ground surface. Moreover, they found that in order for the 

stone columns to work effectively by shear stress redistribution, at least 45 kPa vertical effective 
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confining stress would be required. However, no discussions were made about shear strain 

compatibility between stone columns and soil. 

 

 

Figure 1.10: Percent contributions of shear and flexural modes of deformation (Green et al. 2008) 

 

1.2.1.4. Performance of Stone Columns during Earthquakes 

Several researchers have documented the performance of improved ground during strong 

earthquakes (Mitchell and Wentz 1991; Mitchell et al. 1995). Mitchell and Wentz (1991) 

evaluated 12 improved soil sites from San Francisco Bay to Santa Cruz following the 7.1 (Mw) 

magnitude 1989 Loma Prieta earthquakes. The recorded peak ground accelerations ranged from 

0.11g to 0.45g near the epicenter. The soil improvement techniques used in these sites included 

stone columns, dynamic compaction, compacting grouting, and chemical grouting. Out of these 

techniques, three sites were improved using stone columns. They reported that the improvement 

techniques utilized were effective in mitigating liquefaction and no damage or distress was 

reported in the improved site. However, untreated soil showed signs of liquefaction induced sand 

boils. The densification and drainage mechanisms of stone columns were considered as main 

contributing factors in the liquefaction mitigation and no discussion were made regarding the 

shear reinforcing mechanism of stone column. One example was the building site in Treasure 

Island (California), where construction was underway at the time of the earthquake. At this site 

the soil was improved using stone column technique to a depth of 22 ft. The soil profile consisted 
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of 31 to 43 ft of loose to medium dense hydraulically placed sand underlain by 30 ft of soft bay 

mud. At the time of the Loma Prieta earthquake, building footings were cast partially (40%) and 

two 22-ft deep elevator shafts were excavated. The footing showed no cracking during the 

earthquake. A portion of the elevator shaft was filled with sand and it was concluded that the soil 

from 22 ft to 40 ft had liquefied. Liquefaction sand boils and cracking were observed in the area 

surrounding the building footprint, where soil was not treated. The stone column treatment was 

thus determined to be successful in mitigating liquefaction. 

Iai et al. (1994) reported on a quarry wall at Kushiro Port following the January 1993 

Kushiro-Oki earthquake. The earthquake magnitude was 7.8(Mw) and the site experienced peak 

ground accelerations of approximately 0.47g (Iai et al., 1995). The soil profile consisted of loose 

to medium hydraulic sand fill underlain by dense gravelly sand deposits. Stone columns and sand 

compaction piles were used to prevent liquefaction. They found that no significant liquefaction at 

the location of where site was improved with stone column. 

Baez (1995) evaluated two stone column sites following the 6.8 (Mw) magnitude January 

17, 1994 Northridge earthquake. One of the sites was a building located approximately 15 miles 

from the epicenter and experienced peak ground accelerations greater than 0.7g. The site 

consisted of inter-bedded layers of loose to medium dense sandy silt and silty sand to the depth 

of 40-ft below ground surface. No ground distress or liquefaction around the building was 

reported. The second site was an approach to an elevated railroad track 30 miles from the 

epicenter. Even for this case, no signs of liquefaction were evident in the improved site following 

the earthquake and stone column installation was considered effective in preventing liquefaction. 

1.2.2. Summary 

A review of the literature indicates that stone columns are an effective means for mitigating 

liquefaction hazards as shown in past earthquake performance. In particular, stone columns are 

very effective in improving liquefaction resistance in clean sand to silty sand (<15% fine 

content), in which densification can be easily carried out. A large volume of research has been 

carried out for densification and drainage mechanisms of stone columns (e.g., Baez 1995; 

Andrews 1998; Luehring et al. 2001; Adalier et al. 2003; Shenthan et al. 2004a and 2004b; Seed 

and Brooker 1977; Sasaki and Taniguchi 1982; Millea 1990; Ashford et al. 2000a and b; Onoue 

1988; Boulanger et al. 1998), but very little research has been performed on the shear stress 
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distribution mechanism of stone column. In current design practice for non-plastic silts, the shear 

stress distribution mechanism is considered to be effective in improving liquefaction resistance. 

Regarding shear stress distribution mechanisms, some researchers hypothesized that 

stone columns work as a pure shear beam (Baez 1995), while others argue that stone columns 

behave in both flexure and shear and may not be effective to reduce shear stress in the 

surrounding soil (Green et al. 2008; Goughnour and Pestana 1998; Olgun and Martin 2008). No 

clear understanding has been developed regarding the reinforcing mechanism of stone columns. 

In addition, the deformation mechanism and level of shear stress/strain distribution between a 

stone column and surrounding soil are not yet quantified. Based on the foregoing discussion, 

there is an essential need for research to resolve these issues. For this purpose, 3D finite element 

analysis would be suitable because numerical simulations cost less than experimental tests but at 

the same time can give in-depth information to understand stone column behaviors during 

earthquakes. Analysis of 3D soil profiles and stone columns would also help to understand the 

spatial distribution of shear stress/strain, which otherwise cannot be observed from the 

relationship such as used in current design practice (e.g., Baez 1995). Using numerical analyses 

approach, ODOT-sponsored research is currently being carried out to investigate the 

effectiveness of the shear stress distribution mechanism of stone columns. The initial findings 

from the research can be found in Rayamajhi et al. (2012). 
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1.3. Pile Groups on Lateral Spreading Ground 

The lateral resistance of pile foundations in liquefiable strata is often critical to the design of 

bridges and other structures. Liquefaction induced lateral spreading results in large ground 

deformations and has led to extensive damage to pile-supported bridges and other structures in 

past earthquakes (e.g. Bartlett and Youd 1992; Benuzka 1990; Chu et al. 2000; Fujii et al. 1998; 

Youd 1993). In the past few decades, numerous studies (case histories, physical model tests, and 

numerical investigation) have been conducted by several researchers to understand the complex 

mechanisms of soil-pile interaction in liquefiable soil and the related effects on superstructure 

performance. 

The following sections present an overview of pile group behavior under liquefaction 

induced lateral spreading ground based on experimental results. In addition, the critical 

parameters that influence the behavior of pile groups are identified. In subsequent sections, the 

capabilities and limitations of analysis methods for pile groups in liquefaction-induced lateral 

spreading ground are presented. 

1.3.1. Overview on behavior of pile groups based on experimental studies 

Generally, the load acting on a superstructure is larger than the capacity of a single pile. In 

addition, due to economic reasons, piles are usually constructed in groups and embedded in a 

reinforced concrete cap. Piles in a closely spaced group behave differently than single isolated 

piles because of pile-soil-pile interactions within the group (e.g., McVay et al. 1994, 1995, 1998; 

Remaud et al. 1998; Rollins et al. 2005a). In a pile group, an axially or laterally loaded pile 

generates its own displacement field, which interferes and overlaps with those of adjacent piles 

resulting in inefficiencies between piles within a group. 

Interference of the displacement field generated by the each pile within a group makes for 

complex mechanisms in determining lateral resistance of a pile group. In the case of a pile group, 

each pile within the group moves under lateral loading, pushing the soil in the direction of 

applied load. The lateral displacement/force in each pile within a group depends upon the 

location of the pile. Displacement of the pile located in the first (leading) row is resisted by the 

soil in front of the pile, whereas the piles located behind the first row (trailing rows) move the 

soil, which in turn moves the piles in the rows in front of them (leading row), as shown in Figure 

1.11. In a closely spaced pile group, the failure zones of individual piles overlap when the pile 
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group moves laterally. This overlapping of failure zones causes load and deformation of trailing 

rows that are lower than those for the front row. This is commonly referred to as the 

“shadowing” effect (e.g., McVay et al. 1994). The lateral resistance of the piles in a single row 

of a pile group (i.e. perpendicular to the direction of applied lateral load) is also different due to 

the pile interaction. This interaction is commonly called the “group” effect. 

 

 

Figure 1.11: Illustration of shadowing effect (overlapping zones creating additional load on piles 
within a group) 

 

The intensity of shadowing effects or interaction of the piles within the group also 

depends upon the liquefaction state of the surrounding soil. The lateral resistance of the piles in 

the leading and trailing rows in non-liquefied soil is different than that of liquefied soil. Full 

scale tests carried out by Brown et al. (1988) on pile groups installed on non-liquefied soil 

showed that the lateral resistance is greater for the front row piles than for the trailing rows and 

lateral resistance of piles in the trailing row within the group is remarkably lower than that for an 

isolated single pile.  
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Rollins et al. (2005b) conducted several full scale lateral load tests on a single pile and a 

pile group before and after blast-induced liquefaction. They found that the lateral resistance of 

the isolated pile is nearly the same as that for piles in the group. In addition, the pile interaction 

effects are found to be relatively unimportant/negligible for pile groups in fully liquefied sand 

immediately following liquefaction. However, after the excess pore water pressure is dissipated 

from the liquefied sand, the pile interaction effects become significant.  

The pile cap and its degree of fixity within the pile group also influence the behavior of 

piles within a group. Ashford et al. (2006) conducted full scale experiments to assess the 

behavior of single pile, 4-pile, and 9-pile groups subjected to blast induced lateral spreading at 

the Port of Tokachi, Hokkaido, Japan. Both the 4-pile and 9-pile group heads were restrained 

against rotation by a reinforced concrete cap. Compared to the single pile case, they found that 

restraining rotational movement of the pile cap led to stiffer response under loading exerted by 

liquefied soil resulting in smaller pile head displacement and smaller positive maximum moment 

in the individual piles within a group. In addition, they found that the degree of fixity of pile tips 

affects the moment of individual piles within a group, in that a larger degree of fixity resulted in 

greater bending moment in the pile.  

The axial force present in the pile group also affects the lateral response of piles. 

Centrifuge experiments performed by Abdoun et al. (2003) on single piles and pile groups 

showed the axial forces in the pile group can lead to lower values of bending moments in the pile 

group as compared to a single pile. They postulate that the smaller moment demands in the pile 

group were due to the frame effect and the developed moment depended on the contribution of 

axial forces in the individual piles. They also found that the maximum bending moment always 

occurred at the boundaries between liquefied and non-liquefied soil. 

Based on case histories of the 1995 Kobe earthquake, damage due to kinematic loading 

(i.e. from ground shaking and inertial loading) of pile groups are reported by several researchers 

(Tokimatsu et al. 1996, Tokimatsu and Asaka 1998, and Oh-Oka et al. 1997). In a simple soil 

profile and loading condition, the kinematics of a laterally loaded pile group is such that the piles 

in a group may have vertical movement in addition to lateral movement, rotation, and bending. 

The relative movement between the piles would occur under externally applied force and 

moment, causing the pile cap to rotate. This in turn forces the piles in the leading rows of the 
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pile-cap center to undergo downward movement while the trailing rows experience uplift 

movement, as shown in Figure 1.12 (Salgado 2008). 

 

 

Figure 1.12: Kinematics of laterally load pile group 

 

The kinematics of the group piles become more complicated in the presence of 

liquefaction induced laterally spreading ground. In addition, superstructure inertia and possibly 

laterally induced crustal loading increases the kinematic complexity, as shown in Figure 1.13. 

The crust load is generated from the movement of the crust layer in sloped ground. Due to 

liquefaction of the soil beneath the crust layer (Figure 1.13), the crust layer moves along the 

direction of lateral spreading, generating additional loads on the pile group. This additional load 

can further move the pile group, which again leads to increasing levels of crustal load. This is the 

typical pile-soil-pile interaction effect of pile groups in laterally spreading ground.  

Passive pressures from the soil are often assumed to contribute the largest components of 

lateral loading, while friction forces along the sides and base of the pile caps are often neglected 

(e.g., JRA 2002).  However, a number of researchers have shown that friction forces can impose 

significant loads on bridge components (e.g., Mokwa and Duncan 2001a, Rollins and Sparks 

2002, Brandenberg et al. 2005). Friction loads from the side and base of the pile cap) can 

contribute significantly to the total crustal loads exerted on the pile foundation, and these friction 

loads can be nearly as large as passive forces exerted on the upslope faces of the pile caps 
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(Brandenberg et al. 2005). The lateral loading from the liquefied soil depends upon the stiffness 

of the pile. If the piles are stiff relative to the soil, the liquefied soil exerts force along the 

direction of crust loading. For more flexible piles, the liquefiable soil may provide upslope 

lateral resistance on the pile, when the crust pushed the pile downslope such a way that the pile 

displacement is greater than that of the liquefiable soil.. Friction forces should also not be 

neglected when laterally spreading soils induce driving forces that increase seismic demands; but 

also should not be relied upon in cases where the soil provides resisting forces that reduce 

seismic demands on the structure (Brandenberg et al. 2005). 

 

 

Figure 1.13: Illustration of kinematics of group piles in liquefaction induced lateral spreading 
ground (adapted from Chang et al. 2005) 

 

Dynamic centrifuge experiments by Chang et al. (2005) showed that the lateral response 

of pile groups and liquefaction of soil beneath the crust results in relatively low frequency crust 

loads relative to base shaking frequency. Crustal load/kinematic loading, cap inertia and 

superstructure inertia were observed in phase and in the same direction as the maximum crustal 

load. The maximum loading (shear force) induced on piles always occured during earthquake 

shaking and the peak shear force in the pile-structure can be estimated as the sum of crustal load 

and inertia load (Chang et al. 2005).  

Tobita et al. (2006) conducted a series of centrifuge tests to study the dynamic behavior 

of pile foundations under lateral spreading. They conducted the experiments with different input 
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accelerations and durations of shaking.  It was found that the residual pile head displacement of 

the pile group becomes smaller as the duration of liquefaction becomes longer. The reason for 

this behavior was that the liquefied soils were soft enough to flow between the piles and exerts 

less lateral loads and longer shaking provides enough time for the piles to be unloaded. 

Based on the review of past experimental studies on the performance of pile groups 

subjected to liquefaction induced lateral spreading, the following effects and behavior on the pile 

groups are found to be important. 

 

• Shadowing and Group Effects 

Shadowing effects of pile groups in non-liquefied soil is widely recognized in 

literature. Due to shadowing effects, piles in the leading row carry higher loads than piles 

in trailing rows, and the lateral resistance of piles within a group is lower than single 

isolated piles. Pile groups in liquefied soil show negligible shadowing effects 

immediately following the liquefaction (Rollins et al. 2005 b), and thus group and 

shadowing effects can be ignored in fully liquefied soil.  

• Pile Cap Rotation Restrained and Lateral Resistance 

Restraining rotation and lateral resistance of the pile cap leads to stiffer response 

under lateral loading applied by liquefied soil, resulting in smaller head displacement and 

maximum moment as compared to a single pile (Ashford et al. 2006). 

• Friction Force in Pile Cap  

Friction force on the pile cap (side and bottom) induces additional loading on the 

pile group. In addition, passive pressure and friction force should not be neglected in 

design calculations. Assuming lateral loads are dominated by passive forces only could 

be very unconservative (Brandenberg et al. 2005). 
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• Kinematic Loading or Crust Load and Inertial Loading 

Crustal and inertial loading (both pile cap mass and superstructure) act in phase 

during the peak response of soil. A suitable combination of these loads is required to 

predict accurately the lateral response of a pile group.  

• Lateral Resistance of Liquefied Soil 

The lateral resistance provided by the liquefied soil becomes lower than the non-

liquefied soil, thus reduced lateral resistance for liquefied soil should be considered in the 

pile group analysis/design 

• Axial Force in Piles 

The contribution of axial force affects the maximum moment of individual piles 

in the group. Significant contribution of axial force from the piles in a group may result 

in less moment in individual piles in the group as compared to a single pile (Abdoun et 

al. 2003).  

• Degree of Fixity at the Pile Tip 

The extent of fixity of piles in a group influences the maximum moment of 

individual piles (Ashford et al. 2006). 

• Duration of Liquefaction   

The permanent lateral deformation of a pile cap depends on the earthquake 

shaking period and the duration of liquefaction. The longer the duration of motion, the 

less residual deformation of pile caps observed (Tobita et al. 2006). 

1.3.2. Numerical Analysis Methods for Pile Groups 

To design pile-supported deep foundations in liquefiable soils, a good understanding of soil-pile-

structure interaction is required along with robust analysis methods. The behavior of piles under 

working load conditions has been the focus of numerous studies over the past few decades. The 

analysis methods available in the literature range from simplified methods (e.g., limit 
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equilibrium method, p-y methods) to complex methods based on 3D FEM. In the following 

section, the procedures involved in different methods are summarized.  

1.3.2.1. Limit Equilibrium Method of Analysis  

The limit equilibrium (LE) method involves applying passive pressures that are independent of 

the free-field soil displacements. The underlying assumption for this method is that free-field soil 

displacement is large enough to cause laterally spreading soils to reach their ultimate passive 

earth pressure resistance.  

The Japan Road Association (JRA 2002) provides guidelines to analyze piles subjected to 

liquefaction induced lateral spreading. For kinematic loading from lateral spreading, the JRA 

guidelines impose lateral pressures from the liquefied layer and from any overlying non-liquefied 

layers, as shown in Figure 1.14. Estimations of lateral movement forces are provided in JRA 

(2002) were based on calibrating the damages from the 1995 Kobe, Hyogo-ken Nanbu 

earthquake. The non-liquefied layers are assumed to impose passive earth pressures into piles 

located within 100-m from the waterfront and depends on liquefaction index. The liquefied 

layers are assumed to impose a lateral pressure equal to 30% of the total overburden stress, 

subject to a reduction factor for being within 50-m from water front . Lateral pressures from the 

non-liquefied and liquefied layers are reduced by a factor of 0.5 for distances of 50 to 100-m, 

and neglected for distances greater than 100-m. These modification factors for water front 

distance were obtained empirically based on the lessons learned from the 1995 Kobe earthquake. 

Abdoun (1997) and Dobry et al. (2003) utilized the LE method to analyze piles and 

compared the results with series of centrifuge tests. In Abdoun analysis, the soil pressure of 

liquefied layers is assumed to be equivalent to a uniform pressure of 10 kN/m2 (Figure 1.14). The 

assumed uniform pressure from liquefied soil reasonably predicted the experimental centrifuge 

data. The LE method could reasonably predict the occurrence of maximum bending moment at 

the interface between liquefied and non-liquefied soil layers. Dobry et al. (2003) also used the 

same experimental centrifuge tests to calibrate the LE analysis results and proposed the two LE 

methods for evaluating the bending moments in a single pile foundation subjected to laterally 

spreading ground. The case study conducted by Dobry et al. (2003) using their proposed LE 

methods predicted well the response of end-bearing and floating piles under laterally spreading 

ground. 
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Ashford and Juirnarongrit (2004) evaluated the LE method for the case of a single pile 

subjected to lateral spreading. They compared the results with full scale tests of piles subjected to 

blast induced lateral spreading. The displacements were computed based on structural mechanics 

for cantilever beam conditions using pile properties and loads acting on the pile. It was found 

that the LE method reasonably estimates the pile bending moments but underestimates the pile 

displacements. This is one of the limitations of the LE method in that the lateral displacement of 

piles cannot be determined accurately.  

From the literature review of pile groups (Section 1.3.1), it was found that friction forces 

between the lateral spreading crust and the pile cap (side and below) are significant. However, 

JRA (2002) does not provide any guidelines to account for this effect. In fact, no specific studies 

have been found to account for such effects using the LE method. Furthermore, this method is 

limited to static analysis and cannot be utilized to predict the response of piles directly subjected 

to earthquake ground motion, i.e., dynamic time history analysis. Therefore, this method cannot 

directly simulate the dynamic loading from pile cap mass or superstructure mass, which are very 

critical to the behavior of pile groups as discussed in Section 1.3.1. 

 

 

Figure 1.14: Limit equilibrium method based on recommendations by (a) JRA (2002) and (b) 
centrifuge test results at RPI (Abdoun 1997; Dobry et al.2003) 
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1.3.2.2. The p-y Method of Analysis  

The p-y method using pushover analysis is one of the most widely accepted simplified methods 

to analyze the pile supported deep foundation under lateral loading. This method is based on the 

modification of the concept of Beam on Nonlinear Winkler Foundation (BNWF). In the p-y 

analysis method, the soil is represented by a series of independent soil springs along the length of 

the pile (i.e., the soil is divided into finite intervals along the depth), and the piles are modeled 

using elastic beam elements. The properties of the nonlinear soil spring are represented by the 

relationship between the lateral soil resistance (p) and relative displacement (y) between the pile 

(yp) and soil (ys), and commonly called p-y curves as shown in Figure 1.15. The response of the 

pile foundation is estimated by imposing the lateral spreading displacement of the liquefied soil 

and overlying crust layer. This method is sometimes termed as displacement method of p-y 

analysis. 

 

 

Figure 1.15: The p–y analysis model for pile subjected to lateral spreading (adapted from 
Juirnarongrit and Ashford 2006) 
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The modeling and analysis of single piles under laterally spreading soil is relatively 

simple. However, analyses of pile groups using the p-y method are much more complex than 

single piles because of several factors that need to be considered (Section 1.3.1). During the past 

two decades, several researchers have proposed techniques to evaluate and design piles groups 

subjected to lateral spreading.  

One simple approach is to model the pile group as an equivalent single pile (Mokwa 

1999; Juirnarongrit and Ashford 2006). In this technique, the stiffness of the equivalent single 

pile is estimated by combining the stiffness of all the individual piles in a single group. To 

account for interaction of piles within a group, a p-multiplier (fm, described later) is applied in the 

p-y curve of the nonlinear spring for the individual pile, and then the equivalent p-y curve is 

estimated by combining the p-y curves of all individual piles within a group.   

Juirnarongrit and Ashford (2006) evaluated the response of 4-pile and 9-pile groups 

subjected to blast-induced lateral spreading using LPILE (http://www.ensoftinc.com) for the 

computational platform. The 4-pile group was modeled using the p-y approach shown in Figure 

1.16, where the pile cap is modeled as a pile with diameter equal to the width of the pile cap. The 

lateral resistance of the soil around the pile is modeled as a soil spring. Juirnarongrit and Ashford 

investigated the three conditions of pile cap rotation behavior; namely, free head, fixed head, and 

with a rotational spring. It was found that neither the free head nor fixed head conditions 

provided a better estimate of pile response; however, reasonable estimation of pile bending 

moments and pile displacement was achieved using a cap rotational spring.  In terms of 

modeling, their study did not include the effect of pile cap inertia and friction force on the sides 

and below the pile cap. Experiments on pile groups show that inertia of the pile cap and friction 

force between the side and below the pile cap are important parameters for design (Brandenberg 

et al. 2005). 



32 

 

 

Figure 1.16: The p-y analysis for pile group (adapted from Juirnarongrit and Ashford 2006) 

 

Some limitations of the simplified equivalent single pile method can be improved by 

adopting the method used by Brandenderg et al. (2007). Their model is an extension of the 

equivalent single pile but is more advanced and more detailed. They used OpenSees as a 

computational platform. The basic schematic of the p-y model used by Brandenderg et al. is 

shown in Figure 1.17, where the pile groups are not modeled as a single pile. Instead, the piles 

perpendicular to the direction of loading are combined and replaced with the equivalent 

size/stiffness pile. The pile cap is modeled using a beam element with equivalent size as the 

width of the cap. The lateral resistance of the pile is defined by using p-y curves. In addition, this 

model explicitly incorporates the skin friction resistance and tip resistance of individual piles 

within a group. Inertial load is directly applied at the location of pile cap combined together with 

the laterally spreading displacement. The detailed modeling procedure is described in Boulanger 

et al. (2003). Brandenderg et al. (2007) compared the response of pile groups modeled by using 

the above described procedure with experimental dynamic centrifuge tests results. They found 

that the pile group responses can be reasonably predicted using this procedure. The pile bending 

moments were overpredicted on average (16th and 84th percentile errors were -8% and +69%, 

respectively) and pile cap displacement underpredicted on average (16th and 84th percentile 

errors were -38% and -6%). 
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Figure 1.17: Schematic diagram for the p-y analysis method for pile group (using pushover 
analysis) 

An alternative method to conduct p-y analyses that accounts for the effect of liquefaction 

induced lateral spreading on a pile group is based on limiting pressure (sometimes termed the 

force-based method). In this technique, passive pressure is applied over the depth of the laterally 

spreading soil. The p-y springs of laterally spreading soil are removed including the crust layer 

(if any) but, p-y springs are used in the underlying non-liquefied soil. The applied lateral 

pressures are independent of the free-field soil displacements since the soil movements are 

assumed to be large enough to cause lateral pressures to reach their limiting values. The 

schematic diagram for this method and comparison with the displacement imposing method is 

shown in Figure 1.18.  

Brandenderg et al. (2007) conducted numerical studies using limiting pressure techniques 

to evaluate the response of pile groups subjected to lateral spreading. The limiting pressure 

method reasonably predicts bending moments for large earthquakes, but overpredicts bending 

moments for small and medium earthquakes because at small load the limiting pressure may not 

fully mobilized. On the other hand, this method underpredicts the lateral displacement of pile 

cap. Though Brandenderg et al. (2007) have conducted the p-y analyses using both displacement 

based and force based method, no specific conclusions were made regarding the superiority of 

one method to another in this publication.  
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Figure 1.18: p-y Analysis method using displacement imposing method (a) compared with limiting 
pressure (b) (after from Boulanger et al. 2003) 

 

Though the p-y method of analysis can reasonably estimate the lateral response of the pile 

group, there are other limitations: 

• p-y curves are developed empirically by back-fitting the results of numerical 

analysis to match the actual field pile-load test results. Thus, p-y curves developed 

for a particular site may not necessarily be applicable to other sites. 

• Pushover analysis can reasonably estimate the envelope of the response; 

however, this method does not capture the cyclic behavior of soil (i.e. dilation and 

contraction) and the accumulation of permanent displacement and rotation during 

cyclic loading (Brandenderg et al. 2007). 

• The assumption of simultaneous application of lateral spreading deformation 

and inertia load is valid for stiffer piles but conservative for flexible piles 

(Brandenderg et al. 2007). 
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• This method cannot account for the dynamic behavior of pile cap and 

superstructure mass nor can it account for the duration of earthquake ground 

motion. 

To account for some of the above limitations (e.g. dynamic inertial loading and 

earthquake duration), nonlinear dynamic time history analysis of pile groups is required. 

Although the modeling techniques described above are quite advanced, dynamic time history 

analysis is a more complicated and sophisticated modeling technique. The basic schematic 

diagram for pile group analysis using the p-y method with dynamic time history analysis is 

shown in Figure 1.19. The free field response of the soil is model with more advanced soil 

constitutive model, which can capture behavior of soil under cyclic loading (i.e. contraction, 

dilation, and shear strain accumulation). In this analysis, rather than imposing any displacement 

or pressure load, the liquefaction induced lateral spreading load is implicitly incorporated 

through the far field soil modeling. This modeling and analysis technique was adopted for the 

evaluation of pile groups in non-liquefied soil by Curras et al. (2001). Boulanger et al. (2003) 

conducted numerical investigations using OpenSees, with a procedure similar to that described 

above, for a single pile subjected to liquefaction induced lateral spreading. They found that this 

method could reasonably capture the principle features of single pile behavior and liquefaction 

effects. 

 

Figure 1.19: Schematic diagram for the p-y analysis method for pile group using dynamic time 
history analysis (adapted from Curras et al. 2001) 
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p-y Curves for Liquefied Soil 

It is recognized that the p-y curves of soil are affected by liquefaction. Although several methods 

are available to develop p-y curves for non-liquefied soil (Resse 1974; API 1987), limited 

guidelines are available to account for lateral resistance of liquefied soil. Researchers have 

proposed different methods to account for the effect of liquefaction on p-y curves based on full 

scale or centrifuge test results.  

Based on their centrifuge test model, Liu and Dobry (1995) and Wilson (1998) proposed 

the p-multiplier (mp, a scaling factor) to incorporate liquefaction of the soil. This factor 

multiplies the p-y curves of non-liquefied soil to obtain the equivalent p-y curves for liquefied 

soil. The value of mp varies from 0.3 to 0.1, and it decreases with an increase in pore water 

pressure and becomes 0.1 when the excess pore water pressure becomes unity (i.e. ru=1). Wilson 

et al. (2000) suggested that the p-multiplier for a fully liquefied soil also depends on the initial 

relative density, Dr. The values of the p-multiplier for liquefied sand ranged from 0.1 to 0.2 at 

about 35% relative density and from 0.25 to 0.35 at 55% relative density. 

For the lateral resistance of liquefied soil, Wang and Reese (1998) proposed to model the 

properties of liquefied sand as soft clay. The p-y curves were generated using the soft clay 

criteria and the maximum undrained shear strength was set equal to the residual strength of 

liquefied sand. Rollins et al. (2005b) conducted the lateral analysis of piles subjected to lateral 

spreading and compared the results with full-scale blast induced liquefaction tests of piles. They 

investigated three methods to incorporate the liquefaction effect on pile response: the Wang and 

Reese (1998) approach of residual strength, the Liu and Dobry (1995) and Wilson (1998) 

approach of p-multiplier, and no lateral resistance of liquefied soil. It was found that none of the 

approaches could predict accurately the lateral response of piles subjected to liquefaction.  

The p-y curves of liquefied and laterally spreading soil are much more complex than non-

liquefied soil. In fact, back calculated p-y curves from full scale experiments (Weaver et al. 

2005; Rollins et al. 2005b) and small-scale centrifuge experiments (Wilson et al. 2000) are 

characterized by concave-up load displacement shape where the slope of the curve increases as 

the displacement increases. This nature of p-y curves is due to dilative behavior during the 

shearing of sand and the shear strains that cause dilatancy can be imposed by the pile as it pushes 

through the liquefied sand or by free-field ground shaking (Ashford et al. 2011). The relationship 
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proposed by Rollins et al. (2005b) can estimate the p-y curves for liquefied sand as a function of 

depth; however, the relationship was derived for soil pressure of 15 kN/m2 or less, deflection of 

150-mm or less, liquefied sand depth of 6-m and initial relative density of sand approximately 

50%. Thus, the relationship is only suitable for similar type conditions of liquefied soil. 

Recently, Ashford et al. (2011) compiled p-multipliers for liquefied sand based on published 

recommendations as shown in Figure 1.20. The p-multipliers for liquefied sand can be obtained 

based on SPT blow count in equivalent clean sand.  

A review of literature shows that there is not a consistent procedure for considering 

liquefaction resistance of liquefied soil. The prediction of strength of liquefied soil varies quite 

significantly between different researchers therefore cautions need to be made when selecting 

analysis methods for piles in liquefaction induced laterally spreading ground. 

 

 

Figure 1.20: p-multiplier (mp) versus clean sand equivalent corrected blow count, (N1)60cs, from a 
variety of studies (Ashford et al. 2011) 
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Pile Group Effects using p-multipliers 

As noted in Section 1.3.1, piles in a group carry unequal lateral loads depending on their location 

within the group and the spacing between piles. This unequal distribution of load is caused by 

“shadowing” and “group” effects that cause soil resistance to reduce within a pile group. A 

popular method to account for shadowing effects is to incorporate p-multipliers into the p-y 

method of analysis as shown in Figure 1.21. Several p-multipliers are available in the literature 

to account for shadowing effects. An extensive literature review conducted by Mokwa (Mokwa 

and Duncan 2001b) compiled p-multipliers obtained from several full scale and centrifuge model 

tests, as shown in Figure 1.22. Their p-multipliers depend upon the diameter of the pile, spacing 

between the leading and trailing rows, and the location of the pile row. Juirnarongrit and Ashford 

(2006) compiled p-multipliers from previous published experimental studies on different soils 

(e.g., clay, sand, silty sand) and the blast-induced liquefaction experiment by Ashford and 

Rollins (2002). They proposed a chart for p-multipliers for pile group analysis, as shown in 

Figure 1.23. Their p-multipliers only depend on the spacing between the piles in terms of pile 

diameter and the location of rows within a pile group.  

 

 

 

 

Figure 1.21: p-y models for laterally loaded piles (adapted from Mokwa 1999) 
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Figure 1.22: Recommended p-multipliers for group effects (from Mokwa and Duncan, 2001b) 

 

 

Figure 1.23: p-multiplier for the pile group (Juirnarongrit and Ashford 2006) 
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1.3.2.3. Finite Element Method of Analysis 

The more advanced and sophisticated method for assessing soil-pile interaction behavior in 

liquefaction induced laterally spreading soil is using nonlinear dynamic 2D/3D FE analysis. This 

method can be used with a variety of constitutive models including those for liquefiable soils 

(e.g., Li and Dafalias 2000; Yang et al. 2003). FE analysis has the ability to simulate contraction 

and dilation behavior of soil during liquefaction, in addition to capturing the interaction between 

the pile-soil-pile and superstructure. However, the accuracy of the results depends upon the 

ability to predict soil properties and selecting appropriate constitutive models to represent actual 

soil conditions, which depends on the calibration and validation of numerical methods with 

physical test data. Unfortunately, there is very limited experimental data available for calibration 

for liquefaction induced laterally spreading ground conditions. The major disadvantage of FE 

method is the high demand for computation time, input data, and interpretation of results. 

In FE modeling, all components are modeled with solid elements, typically iso-

parametric hexahedron elements / brick elements (Brown and Shie 1990; Kimuara et al.1995; 

Muqtadir and Desai 1986; Trochanis 1991; Wakai et al. 1999; Elgamal et al. 2003; Yang and 

Jeremic 2003, 2005). Interface elements simulate interaction between the soil and structural 

elements, which includes behavior such as stick or no slip mode, slip or sliding mode, and 

separation or debonding mode (Muqtadir and Desai 1986; Elgamal et al. 2003; Yang and 

Jeremic 2003; Petek 2006; Lam et al. 2009). The pile-soil interface (usually a thin layer in size) 

is also modeled with solid elements. Each component (i.e., pile, pile cap, soil, and interface 

element) is modeled with their own constitutive relationship, which varies from linear elastic to 

non-linear elastic, and elastic-perfectly plastic behavior depending upon the simplification 

considered in the analysis (Pressley and Poulos 1986; Muqtadir and Desai 1986; Brown and Shie 

1990; Trochanis et al. 1991). 

Wakai et al. (1999) have simulated a number of models on fixed and free head pile 

groups by using 3D elastic-plastic FE method and found a good correlation between the 

experimental and analytical results. Bourgeois et al. (2010) used the 3D FE method to simulate 

the behavior of vertical piles under cyclic loading. Their results also showed good match 

between experimental and simulated results. Yang and Jeremic (2003) conducted numerical 

analysis of group effects for 3x3 and 4x3 pile groups in loose and dense sands using 3D FE 

method with elastic-plastic material. They used OpenSees (Mazzoni et al. 2007) as the 
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computational platform to conduct static pushover analysis and successfully simulated centrifuge 

test results. In recent years, development in FEM has been quite significant. Several soil 

constitutive models are available to simulate the response of different soils including the 

earthquake-induce liquefaction and pile group response on these soils. Elgamal et al. (2009) 

showed computational power of OpenSees to simulate 3D pile group response in liquefaction 

induced laterally spreading conditions.  

McGann et al. (2011) conducted several 3D FE analysis of a single pile in laterally 

spreading ground and evaluated the applicability of conventional p-y curves in computing the 

pile response. They found significant difference between the results obtained from 3D FE 

analysis and by using conventional p-y analysis. The API curves tend to have significantly higher 

initial stiffness than the p-y curves derived from 3D FE analysis. They concluded that 

conventional p-y curves using API (1987) gives unreasonable results for use in design by 

predicting high moment demand in the pile as compared to 3D FE analysis. Therefore, 

recommendations were made not using such p-y curves without modifications for initial stiffness 

and ultimate resistance. Since, 3D FE analysis requires very high computational effort in terms 

of time and cost, FE analysis for pile group in routine engineering design practice is beyond 

reach.  

1.3.3. CALTRANS Lateral Spreading Design Guidelines  

Based on recommended procedures developed by Ashford et al. (2011), the California 

Department of Transportation (CALTRANS) established draft guidelines for the design of pile 

foundations in liquefaction-induced laterally spreading ground. The procedure recommended by 

CALTRANS (2011) is based on an equivalent nonlinear static analysis methodology (or p-y 

analysis method) as discussed in Section 1.3.2.2. In particular, the guidelines provide for two 

distinct design cases: (1) an unrestrained ground displacement case in which the foundation does 

not provide any support to large soil mass movement, and (2) foundation restrained ground 

displacement design case in which the failure soil mass is limited so that the foundation provides 

partial restraint to its movement. The typical schematic diagram for these two cases is shown in 

Figure 1.24. The following section summarizes the design of these cases recommended in 

CALTRANS (2011). 

 



42 

 

 

 

Figure 1.24: Diagrams for foundation restrained and unrestrained displacement cases 
(CALTRANS 2011) 

 

1.3.3.1. Unrestrained Ground Displacement Design Case 

In the unrestrained design case, it is assumed that the displacing soil mass is significantly large 

such that the foundation cannot provide any resistance to its flow or movement. The implication 

is that the lateral resistance of the foundation is relatively negligible compared to the lateral 

spreading loads and that the soil mass displaces the same amount regardless of the presence of 

the foundation. A typical case for the unrestrained ground displacement case is shown in Figure 

1.24. The overall seismic evaluation procedures involve estimating crustal displacement and 

providing sufficient capacity to foundation to satisfy the lateral spreading load demand. The 

overall procedures to design the foundations for the unrestrained ground displacement case are 

carried out in the following steps: 

1) Assess Liquefaction Potential of Soils 

The liquefaction potential of the site soils are evaluated for peak ground acceleration 

(PGA) based on 5% in 50 years seismic hazard at the particular site. The liquefaction 

assessment can be carried out using semi-empirical and field based simplified procedures 

(e.g., Youd et al. 2001). 

2) Estimate Residual Strengths of Liquefied Soils and p-y Curves 

Two approaches are recommended to account for the lateral resistance (p-y curves) of the 

liquefied soil without any particular preference. The first method is based on the p-

Foundation unrestrained 

ground displacement case 

Foundation restrained ground 

displacement case 
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multiplier (mp) approach in which the p-y curves for the liquefied soils are obtained by 

scaling the p-y curves of equivalent clean sand as described in Section 1.3.2.2 (e.g., 

Ashford et al. 2011). The second method is based on using p-y curves for soft clay (e.g. 

Matlock 1970) in which the undrained shear strength of the soft clay is replaced by the 

residual strength of the liquefied soil estimated from semi-empirical relationship (e.g., 

Wang 2003, Kramer 2008). 

3) Estimate Lateral Spreading Displacement of Slope 

First, the slope stability factor of safety (FS) is determined without taking into account 

any effect of foundation. If FS≤1.05 then flow type failure with a very large soil 

displacement is assumed. When the lateral displacement is sufficiently large, ultimate 

passive force for the crust on the foundation is fully mobilized and analysis is considered 

to be insensitive to the specific displacement value. Typically, an assumption of 5-ft of 

crustal displacement is assumed to be sufficient to mobilize the passive earth pressure. If 

FS>1.05, the lateral spreading displacement is estimated using simplified procedures. 

Two methods are recommended based on the slope failure surface predictability. When 

the slope has a predictable failure surface, a Newmark sliding block-based approach is 

recommended and the deformation is estimated using the Bray and Travasarou (2007) 

procedure. When the slope is gentle, the failure surface is difficult to define, and 

displacement is the result of distributed shear, the displacement is estimated using the 

strain potential approach based on Faris et al. (2006) methods. 

4) Develop Foundation Model 

The p-y method of analysis is used which is based on BNWF concept as discussed in 

Section 1.3.2.2. The overall procedure involves defining an equivalent pile model for a 

pile group foundation, defining p-y curves for the pile cap (to capture pile cap-soil 

interaction), and defining p-y curves for the piles (to capture soil-pile-soil interaction). 

The schematic modeling technique using an equivalent pile method is shown in Figure 

1.25. The worked out examples in CALTRANS (2011) were based on the LPILE 

software 
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Section analysis is carried out to obtain the nonlinear moment-curvature relationship for 

the pile in the group. The flexural stiffness and bending moment of the equivalent pile is 

obtained by multiplying the flexural stiffness and bending moment of a single pile by the 

number of piles in the group. The pile cap is modeled as an elastic section with relatively 

large bending stiffness (for rigid behavior) compared to the piles. A rotational restraint is 

provided as a boundary condition at the top of the pile, which accommodates finite 

rotation of pile cap (e.g., Mokwa and Duncan 2003).  

 

Figure 1.25: Schematic diagram for the modeling of pile group bridge foundation using an 
equivalent pile model under lateral spreading ground deformation (CALTRANS 2011) 

 

The p-y curve for the pile cap is developed based on ultimate passive pressure force from 

the laterally spreading soil (Fult) exerted on the foundation and the maximum 

displacement (Δmax) required to mobilize fully the passive earth pressure force. 

CALTRANS (2011) considered two possible critical failure surfaces to compute Fult: (1) 

a log-spiral based failure surface on the pile cap combined with the lateral resistance 

provided by the portion of the pile length that extends through the crust as shown in 

Figure 1.26 (a), and (2) a Rankine based failure surface acting on the pile cap, soil crust 

beneath the pile cap, and piles within the crust assuming all these act as a composite 

block as shown in Figure 1.26 (b). The smallest value of Fult is considered to control the 

failure mechanism. The Δmax is estimated as 5% of the cap height with two adjustment 

factors which accounts for the effects of pile cap thickness and depth of the crustal layer 
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(e.g., Brandenberg et al. 2007). Once Fult and Δmax are computed, a trilinear p-y curve can 

be developed, as shown in Figure 1.27. 

 

 

a) Case 1 

 

b) Case 2 

Figure 1.26: Possible failure cases for the non-liquefied crust layers (CALTRANS 2011) 

 

 

Figure 1.27: Idealized p-y curve for pile cap (CALTRANS 2011) 
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The p-y curve for the pile can be developed based on different soil materials available in 

LPILE. For example, sand can be modeled using the API (1993) or Reese et al. (1974) 

procedure, soft clay can be modeled using the Matlock (1970) procedure, and stiff clay 

can be modeled by the Reese and Welch (1975) procedure. The p-y curve for liquefied 

sand is modeled as clay with its residual strength (Matlock 1970). The shadow/group 

effects in the pile group are considered using p-multiplier (e.g., Mokwa and Duncan 

2001b) as discussed in Section 1.3.2.2. Furthermore, the effects of liquefied soil on the 

lateral resistance of the upper and lower non-liquefied soil layers are considered by 

applying a p-multiplier to the ultimate lateral resistance. The p-multipliers for the non-

liquefied soil are calculated based on the ultimate resistance of liquefied and non-

liquefied layer as 

 

1u L u L

u NL u NL b

p p zmp
p p S B

− −

− −

  
= + −  

  
     (1.7) 

where Pu-L is the ultimate lateral resistance for liquefied layer, Pu-NL is the ultimate lateral 

resistance for the non-liquefied layer, z is the depth, B is the diameter of the pile, and Sb is 

the factor based on the zone over which the p-multiplier is applied due to smeared profile 

as shown in Figure 1.28. The Sb factor is estimated as 
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Finally, all p-multipliers are multiplied by the number of piles in the group in order to get 

the p-y curve for the equivalent pile. In the liquefied layer no p-multiplier is considered 

for the group effect. 
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Figure 1.28: Smeared profile correction for lateral resistance to account for the weakening effect of 
liquefied soil on strength of surrounding soil (Ashford et al. 2011, CALTRANS 2011) 

 

5) Estimate Inertial Forces 

For a typical bridge bent, inertial effects from the superstructure are considered by 

applying moment and shear force at the pile head. The shear force and moment from the 

superstructure can be obtained from two methods.  

First, if the column is expected to yield (developing plastic hinges) before the foundation, 

inertial moment is estimated as 1.2 times the plastic column moment and shear force is 

calculated based on the fixity of the columns. For free-fixed (top-bottom) column 

condition, the inertial force is computed by dividing the inertial moment by column 

height and for fixed-fixed (top-bottom) condition, inertial force is computed by dividing 

the inertial moment by half of the column height. Second, if the column is not expected to 

reach its moment capacity, then the inertial shear force is estimated as the product of the 

superstructure mass (tributary mass for the column) by the spectral acceleration of the 

bridge at its first mode natural period.  

The inertial force for the pile cap is estimated by multiplying the pile cap mass with a 

PGA that corresponds to the non-liquefaction case. A factor of 0.65 is used, which 

represents a reduction in PGA resulting from the onset of liquefaction. 

Sb B 

Sb B 
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In the case of seat type abutment foundations, the superstructure is supported by bearings 

which are free to rotate, and no moment demand is transmitted to the foundation by the 

superstructure. However, some amount of superstructure inertial force can be transferred 

to the abutment foundation through the backwall. Caltrans typical practice is to design the 

backwall as a weak fuse with only modest capacity to transfer force, thus it is assumed 

that no inertial forces are transferred to the foundation. This is not typical practice at 

ODOT, and this is an area where these guidelines need to be modified to adapt to 

ODOT’s needs. 

6) Evaluate Seismic Performance of Foundation 

After determining all the parameters, equivalent static analysis is conducted by imposing 

a lateral spreading displacement estimated in step 3 and inertial forces as described in 

step 5. Only 50% of inertial load is recommended to combine with the lateral spreading 

displacement (kinematic loading), as the peak inertial load and kinematic load occur at 

different times. Finally, seismic demands (e.g., pile head displacement, shear force, 

bending moments) obtained from the analysis are compared with the allowable 

foundation seismic performance criteria.  

1.3.3.2. Restrained Ground Displacement Design Case 

In the restrained design case, it is assumed that the displacing soil mass is limited in volume and 

the foundation provides restraining effects to soil flow or movement. The typical case for this 

type of restraining effect is an approach embankment acting on the abutment piles as shown in 

Figure 1.24. When the sliding mass is limited to the size of the approach embankment, it is 

assumed that relatively stronger and stiffer piles will provide resistance to the soil movement. 

The CALTRANS (2011) guidelines for the restrained ground displacement are based on NCHRP 

(2002) procedure for the foundation’s “pinning” effect with some modification based on recent 

research (e.g. Ashford et al. 2011). The overall procedures for this design case are very similar to 

the unrestrained design case except for determining the displacement in which the laterally 

spreading soil is compatible with the resistance of the foundation.  
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1) Assess Liquefaction Potential of Soils 

Liquefaction assessment is carried out by same procedure discussed in step 1 of Section 

1.3.3.1. 

2) Estimate Residual Strengths of Liquefied Soils 

Residual strengths are determined by the same procedure discussed in step 2 of Section 

1.3.3.1. 

 

3) Develop Foundation Model 

The foundation model is created by following the same procedure discussed in step 4 of 

Section 1.3.3.1. 

 

4) Estimate Inertial Forces 

Inertial forces are estimated with the procedure discussed in step 5 of Section 1.3.3.1. For 

the abutment case, the inertial loads are assumed to be zero in the CALTRANS 

guidelines. This may need to be adapted to accommodate integral abutments used by 

ODOT.  

 

5) Perform Pushover analysis for Varying Ground Displacement 

A series of increasing soil displacements are imposed to the foundation model and 

pushover analyses are carried out. For each analysis, the imposed displacement is 

combined with inertial forces as computed in step 4. Only 50% of the inertial load is 

recommended to combine with the laterally spreading displacement (kinematic loading). 

From the pushover analysis, pile cap displacement and shear force at the center of the 

liquefied soil layer are determined. Finally, running average shear forces are computed 

for each displacement and a foundation pushover curve is developed (shown later). The 

running average shear forces are computed to ensure the compatibility between the 

foundation sliding mass (next step) and the foundation resisting force. 
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6) Perform Slope Stability Analysis and Determine Lateral Spreading Displacement 

Slope stability analysis is carried out to determine yield coefficients, ky, for a range of 

possible foundation restraining forces, R. The resistance force from the bridge deck, 

FDECK, is calculated as full mobilized passive resistance, which is applied as a constant 

resisting force in the slope stability analysis (Figure 1.29). The failure surface is a block 

type surface and forced to pass through the middle of the liquefied layer and limited to 

extend laterally to a maximum length of four times the height of the abutment. For each 

R, ky can be determined as the horizontal yield acceleration for which the factor of safety 

is 1.0. Once the series of ky values are determined, the laterally spreading displacements 

are computed using the Bray and Travasarou (2007) procedure, which is based on the 

Newmark rigid sliding block concept. Finally, the slope stability curve is developed 

based on the foundation resisting force and the laterally spreading displacement as shown 

in Figure 1.30.  

7) Determine Compatibility Displacement 

The pushover curve from the foundation analysis and slope stability curve are plotted 

together and the intersection of the two curves yields the compatible displacement as 

shown in Figure 1.30. The compatibility displacement is the actual lateral displacement 

of the slope considering the restraining effect of the foundation system during lateral 

spreading. 

 

 

Figure 1.29: Schematic diagram for slope stability analysis model with the application of deck 
resisting force, FDECK, and foundation resisting force, R (CALTRANS 2011) 



51 

 

 

 

Figure 1.30: Determining compatible displacement 

 

8) Evaluate Seismic Performance of Foundation 

The lateral spreading displacement determined in step 7, is imposed to the foundation 

model together with the inertial forces computed in step 4. Finally, pushover analysis is 

carried out to determine seismic demands and compared with the allowable foundation 

seismic performance criteria.  

 

1.3.4. Summary 

Review of the literature indicates that several parameters (e.g., shadowing/group effects, pile cap 

friction and rotation, kinematics and crust load effect, axial load, state of soil) affect the 

performance of piles groups in liquefaction induced laterally spreading ground. Several 

techniques are available to analyze pile groups in laterally spreading ground depending on the 

analysis simplification to be used. Based on the reviewed literature, the simplified methods (e.g., 

LE method, p-y methods) give reasonable estimates of performance though it cannot simulate 

some effects that are critical in liquefaction induced laterally spreading ground. A 3D FE 

analyses can account for all parameters that play an important role in pile group 

behavior/performance, but very limited research has been carried out in this area mainly due to 

computational effort and time. As a result, this method is beyond the reach of routine 

engineering design practice. Recently, CALTRANS provided guidelines for the seismic 

performance evaluation of pile foundations in lateral spreading ground based on a simplified p-y 
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analysis method. However, research is needed to validate the CALTRANS procedures in 

predicting the performance of bridge foundations in liquefaction induced laterally spreading 

ground. 
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Chapter 2: Example Bridge and Liquefaction Assessment 

2.1. Introduction 

As a main objective of this report, several design examples are presented for seismic 

performance evaluation and retrofitting for a typical bridge foundation. The design example 

provided here, closely follows the methods described in Ashford et al. (2011) and CALTRANS 

(2011), with some additional assumptions (if required) as stated in subsequent chapters. In 

addition, design examples for ground improvement methods are also provided.  

A description of the example bridge, which is a typical bridge provided by ODOT, is 

presented in the next section. Assessments of liquefaction are carried out for the soil profiles at 

the bridge foundations location. In addition, for liquefied soil the calculation of residual strength 

and estimation of liquefaction induced lateral spreading displacements are presented. The 

residual strength and lateral spreading displacement will be used in performance evaluation of 

pile foundations in subsequent chapters. 

2.2. Example Bridge Description 

The bridge is a 227-ft long 3-span structure with integral abutments, as shown in Figure 2.1. The 

length of the first and third span is 69-ft and the middle span is 89-ft. The bridge deck is resting 

on elastomeric bearings, and the ends of the deck terminate at abutments. The foundation system 

consists of a pair of 6-ft diameter drilled shafts at the interior piers and a single row of 10 steel 

pipe piles of size 16” x 0.5”PP (ASTM A252, Grade 3) at each abutment. Each drilled shaft 

supports a concrete column of 3.5-ft diameter and 25-ft length that carries an axial load of 760 

kips (Figure 2.2). 

Geological conditions 

The soil profile in the given example bridge consists of different soil materials (fill, soft clay, 

loose sand, dense sand, and bedrock) depending upon the location (Figure 2.1). At the interior 

bent locations, the soil profile consists of two potentially liquefiable layers located beneath a 10-

ft thick layer of soft clay (Figure 2.2). The thickness of each loose sand layer is 6-ft. A dense 

sand layer of 15-ft thickness is below the lower liquefiable layer, underlain by bedrock. The 

water table is located at the ground surface. The corrected SPT values [(N1)60] for the potentially 

liquefiable sand are 10 and 6 for upper layer and lower layer, respectively. The fines content 
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(FC) in both loose sand layers are assumed to be 10%. Other properties of the soils are shown in 

Figure 2.2. It is noted that measured field SPT values (Nm) are corrected for several effects (e.g., 

effective vertical stress, drilling rod length, the presence or absence of spacers, borehole 

diameter, and energy ratio) in order to obtain (N1)60.  

At the abutment location, the soil profile consists of 25-ft engineered fill, underlain by 15-ft 

soft clay and a 12-ft potentially liquefiable layer. A 15-ft dense gravel layer is located beneath 

the liquefiable layer, and bedrock is located at the base.  The idealized soil profile and the soil 

properties can be seen in Figure 2.3. . The FC for the loose sand layer is assumed to be 10%. The 

water table is located 35-ft below the ground surface. 

 

Figure 2.1:Bridge layout (not to scale) 

 

 

Figure 2.2: Idealized soil profile at the location of interior bend 
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Figure 2.3: Idealized soil profile at the abutment location 

 

Design earthquake data 

Characterization of the seismic hazard should be carried out using site specific studies. For 

this purpose, the U.S. Geological Survey website (www.usgs.gov) provides a database to 

compute the seismic hazard at a particular site in the U.S. In design practice, several site specific 

scenarios should be considered in determining the seismic hazard depending on design 

requirements (i.e. by considering different return periods or probabilistic approach). 

Deaggregation analyses should be carried out to determine the proper design earthquake 

magnitude (Mw). The U.S. Geological Survey website provides the interactive deaggregation 

software to compute Mw for any site within the U.S. 

In this example, ODOT provided the design earthquake scenario from the CSZ event with 

Mw=8.7. The design peak ground acceleration (PGA) given by ODOT is 0.40g, which 

corresponds to 5% in 50 years hazard.. 
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Foundation performance criteria 

For each component of the foundation, allowable deformation or strength is prescribed in 

the design process to ensure safety of the bridge during the earthquake event. Allowable 

foundation demands are provided in Table 2.1 based on the CALTRANS (2011) design 

examples. Allowing piles to yield in an earthquake event may lead to significant damage to 

bridge foundation and bridge itself. However, in the case of rare events like CSZ earthquake, 

allowing yield in piles may be a practical alternative. However, in this example, CALTRANS 

pile performance criteria is checked against maximum moment capacity of the pile section, and 

yielding is not allowed.  ODOT may develop other structural performance criteria if yielding is 

to be allowed in some cases. 

 

Table 2.1: Pile foundation performance Criteria CALTRANS (2011) 

Conditions Cap Displacement Pile Moment Pile Shear 

Well Confined pilings N/A Mu Vu 

Well confined abutment pilings N/A Mu Vu 

Poorly confined pilings N/A - - 

Note: H=column height; Mu= ultimate moment capacity of the pile section; Vu= shear capacity of the pile section 

 

2.3. Assessment of Liquefaction Potential 

The liquefaction assessment can be carried out by the procedure described in Appendix A. 

Different methods are available to estimate liquefaction potential of soils. In this design example, 

the Youd et al. (2001) procedure is used for liquefaction assessment. 

At bridge interior bent location 

The SPT values are corrected for fine contents as described in Youd et al. (2001). The (N1)60 for 

upper and lower loose sand layers are 10 and 6, respectively. The corrected (N1)60cs for upper and 

lower loose sand layers are, 11 (FC=10%) and 7 (FC=10%), which leads to the cyclic resistance 

ratio (CRR) values of 0.12 and 0.09 respectively. 
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For upper loose sand layer, 
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For lower loose sand layer, 
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Since FSliq < 1 for both loose sand layers, they are susceptible to liquefaction for the given 

earthquake loading case. 

Bridge abutment location 

As seen in the soil profile, the depth of the liquefiable layer can vary depending upon location 

(i.e., 6-ft to 46-ft). So, in this example, average depth of 26 ft is used to assess the liquefaction 

potential of the loose sand layer. The corrected (N1)60cs for loose sand layers is 11 (FC=10%), 

which leads to the CRR values of 0.12. 

Depth ( ) 26  
Overburden Stress ( ) 5 115 15 105 6 110 2810vo

z ft
psfσ

=
= ⋅ + ⋅ + ⋅ =

 
Effective Stress ( ' ) 5 115 15 105 6 110 11 62.4 2124
Depth reduction factor ( ) 0.94

vo

d

psf
r

σ = ⋅ + ⋅ + ⋅ − ⋅ =
=

 

2810 Cyclic Stress Ratio ( ) 0.65 0.4 0.94 0.32
2124 

psfCSR
psf

= ⋅ ⋅ =  

0.12 0.68 1 1 0.26
0.32liq

CRRFS MSF K K
CSR σ α

 = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = 
 

 

Since FSliq < 1, the loose sand layer is susceptible to liquefaction for the design earthquake 

loading. 

2.4. Estimation of Residual Strengths 

The residual loading is estimated as described in Appendix B. The Kramer (2008) method is 

used to estimate the residual strength. 

At bridge interior bent location 

For upper loose sand layer, (N1)60=10 
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0.1568Residual Strength ( 2116 exp 8.444 0.109 10  5.379 151 
6

)
211rS psf

  = ⋅ − + ⋅ + =     
 

 

For lower loose sand layer, (N1)60=6 

0.1854Residual Strength ( 2116 exp 8.444 0.109 6  5.379 119 
6

)
211rS psf

  = ⋅ − + ⋅ + =       

Bridge abutment location 

As the depth of the liquefiable layers varies along the slope in the embankment, the effective 

stress also varies such that it affects the residual strength. To incorporate this, the residual 

strength is calculated primarily at three locations: upper, middle, and lower region along the 

sloping ground. Later, the residual strengths will be used for slope stability analysis of the 

embankment. 

Upper location in slope 

0.1

46 ; ' 25 115 15 105 6 110 11 62.4 4423

44232116 exp 8.444 0.109 6  5.379 443 
2116

vo

r

z ft psf

S psf

σ= = ⋅ + ⋅ + ⋅ − ⋅ =

  = ⋅ − + ⋅ + =     

 

Mid location in slope 

0.1

26 ; ' 5 115 15 105 6 110 11 62.4 568

5682116 exp 8.444 0.109 6  5.379 294 
2116

vo

r

z ft psf

S psf

σ= = ⋅ + ⋅ + ⋅ − ⋅ =

  = ⋅ − + ⋅ + =     

 

Lower location in slope 

0.1

6 ; ' 6 110 6 62.4 286

2862116 exp 8.444 0.109 6  5.379 111 
2116

vo

r

z ft psf

S psf

σ= = ⋅ − ⋅ =

  = ⋅ − + ⋅ + =     
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2.5. Estimating Lateral Spreading Displacement at Interior Bent  

For the bridge interior pier location, slope stability analysis was carried out using Geostudio 

2012 (SLOPE/W™) by assuming unrestrained crustal displacement. Using the residual strength 

(calculated above), the factor of safety (FS) from the slope stability analysis is found to be less 

than 1.05, which suggests flow type failure in the interior bent location. For flow type failure, 

CALTRANS (2011) recommended to use 5-ft (60-in) as a maximum lateral spreading 

displacement, assuming that the full passive pressure will be mobilized at this displacement. It is 

noted that for gentle slope, the lateral spreading displacement can be estimated using limiting 

shear strain potential as described in Appendix C. 
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Chapter 3: Design Example for Foundation at Bridge Interior Bent 

3.1. Introduction 

In this chapter, design examples for the seismic performance evaluation of bridge foundations at 

interior bents are presented. As mentioned earlier, the design example closely follows the 

procedures recommended in Ashford et al. (2011) and CALTRANS (2011). In this design 

example, the interior bent is considered to be equivalent to the case of the unrestrained crustal 

displacement case in CALTRANS (2011) guidelines. The liquefaction assessment of the soil 

profile at the interior bent location shows the liquefaction potential and lateral spreading 

condition (Chapter 2), therefore assessment of the bridge foundation for lateral spreading 

condition is required. 

Two cases are considered for the interior bent: the drilled shaft foundation and the pile group 

foundation. The pile group foundation is not presented in the original drawing provided by 

ODOT. However, ODOT is also interested in the evaluation of pile groups at interior bents. 

Therefore, an additional design example is carried out for pile group foundations by replacing 

the drilled shaft foundations at the same location. In addition to seismic performance evaluation, 

examples are also presented for different seismic retrofitting options of the bridge foundation. In 

this example and others (next chapter), the analyses are carried out using LPILE. The residual 

strength of the liquefied soil and laterally spreading displacement of the soil profile is already 

computed in Chapter 2, which will be used in the following section. 

3.2. Numerical Analysis for Drilled Shaft Foundation 

The cross-section dimensions and reinforcement details of the drilled shaft and column are 

shown in Figure 3.1. The compressive strength of the concrete is 4000 psi and the tensile 

strength of the reinforcement steel is 60, 000 psi. 

 



62 

 

 

Figure 3.1: Drilled shaft and bridge pier sectional properties 

 

3.2.1. Modeling Methodology  

The conceptual drawing for the drilled shaft analysis is shown in Figure 3.2. The shaft is 

connected to soil springs at corresponding depths and a displacement is imposed (from chapter 

2). In addition, equivalent inertial forces (from the superstructure) are applied at the pile top. 

 

Figure 3.2: Schematic diagrame for drilled shaft modeling in LPILE (Not to scale) 

 

3.2.2. Calculate Moment-curvature Relationship  

The moment-curvature behavior of the shaft and pile depends on the cross-sectional dimensions 

and material properties of concrete and steel reinforcement. In LPILE, the cross-sectional 

properties can be directly provided with the unconfined compressive strength of concrete and 

yield strength of the reinforcement. The reinforcement is provided in a circular fashion as either 

single or bundle bars, and the bar size is inputted as the bar number. The moment curvature of 

Soft Clay

Liquefiable Sand
Layer 1

Liquefiable Sand
Layer 2

Dense Sand

Rock Base

Inertial forces at pile top

Soil Movement

Soil-pile Springs

Drilled Shaft 

60 in

30 in

10 ft

6 ft
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the cross-section for the drilled shaft and bridge column are shown in Figure 3.3. The moment 

curvature relationships are determined for axial load of 0 and 760 kips. 

 

a) Drilled shaft section 

 

b) Bridge column section 

Figure 3.3: Moment curvature and stiffness moment for a) 6-feet diameter drilled shaft ; and b) 3.5 
feet diameter column section 

 

Based on the moment-curvature analysis results, the yield and ultimate moment capacity 

of drilled shaft and column section were determined. The yield moment is moment at which the 

reinforcement bar reached it maximum tensile strength. The moment capacity of the drilled shaft 

and bridge column sections are shown in Table 3.1. 

Table 3.1: Moment capacity of drilled shaft and bridge column 

Moment  Drilled Shaft Bridge Column 
P=0 kip P=760 kip P=0 kip P=760 kip 

Yield Moment (My) (kip-in) 7.35 x104 8.93 x104 1.78 x104 2.64 x104 
Max. Moment (Mmax) (kip-in)* 1.16 x105 1.30 x105 2.75 x104 3.40 x104 

Ultimate Moment (Mult) (kip-in)** 1.39 x105 1.56 x105 3.30 x104 4.08 x104 
Note: 
 * The maximum moment is moment when strain in the concrete reaches 0.003. 
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** The ultimate moment is estimated as 1.1 times the maximum moment. The unconfined 
compressive strength is used for the concrete material in the moment curvature analysis so, to 
account the confined strength the ultimate capacity is increased by 1.1. 

 

3.2.3. p-y Curves for Non-liquefied Crust Layer 

From Section 2.5, flow failure was predicted on the loose sand layer and a 5-ft displacement was 

considered to fully mobilize the passive pressure of the non-liquefied crust (soft clay) layer. The 

CALTRANS (2011) guidelines only provide the design examples for pile group foundation so, 

the procedure to develop p-y curves for the pile cap in non-liquefied crust layer may not be 

applicable for drilled shaft. Therefore, in this example the p-y curves for the drilled shaft for in 

crust layer are developed in different manner. The passive soil resistance in the clay layer is 

calculated from API (1993) method. Generally, in the smaller pile (diameter <3 ft), the 

contribution from side shear friction is neglected. However, drilled shafts are relatively larger in 

diameter, so the side friction force also contributes to the lateral resistance. Therefore, the total 

lateral force for the crust layer is calculated as the sum of the ultimate lateral force and side shear 

force.  

The lateral resistance force per unit length of drilled shaft from API (1993) method in the 

clay is calculated as 

R3 ' for X<Xult Pile
Xp c X J c B
B

γ−
 = + + 
 

 

where, c is the cohesion and B is the diameter of drilled shaft, J is empirical constant 

(assume 0.5), γ’ is the effective unit weight of soil, and X is the depth. The XR is the depth 

estimated as 

6 6 6 44.96' 42.6 6 0.5
850

R
BX ftB J

c
γ

⋅
= = =

⋅
+ +

 

For average depth of X= 5ft, the pult-pile is calculated as 
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53 850 42.6 5 0.5 850 6 18703 /
6ult Pilep lb ft−

 = ⋅ + ⋅ + ⋅ ⋅ ⋅ = 
 

 

Thus, lateral force from drilled shaft is 

118703 10 187
1000Pile ult Pile cF p L kip−= ⋅ = ⋅ ⋅ =  

where Lc is the length of the drilled shaft in clay layer. 

The side shear force in the drilled shaft is calculated as  

12 0.5 850 10 6 512
1000cSIDESF c B ipL kα= = ⋅ ⋅ ⋅ ⋅ ⋅ =  

where α is the adhesion factor (assumed 0.5). 

The total lateral force in the drilled shaft  

187 51 238p Pile SIDESF pF F ki= + = + =  

The lateral resistance p for the non-liquefied crustal layer then can be estimated as 

238 23.8 / 1983 /
10

pF
p kip ft lb in

H
= = = =  

It is generally recognized that significant amount of relative displacement is required to 

mobilized the lateral earth pressure of the soil. For the soft clay, Canadian Geotechnical Society 

(1992) suggested the relative displacement can be as large as 4 % of the wall height. Based on 

experimental test on pile cap, Cubrinovski and Ishihara (2007) found that displacement of 2 to 

8% of the wall or cap height is necessary to mobilize the earth pressure in dense sand and even 

higher displacement is required for the loose sand. In CALTRANS (2011), the maximum 

displacement to mobilize the lateral earth pressure in the crust layer is estimated using the 

procedure recommended by Brandenberg et al. (2007). In this example, due to the lack of 

guidelines in the literature to estimate the displacement to mobilize earth pressure in drilled 

shaft, CALTRANS (2011) procedure is adopted.  
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( )max 0.05 0.45 depth widthf f H∆ = + ⋅  

where 
103( 1)3( 1)
10 1

cZ D
T

depthf e e
−

− −− −
= ==  

4 4
1 1 0.0428

10 101 164 4
10

width

T

f

W
T

= = =
   
   

+ +   
   + +
   

 The maximum displacement (Δmax) for the p-y curve of non-liquefied crustal layer is  

( )max 0.05 0.45 1 0.0428 10 0.069 10 0.693 8.3ft in∆ = + ⋅ ⋅ ⋅ = ⋅ = =  

The p-y curve is shown in Figure 3.4. 

 

 

Figure 3.4: Idealized p-y curve for non-liquefied crust layer 

 

3.2.4. Softening in Non-Liquefied Layer 

The lateral resistance of non-liquefied layers in the vicinity of liquefiable layers is affected 

during liquefaction. For individual piles in a group, the region at 2 times diameter of the pile is 

affected by the liquefied soil. However, Ashford et al. (2011) recommended ignoring this 

softening behavior in non-liquefied layers for larger diameter drilled shafts because twice their 

diameter could exceed the thickness of the layer, and additional research is needed in this area. 

Therefore, in this example smeared profile due to liquefied soil is ignored in both upper and 

lower non-liquefied layers.  
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3.2.5. Inertial Loads on the Foundation 

The inertial load from the superstructure weight can be applied directly as the equivalent shear 

force acting at the top of the drilled shaft. In the case that large soil movement is expected during 

strong motion, inertial forces at the drilled shaft and the superstructure need to be considered 

with soil displacement simultaneously to provide a conservative estimate of displacement and 

moment demands in the piles. The shear force acting on the drilled shaft can be estimated 

assuming the column yielding at strong earthquake shaking. 

Column yielding condition 

In the case of high seismic demand, the bridge column can potentially develop a plastic hinge 

and may limit the maximum inertial load transferred to the foundation. Assuming this is the case, 

and considering a fixed-fixed condition of the column, the inertial force is computed as 

The moment capacity of the bridge column (Mmax) = 3.40 x104 kip-in 

Length of the pier (H) =25 ft 

4
max2 2 3.4 10  1 227 

25 12SHEAR
M x kip inV kip
H ft

⋅ −
= = ⋅ =  

It is unlikely that the peak shear force and peak displacement demand will occur at the 

same time, thus 50% of the inertial load from the superstructure and column is combined with 

the kinematic loading. 

0.5 227 114 iV kips= ⋅ =  

3.2.6. Evaluate Seismic Performance  

Using all the data, an LPILE model is developed as shown in Figure 3.2. For the non-liquefiable 

crustal layer, a modified p-y curve is used (Section 3.2.3), the liquefiable layers are modeled as 

soft clay with residual strength (Section 2.4), the dense sand layer is modeled as API sand and 

the bed rock is modeled as strong rock (available in LPILE). A constant displacement of 60-in is 

imposed throughout the non-liquefiable crust with linear decreasing values to zero at the 

interface of the bottom liquefiable layer and the non-liquefiable dense sand layer. The inertial 
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shear force (computed above), one half of yielding moment of the column, and axial force of 760 

kips (given in the problem) are applied as a boundary condition at the top of the drilled shaft. 

Based on the performance criteria shown in Table 3.1, the maximum allowable moment 

for the drilled shaft is 1.56 x105 kip-in (13000 kip-ft). The displacement, bending moment 

demand, shear force demand, and soil loading for the drilled shaft are obtained from pushover 

analysis and the results are shown in Figure 3.5. A summary of the results obtained from the 

Figure 3.5 is presented on Table 3.2. The maximum drilled shaft displacement, bending 

moments, and shear force are 6.8-in, 10416 kip-ft, and 1570 kip, respectively. The bending 

moment demand and shear force demand are less than the allowable limits specified in 

foundation performance criteria (Section 2.2). Therefore, the drilled shaft foundation satisfies the 

targeted performance. It is noted that ODOT does not specified any displacement criteria so that 

no performance has been assessed in terms of pile displacement. 

 

Figure 3.5: Response of drilled shaft foundation to lateral spreading  

 

Table 3.2: Summary of bridge foundation response for drilled shaft under lateral spreading 

Parameter Inertia and lateral 

spreading demand 
Allowable limit 

Disp. of drilled shaft 6.8 in - 
Maximum shear 1570 kip 1877 kip* 

Maximum moment 10416 kip-ft 13000 kip-ft 
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Note: * The shear capacity of the drilled shaft was computed using ACI 318-11 code as 

 Shear strength from concrete  

( ) 12 ' 2 0.85 4000 6 12 2 6 6 12 464
1000cV fc A kipλ= = ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ =  

where λ is constant (0.85), fc’ is compressive strength of concrete, and A is the 

area of section acting in shear and calculated as  effective depth times diameter of the 

section. 

 Shear strength from reinforcement 

( ) ( )22 1 / 4 60000 6 12 2 6 1 1413
4 1000

v yt
s

A f d
V kip

s
π⋅ ⋅ ⋅ ⋅ ⋅ − ⋅

= = ⋅ =  

where Av is the two times area of shear reinforcement, fyt is the tensile strength of 

reinforcement, d is the effective depth of the section, and s is the pitch or spacing. 

Total shear capacity V=Vc + Vs=464+1413 =1877 kip. 

3.2.7. Enhancing Performance/Retrofitting the Foundation 

In this example, the drilled shaft foundation satisfies the performance criteria (Section 3.2.6), so 

no seismic enhancement is required. However, if the performance criteria were not satisfied, then 

seismic enhancement/retrofitting would be required. For the new foundation design, the simplest 

way to enhance performance is to increase the diameter of the drilled shaft, longitudinal 

reinforcement, and shear reinforcement. For a pre-existing foundation, another drilled shaft can 

be designed to tie together with the existing drilled shaft and seismic performance can be 

evaluated again. If enough space is available, ground improvement (using stone column or deep 

soil mixing columns) can be carried out to mitigate liquefaction in the loose sand, altogether 

preventing laterally spreading displacement.  

3.3. Numerical Analysis for Pile Group  

As mentioned earlier, an additional design example is presented in order to demonstrate the 

procedures to analyze the pile group of the interior bent. The drilled shaft foundation at the 

interior bent is replaced with a 4 x 4 pile group of 16” x 0.5” PP (ASTM A252, Grade 3) piles. 
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The factored axial resistance of each pile is 225 kips. The soil profile used in this example is 

exactly the same as in the drilled shaft foundation case (Figure 3.6). The center to center spacing 

of the piles is 5.0 ft, and the pile cap length, width and height are 19 ft x 19 ft x 4ft, respectively. 

The other structural properties of the pile and pile cap are shown in Table 3.3 and Table 3.4, 

respectively. Descriptions of the variables used for the calculation are shown in Figure 3.7 

(identical to the variables used by CALTRANS 2011).  

 

Figure 3.6: Soil profile and foundation dimension (replaced at drilled shaft location) 

 

Table 3.3: Structural properties of 16” diameter PP pile 

Description Value 

Diameter (B) 16 in 
Thickness (t) 0.5 

Length  38 ft 
Yield Stress (fy) 45000 psi 
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Table 3.4: Pile cap structural properties 

Description Value 
Width (WT) 19 ft 
Length (WL) 19 ft 

Thickness (T) 4 ft 
Moment of inertia (I) 1.1 x104  ft4 
Young’s modulus (E) 3.61× 103 ksi 

 

 

Figure 3.7: Description of the variables used in calculation (CALTRANS 2011) 

 

3.3.1. Modeling Methodology  

The conceptual drawing of the pile group analysis in laterally spreading ground is shown in 

Figure 3.8 and Figure 3.9. The piles in a group were modeled as an equivalent single pile with n 

times the flexural stiffness and yielding moment of a single pile for the pile group composed of n 

piles (n: number of piles). Soil springs for the equivalent piles are computed by amplifying the p-

y curves for a single pile using group p-multipliers. Separate p-y curves are computed (based on 

passive earth pressure) for the pile cap portion and non-liquefied crustal layer. Figure 3.9 shows 

a schematic diagram for the LPILE model with equivalent soil-pile springs subjected to 

liquefaction induced lateral spreading together with equivalent inertial forces at the pile top and 

superstructure. For the boundary condition, a rotational spring is provided for the pile cap in 

order to accommodate the pile cap rotation during the earthquake loading. The application of a 

rotational spring gives better results than a free or fixed head boundary conditions as reported in 

previous research (Juirnarongrit and Ashford 2006). 

Loading Direction 
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Figure 3.8: Equivalent single pile model illustrations 

 

 

Figure 3.9: Boundary conditions and imposed soil displacement  
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3.3.2. Calculate Moment Curvature Relationship 

The LPILE software is used to calculate the moment-curvature of a single pile. Then, the 

moment is scaled by the number of group piles (16) while keeping the curvature equal to that of 

a single pile. The ductility of the equivalent pile is fixed as 12 and the ultimate moment capacity 

is computed as 1.1 times the maximum moment obtained from single pile times number of piles 

in the group.  The moment-curvature and moment-stiffness relationship for the single pile is 

shown in Figure 3.10 (a) and the moment-curvature relationship for the equivalent pile in Figure 

3.10 (b). The moment capacity and stiffness of a single pile and equivalent pile are shown in 

Table 3.5. 

 

a) Single pile 

 

b) Equivalent pile 

Figure 3.10: Section analysis: a) Moment–curvature and stiffness-moment relations for a single 
pile; b) moment-curvature relationship for equivalent pile 
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Table 3.5: Moment and stiffness properties of a single pile and equivalent pile 

Property Single pile Equivalent pile 

Yield moment (My) (kip-in) 4.23 x103 6.77 x104 
Maximum moment (Mmax) (kip-in) 5.38 x103 8.61 x104 

Ultimate moment (Mult) (kip-in) 5.92 x103 9.47 x104 
Elastic EI (kip-in2) 2.11 x107 3.38 x108 
Plastic EI (kip-in2) 2.42 x105 3.87 x106 

 

3.3.3. p-y Curves for Non-liquefied Crust Layer 

The p-y curve for the pile cap is computed following the guidelines provided by CALTRANS 

(2011). The procedures to compute the p-y curve are shown in Appendix D. A sample 

calculation to compute the controlling passive failure mechanism is shown below.   

Case A 

Depth of pile cap from surface (D) = 1ft 

Thickness of pile cap (T) = 4ft 

Cohesion (c) = 850 psf 

Adhesion factor (α) =0.5  

Passive pressure force (Fpassive-A)  

( ) ( )(4 2 )
4 2T

T

D T D T D TcW
c W

γ α+ + +
= + + +  

42.6(1 4) 1 4 (1 4) 1(4 2 0.5) 850 19
850 4 19 2 1000

+ + +
= + + + ⋅ ⋅ ⋅

⋅
=214 kip 

Force of piles (Fpiles-A) 

ult pile cn GRF P L− −= ⋅ ⋅ ⋅piles AF  

where n is the numebr of piles in group, GRF is group reduction factor, Lc is the 

pile length  
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For clay layer, pult-pile is calculated using API (1993) procedure (Appendix-D) 

6 6 16 1 14' 42.6 16 1 120.5
850 12

R
BX ftB J

c
γ

⋅
= = ⋅ =

⋅
+ ⋅ +

 

Since, X < XR 

) 3ultimate pressure on clay (

7.

'

7.5 13 850 42.6 7.5 0.5 850 12 16
16 12

0 /

ult pile
Xc X J c B
B

p

kip ft

γ−
 + + 
 

 = ⋅ + ⋅ + ⋅ ⋅ ⋅ = 

=

   

The GRF for the pile group is calculated using Mokwa and Duncan (2001) chart as 

shown in Figure 1.22. The spacing-to-diameter ratio for the pile group (s/D) = 

60/16= 3.75. For the s/D ratio of 3.75, the p-multipliers for the leading row, 1st 

trailing row, 2nd trailing row, and 3rd trailing row are estimated as 0.86, 0.78, 0.67, 

and 0.62, respectively. 

Average GRF= (0.86+0.78+0.67+0.62)/4 = 0.73.

16 0.73 7 5 409 kip− = ⋅ ⋅ ⋅ =piles AF  

Pile cap side force (Fsides-A) 

2  ( )
42 0.5 850 19 65  

1000

Lc T W

kip

α−

−

=

= ⋅ ⋅ ⋅ ⋅ =

sides A

sides A

F

F  

The ultimate forces from mechanism A is  

214 409 65 688 kip− = + + =ult AF  

Case B 

for D= 1ft, T=9ft, α=0.5 , c=850 psf 

Passive pressure force (Fpassive-B)  
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42.6(1 9) 1 9 (1 9) 1(4 2 0.5 455) 850 19 = 
850 4 19

 ki
2 1 0

ps
00

+ + +
= + + + ⋅ ⋅ ⋅

⋅
 

Pile cap side force (Fsides-B) 

92 0.5 850 19 145 
1000

kips− = ⋅ ⋅ ⋅ ⋅ =sides BF  

The ultimate forces from mechanism B is  

455 145 600 kips− = + =ult BF  

Since Fult-B< Fult-A, mechasim B control in this example.

 

The maximum relative displacement (Δmax) to mobilize fully passive resistance against the pile 

cap is determined as: 

( ) (0.05 0.45 )MAX depth widthT f f∆ = +  

where fdepth and fwidth are the factors for the finite width of the pile cap  

3( 1)

4
1

10 1
4

;
cZ D
T

depth width

T

f e f

W
T

−
− −

= =
 
 

+ 
 +
 

 

where WT is pile cap width, T is pile cap thickness, Zc is the depth of the crustal layer 

13( 1)
4

4

10

0.023 1 0an .36

10 119 4

d

4

depth widthf e f
−

− −
= = =

 
 

+ 
 +
 

=  

( )4 (0.05 0.45 0.023 0.36) 0.214 2.57MAX ft in∆ = + ⋅ ⋅ = =  

The value of pult for the p-y curve is calculated as 
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67 / 5555 /
10 1
600ult

ult
c

Fp kip ft lb in
Z D

= = = =
− −

 

The idealized p-y curve for the pile cap is shown in Figure 3.11. 

 

Figure 3.11: Idealized p-y curves for pile cap in crust layer 

 

3.3.4. Softening in Non- liquefied Layer 

Correction for the effect of a “smeared profile” in liquefied sand to the adjacent boundary soil is 

carried out using p-multiplier. The length of the influenced zone is estimated as described in 

CALTRANS (2011). For pile diameters between 1 and 3 ft, the depth affected by the 

liquefaction (Sb) is calculated as (shown in Figure 1.28) 

16 1
122 1.83

2bS

 − 
 = − =  

So the influence zone is extended to 1.83 times the diameter of the pile i.e. 2.4 ft. Since 

case B controls, the failure mechanism behaves as composite block, and application of the 

smeared profile is not appropriate in the non-liquefied crust. Therefore, the reduction in the p-y 

strength is only applied to the underlying non-liquefied layer. However, if case A had controlled 

the smeared profiled would have been appropriate for both the upper and lower non-liquefied 

layers. The subgrade reaction for the dense sand is calculated using API (1993) method as 

'
1 2( )ultp C z C B zγ= +  
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where pult is the ultimate soil pressure, B is the diameter of pile, γ’ is the effective unit weight , z 

is the depth of the layer, and C1 and C2 are the coefficients depending upon the friction angle (ϕ),  

calculated as (from CALTRANS 2011) 

2
1

2
2

3.42 0.295 0.00819
20 40

0.99 0.0294 0.00289

C
for

C
φ φ

φ
φ φ

= − +  ≤ ≤
= − + 

 

  ( ) 4.036 22 4.04 16 /12 62.6 22 130 / 10808 /NLp kip ft lb in= ⋅ + ⋅ ⋅ = =  

The subgrade reactions for liquefiable layers are estimated based on API (1993) for clay using 

liquefied residual strengths. The required equations are provided in Appendix-D. The adjustment 

factors are shown in Table 3.6.  

( )
for lower loose sand  layer with detph =22 

9 since
ft    

 X>X 8 ft
169 119 1428 / 119 /
12

 

L lower

L low

R

er

c B

lb ft

p

p lb in

−

− ⋅ ⋅ = =

=

=

 

Table 3.6: Adjustment factors for softening in dense sand layer 

Distance from interface (ft) Pu adjustment factor (mp) 
1 1 119 119 11 1 0.42

10808 10808 1.83 1.33
L L

NL NL b

P P
P P S B

     + − = + − =     ⋅ ⋅    
 

2 1 119 119 21 1 0.82
10808 10808 1.83 1.33

L L

NL NL b

P P
P P S B

     + − = + − =     ⋅ ⋅    
 

2.4 1.0 

 

3.3.5. p-y Curve Scaling Factors 

For the given s/D ratio of 3.75, the p-multipliers for the leading row, 1st trailing row, 2nd trailing 

row, and 3rd trailing row are estimated as 0.86, 0.78, 0.67, and 0.62, respectively. The average 

value of the p-multipliers was found to be 0.73. The p-multipliers were obtained from Mokwa 

and Duncan (2001). The chart for calculating p-multipliers is shown in Section 1.3.2.2. Final p-

multipliers for the equivalent pile along the depth are shown in Table 3.7. 
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Table 3.7: Summary of p-multiplier coefficient for equivalent pile 

Depth 

interval (ft) 

p multipliers for single pile Combined p multiplier 

for 16 piles Group effect Smeared profile 

0-10 1 1 1 

10-22 1 1 16 

22-23 0.73 0.42 4.9 

23-24 0.73 0.82 9.6 

24.4-37 0.73 1 11.68 

37-45 - - - 

 

3.3.6. Rotational Stiffness for Pile Cap 

In this example, the axial stiffness (kax) of the pile is assumed to be equal in uplift and 

compression. For relatively small pile group, this assumption is reasonable as found in previous 

research (Mokwa and Duncan 2003; Juirnarongrit and Ashford 2006). If the moment -rotation 

relationship for the pile cap is linear up to the ultimate restraining moment of a pile group, the 

foundation will rotate approximately about its center. According to CALTRANS (2011), 75% of 

the ultimate axial resistance of a pile can be mobilized at 0.25-in axial displacement. Then, the 

rotational stiffness (kmθ) for the pile cap can be estimated using the axial resistance of the pile.  

0.75 225 675 /
0.25axk kips in⋅

= =  

( ) ( ) ( ) ( )( )2 2 2 22

7

675 4 7.5 12 4 2.5 12 4 2.5 12 4 7.5 12

4.86 10

m axk k n x

x kips in

θ = ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ − ⋅ + ⋅ − ⋅

= −

∑
 

It is noted that the spacing between the rows is 5-ft and each row contains four piles. The above 

calculated value will be used for rotational restraint at the top of the equivalent pile as a 

boundary condition. 
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3.3.7. Inertial Loads on the Foundation 

The same lateral inertial load as computed in Section 3.2.5 will also be specified in this example. 

Since, only two boundary conditions can be applied in the LPILE, shear force and rotational 

spring are specified as boundary conditions. 

3.3.8. Evaluate Seismic Performance  

Using all the data, an LPILE model is developed as shown in Figure 3.9. For the non-liquefiable 

crustal layer, modified p-y curve is used (Section 3.3.3), the liquefiable layers are modeled as 

soft clay with residual strength (Section 2.4), dense sand layer was modeled as API (1993) sand, 

and the bedrock is modeled as strong rock using the unconfined compressive strength (available 

in LPILE). A constant displacement of 60-in is imposed throughout the non-liquefiable crust and 

linear decreasing value to zero at the interface of the bottom liquefiable layer and non-liquefiable 

dense sand layer.  

Based on the performance criteria, the maximum allowable bending moment and shear 

force for a single pile are 448 kip-ft and 328 kip, respectively (Table 3.8). The displacement, 

bending moments, shear force, and soil loading for the pile group foundation are obtained from 

pushover analysis. The results are shown in Figure 3.12. A summary of the results is presented in 

Table 3.8, which is obtained from the Figure 3.12. The maximum moment or shear demand for 

the individual pile is calculated by dividing the total moment or total shear in the equivalent pile 

by the number of piles in the group. Comparing the results with the performance criteria, only 

shear demand of the pile group satisfies the performance objective. The moment demand on the 

piles (455 kip-ft) is larger than the allowable moment (448 kips-ft). Thus, the pile group 

foundation does not satisfy the performance criteria. Severe yielding of the pile may lead to 

partial or total collapse of the bridge. Therefore the performance of the pile group foundation has 

to be improved. Methods to increase the performance are explained in the next section. It is 

noted that ODOT does not specified any displacement criteria so that no performance has been 

assessed in terms of pile displacement.  
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Figure 3.12: Response of pile group foundation to lateral spreading  

 

Table 3.8: Summary of response for pile group foundation  

Parameter Inertia and lateral 

spreading demand 

Allowable limit 

Disp. of pile cap 4.78 in - 
Max. shear in a single pile 78 kip 328 kip* 

Max. moment in a single pile 455 kip-ft 448 kip-ft 
 

Note: * The shear strength of the pile is computed using AISC (2005) steel manual 

 The shear strength of the pile 

  
( )( )220.6 45000 16 16 2 0.5 / 4 1 328

2 2 1000
cr g

n

F A
V kip

π⋅ ⋅ ⋅ − − ⋅
= = ⋅ =  

 where Fcr is the critical stress for buckling (taken as 0.6 fy) and Ag is the gross area of the 

pile section. 
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3.3.9. Enhancing Performance/Retrofitting the Pile Group Foundation 

Although the shear demand in the pile is less than the allowable shear force, yielding of piles 

occurs for the given design earthquake loading scenario. Therefore, the foundation has to be 

modified to satisfy the performance criteria and preventing occurrence of yielding in pile groups. 

Generally, the performance of the foundation can be increased by three methods 

1) Increasing the number of piles in a row or increasing the number of rows in the pile 

group; 

2) Increasing the sectional properties (e.g., diameter, thickness) of the pile and using 

equal (or increasing) number of piles in the group; 

3) Using additional piles of relatively large size (e.g., drilled shaft) and tied them to the 

existing foundation system 

In the case of new foundation design, methods 1 and 2 could be the best solutions to 

improve the performance of the foundation. However, it is noted that if the moment demand is 

significantly higher than the capacity of the pile, it is possible that method 1 may not give a 

suitable solution. In method 1, increasing the number of piles not only increases the moment 

capacity, but also increases the stiffness. The increase in stiffness may lead to a proportional 

increase in moment demand. Thus, method 1 may require a significantly higher number of piles 

be added in order to achieve the foundation criteria. On the other hand, using method 2 may give 

a better solution because increasing the diameter of the pile significantly increases the moment 

capacity as well as stiffness. As a result, relatively few piles are sufficient to achieve the 

foundation performance criteria without yielding the piles. 

In the case of an existing foundation, method 3 could be a suitable solution as the cost of 

retrofitting is usually cheaper than replacing the whole foundation. In this method, relatively 

stiffer piles are combined with the existing foundation and moment demand in the foundation is 

distributed according to the pile’s relative stiffness. Generally, drilled shafts are suitable for this 

purpose and a small number of shafts could be sufficient to retrofit the bridge foundation.  

Though this example is for existing bridge foundation, sample calculations were provided 

for all three methods for enhancing the performance of the pile foundation. The following sub 

sections describe each of the methods. 
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3.3.10. Performance Enhancement by Increasing Number of Piles 

As described in above section, the performance of the existing pile foundation can be increased 

by adding more piles. In this example, the existing foundation is retrofitted by adding 4 piles 

having same size as existing piles. The layout of the retrofitted foundation is shown in Figure 

3.13. By following the same procedure from section 3.3.1 to section 3.3.7, LPILE model was 

developed and analysis was carried out. The response of the retrofitted foundation is shown in 

Figure 3.14 and the summary of the results is presented in Table 3.9. The retrofitted foundation 

has satisfied both bending moment and shear force performance criteria 

 

Figure 3.13: Retrofitted foundation layout 

 

 

Figure 3.14: Response of pile group foundation to lateral spreading  
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Table 3.9: Summary of response for pile group foundation  

Parameter Inertia and lateral 

spreading demand 
Allowable limit 

Disp. of pile cap 3.22 in - 
Max. shear in a single pile 62 kip 328 kip* 

Max. moment in a single pile 393 kip-ft 448 kip-ft 
 

3.3.11. Performance Enhancement by Using Larger Pile 

This method is only suitable for the design of new foundations, where the size of the pile can be 

changed during the design phase. For this example, 9 piles are used with each pile having 2-ft 

diameter and 0.5-in thickness. The center to center spacing between the piles was provided with 

5-ft and the corresponding size of the pile cap is 16 ft x 16 ft x 4ft. It is noted that size is 

progressively increased until the optimal design can be achieved. However, in this example a 

larger diameter is selected to show that the new pile configuration can satisfy the foundation 

performance criteria. The moment –curvature and moment-stiffness behavior for the new pile are 

shown in Figure 3.15. The sectional properties of the single pile and corresponding equivalent 

pile are shown in Table 3.10. The modified p-y curve for the pile cap is shown in Figure 3.16. 

Results of the pushover analysis are shown in Figure 3.17. A summary of the results is 

shown in Table 3.11, which is obtained from Figure 3.17. The maximum moment demand and 

shear demand in an individual pile are 810 kip-ft and 96 kip respectively. These demands are less 

than the maximum allowable limits for moment 1025 kip-ft and shear force 498 kip. Thus, the 

new foundation satisfies the performance criteria. From these results, it can be seen that 

appropriate pile size can reduce the number of piles and pile cap size to satisfy the performance 

criteria. As mentioned before, ODOT does not specify criteria for pile cap displacement; 

therefore no assessment has been carried out. 
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a) Single pile 

 

b) Equivalent pile 

Figure 3.15: Section analysis: a) Moment–curvature and stiffness-moment relations for a single 
pile; b) moment-curvature relationship for equivalent pile 

 

Table 3.10: Moment and stiffness properties of a single pile and equivalent pile 

Property Single pile Equivalent pile 

Yield moment (My) (kip-in) 9.91 x103 8.92 x104 
Maximum moment (Mmax) (kip-in) 1.23 x104 1.11 x105 

Ultimate moment (Mult) (kip-in) 1.35 x104 1.22 x105 
Elastic EI (kip-in2) 7.39 x107 6.65 x108 
Plastic EI (kip-in2) 9.11 x105 8.21 x106 
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Figure 3.16: Idealized p-y curve for non-liquefied crust layer  

 

 

Figure 3.17: Response of pile group foundation with 2-ft diameter pile 

 

Table 3.11: Summary of response of bridge foundation with 2-ft diameter piles 

Parameter Inertia and lateral 

spreading demand 

Allowable limit 

Disp. of pile cap 2.86 in - 
Max. shear in a single pile 96 kip 498 kip* 

Max. moment in a single pile 810 kip-ft 1025 kip-ft 
Note: * Shear capacity is calculated based on AISC (2005).  
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3.3.11.1. Performance Enhancement by Connecting with Additional Drilled Shafts 

In this method, trial and error can be used to estimate the number and size of drilled shafts to be 

used to retrofit an existing bridge. Then the combined stiffness is computed for the equivalent 

pile. In this example, two drilled shafts having 42-in diameter are selected as a starting point. 

The layout of the retrofitted pile group foundation and the cross-section of the new drilled shafts 

are shown in Figure 3.18. The moment-curvature and moment-stiffness of the drilled shaft are 

shown in Figure 3.19 together with the moment-curvature relationships for equivalent pile. The 

combined moment-curvature relationships is obtained by adding the moment curvature for the 

existing single pile times number of pile and moment curvature for the new drilled shaft times 

number of drilled shafts. The sectional properties for the single pile and single drilled shafts are 

shown in Table 3.13 

 

 

Figure 3.18: Size of the drilled shaft used for retrofitting 
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a) New drilled shaft 

 

b) Equivalent pile 

Figure 3.19: Section analysis: a) Moment–curvature and stiffness-moment relations for a new 
drilled shaft; b) moment-curvature relationship for equivalent pile  

 

Table 3.12: Moment and stiffness properties of a single pile and drilled shaft 

Property Single existing 

pile 

Single drilled 

shaft 

Yield moment (My) (kip-in) 4.23 x103 1.78 x104 
Maximum moment (Mmax) (kip-in) 5.38 x103 2.80 x104 
Ultimate moment (Mult) (kip-in) 5.92 x103 3.08 x104 
Elastic EI (kip-in2) 2.11 x107 2.44 x108 
Plastic EI (kip-in2) 2.42 x105 1.89 x106 
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The calculation for the combined and relative stiffness of the pile group and drilled shafts is as 

follows 

1) Bending stiffness of 16 piles =3.3 x 108 kip-in2 (from Section 3.3.2) 

2) Bending stiffness of new drilled shaft= 2.4 x 108 kip-in2 (from Figure 3.19)  

3) Thus, total stiffness of new super-pile =3.3 x 108 +2 x 2.4 x 108 = 8.3 x108 kip-in2 

4) Relative stiffness of 16 piles combined = 3.3 x 108 /8.3 x108
 = 0.40 

With these equivalent pile properties, analysis is conducted again. In this example, the p-

y curve for the pile cap is assumed to be similar to that of the original pile cap (Figure 3.11). 

Furthermore, the rotational stiffness for the pile cap is also considered equal to that of the 

original pile cap (Section 3.3.6). The analysis results are shown in Figure 3.20 and a summary of 

the results is shown in Table 3.13.  

 

Figure 3.20: Response of pile group foundation retrofitted with 3-ft diameter drilled shaft 

 

The maximum moments demand on the single pile and new drilled shaft are computed as 

5) The maximum moment in the super pile = 92000 kip-in (obtained from Figure 3.20) 

6) The moment in the 16 piles = 92000 x0.40 (calculated in step 4) 

7) = 36800 kip-in =3067 kip-ft 
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8) Therefore, moment in single pile = 3067/16 = 192 kip-ft < 448 kip-ft OK 

9) Moment in the two drilled shafts =92000 x (1-0.4) =54000 kip-in =4500 kip-ft. 

10) Moment in a single drilled shaft = 4500/2= 2250 kip-ft < 2566 kip-ft OK 

 

Table 3.13: Summary of response for retrofitted 16” PP pile 

Parameter Inertia and lateral 

spreading demand 
Allowable limit 

Disp. of pile cap 2.1 in - 

Max. shear in a single pile 25 kip 328 kip* 

Max. moment in a single pile 192 kip-ft 448 kip-ft 

 

As can be seen from the Table 3.13, the retrofitted foundation satisfies the performance 

criteria for both moment and shear force in the pile. This example is only focused on the 

procedure to retrofit the pile foundation, so the proposed drilled shaft size may not be an optimal 

size. Additional analysis can be carried out with different drilled shaft sectional properties. 

Furthermore, the design example had shown here only serves as a simplified method to analyze 

bridge pile foundations in liquefaction induced laterally spreading ground. This design example 

is only intended to be a quick check for a routine job. In an important or large project, a detailed 

analysis would be required, which might involve 3D finite element methods with nonlinear 

constitutive models for soils and piles. 
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Chapter 4: Design Example for Foundation at Bridge Abutment 

4.1. Introduction 

This chapter presents an example for the seismic performance evaluation of a pile supported 

foundation at a bridge abutment using the “pinning” method. The seismic performance of the 

abutment is evaluated by following the procedure for the “foundation restrained crustal 

displacement case” in CALTRANS (2011) guidelines. In this method, it is assumed that the 

abutment provides lateral resistance to the displacement of the soil, which helps to reduce the 

foundation displacement and increase the overall performance of the foundation, leading to an 

economical design. 

The bridge has a single row pile group foundation and integral abutment at both ends of 

the bridge, so the performance evaluation is carried out for the single row pile foundation case. 

The procedure for single and multiple rows is similar. Therefore, rather than providing another 

example for a multiple row pile foundation, additional comments are provided in the subsequent 

section of the single row procedure, which will be sufficient to evaluate the performance for 

multiple row pile foundations. Finally, examples are presented for seismic retrofitting of the 

integral abutment foundation. The liquefaction assessment of the soil profile at bridge abutment 

locations was already carried out in Chapter 2 and the residual strength of the liquefied soil 

computed in Chapter 3 will be used in slope stability analysis of the embankment. 

4.2. Numerical Analysis for Pile Group Foundation at Bridge Abutment 

Dimensions of the bridge abutment and foundation along with the soil profile are shown in 

Figure 4.1. The abutment rests on a pile group with a single row of 10 piles of size 16” x 0.5”PP. 

These piles are exactly the same as the piles used in Section 3.3. The dimensions and layout for 

the pile group are shown in Figure 4.2. The properties of the pile cap are shown in Table 4.1. 

Descriptions of the variables used for the calculation are shown in Figure 3.7 (identical to the 

variables used by CALTRANS 2011).  
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Figure 4.1: Soil profile and abutment layout (left section) with dimensions 

 

 

Figure 4.2: Pile group layout with pile cap dimensions 
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Table 4.1: Pile cap structural properties 

 

 

 

 

4.2.1. Modeling Methodology  

The pile group modeling technique and analysis using an equivalent pile, as described in Section 

3.3.1, will be used. Since the foundation restraint (or pile pinning) condition is considered, the 

lateral spreading displacement is not known at the beginning of the analysis. Therefore, analyses 

are carried out by using a series of incremental lateral spreading displacement profiles (as 

described in Section 4.2.8).  

4.2.2. Calculate Moment-curvature Relationship 

The moment-curvature and stiffness-moment relationship for 16” x 0.5”PP (ASTM A252, Grade 

3) is shown in Figure 3.10. The properties of the equivalent pile are shown in Table 4.2. 

 

Table 4.2: Moment and stiffness properties of a single pile and equivalent pile 

Property Single pile Equivalent pile 

Yield moment (My) (kip-in) 4.23 x103 4.23 x104 
Maximum moment (Mmax) (kip-in) 5.38 x103 5.38 x104 

Ultimate moment (Mult) (kip-in) 5.92 x103 5.92 x104 
Elastic EI (kip-in2) 2.11 x107 2.11 x108 
Plastic EI (kip-in2) 2.42 x105 2.42 x106 

 

4.2.3. p-y Curves for Non-liquefied Crust Layer 

The p-y curve for the pile cap is computed following the guidelines provided by CALTRANS 

(2011). The procedures to compute the p-y curve are shown in Appendix D. A sample 

calculation to compute the controlling passive failure mechanism is shown below.  

WT 49 ft 
WL 3.5 ft 
T 4 ft 
I 175 ft4 
E 3.61× 103 ksi 
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Case A 

Depth of pile cap from surface (D) = 0ft 

Thickness of Pile Cap (T) =10ft 

Cohesion (c’) =0 psf 

Passive pressure force (Fpassive-A)  

( )( )' 2 ' ( )( )v p p T wK c K T W kσ− = +passive AF  

' ( / 2) 115 (0 10 / 2) 115 575v D T psfσ = + ⋅ = + ⋅ =  (Mean stress is computed) 

for friction angle( ) 34   / 3 11.33  andφ δ φ= ° = =  

Passive earth pressure coefficient ( 4.66 (from log spiral met od) h )PK =   

( )2Active earth pressure coefficient (  45) 34 / 2 0.28aK Tan= − =  

for 0  ; 10 ;Pile Cap Length ( ) 49   TD ft T ft W ft= = =  

From Appendix D, the coefficient kw is estimated as 

( )
( )

3

42
3

0.4 1
1.61 1.1 1 5 0.051 1

p a

w p a
T T

TK K
T D Tk K K W WD T

T T

  − −  +    = + − − + +  +  + + 
 

 

1.17wk =  

Accounting 3D wedge effect and finite width and height of the pile cap, kw is 

reduced by 20% . 

1 0.17 0.8 1.13wk = + ⋅ =  

575 4.66 10 49 1.13 /1000 14 kip83 s− = ⋅ ⋅ ⋅ ⋅ =passive AF  
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Force of piles (Fpiles-A) 

 For cohesionless fill,  

( )

1 2

1 2

ultimate pr
for =34, 2.85; 3.33 (API 1993 , Appe

essure on fill (

2.85 17.5 3.33 16 /12 115 17.5 /100

ndix D

/

)

0
1  

)

09

ult fill

ult fill

P C H C B H

C
P

ki

C

p ft

γ

φ

−

−

−

− = +

=

 
 

= =

⋅ + ⋅ ⋅ ⋅

=

 

For cohesive soil 

6 6 16 1 14' 42.6 16 1 120.5
850 12

R
BX ftB J

c
γ

⋅
= = ⋅ =

⋅
+ ⋅ +

 

Since X > XR 

ultimate pressure on clay layer ( ) 9ult pile c Bp − =

 

ultimate pressure on clay 
cohesion for clay(c)=8

( 9 850 16 /12 10.
50

 
s

) 2 /
 p f

ult clayP kip ft− = ⋅ ⋅ =
 

ult pile cn GRF P L− −= ⋅ ⋅ ⋅piles AF  

where n is the number of piles in group, GRF is group reduction factor, Lc is the 

pile length. Here n= 10, and GRF =1.0. 

( )109 15 10.2 15 1 10 17880 kips− = ⋅ + ⋅ ⋅ ⋅ =piles AF  

Pile cap side force (Fsides-A) 

( )
( )( )

'2(   ') ( )

2 575 11.33 3.5 10 /1000

8.06 

v LTan c T W

Tan

kips

σ δ α−

−

= +

= ⋅ ⋅ ⋅ ⋅

=

sides A

sides A

F

F
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The ultimate forces from mechanism A is  

1483 17880 8 19371 kips− = + + =ult AF  

Case B 

Passive pressure force (Fpassive-B)  

 34forφ = °  

( )
( )

2

2

 45 34 / 2 0.28

 45 34 / 2 3.53
a

p

K Tan

K Tan

= − =

= + =
 

It is noted that the mean stress is used to estimate the passive earth pressure in the 

crust layer. The mean stress is obtained from dividing total effective stress by 2. 

( )' 25 115 10 105 5 105 62.4
2069

2v psfσ
⋅ + ⋅ + ⋅ −

= =  

for 0  ; 40 ; 49   
1.49

T

w

D ft T ft W ft
k

= = =
=  

Accounting 3D wedge effect and finite width and height of pile cap, kw is reduced 

by 20% . 

1 0.49 0.8 1.39wk = + ⋅ =  

(2069 3.53 25 2 850 1.0 15) 49 1.39 /1000 14173kip− = ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ =passive BF  

Pile cap side force (Fsides-B) 

( )( ) 3.52 2069 11.33 25 0.5 850 15 117 
1000

Tan kip− = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ =sides BF  

The ultimate forces from mechanism B is  

14173 117 14290kip− = + =ult BF  
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Since, Fult-B <Fult-A, mechanism B controls the failure mechanism. 

The maximum relative displacement (Δmax) to fully mobilize passive resistance against pile cap is 

determined as 

( ) (0.05 0.45 )MAX depth widthT f f∆ = +  

where fdepth and fwidth are the factors for the finite width of the pile cap calculated as 

03( 14 )0
4

4
0 1 0.069

10 1

1 an

40

d

49 4

depth widthf e f
−

− −
= = =

 
 

+ 

=

 +
 

 ( )40 (0.05 0.45 1 0.069) 3.24 38.9MAX ft in∆ = + ⋅ ⋅ = =  

The value of pult for the p-y curve is calculated as 

14290 333 / 29770 /
40 0

ult
ult

Fp kip ft lb in
Zc D

= = = =
− −  

The idealized p-y curve for the pile cap is shown in Figure 4.3 

 

 

Figure 4.3: Idealized p-y curves for pile cap in crust layer 
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4.2.4. Softening in Non- liquefied Layer 

The correction factor for the soil strength reduction (softening) in the non-liquefied lower soil 

layer is computed as described in Section 3.3.4. Since, the case B controls the failure mechanism 

and the soil above the liquefiable soil is considered as a composite cap-soil-block, no 

adjustments were made in upper layer. The correction factors are shown in Table 4.3. 

The subgrade reaction for the dense sand is calculated using API (1993) method  

  ( ) 4.036 52 4.04 16 /12 62.6 52 700 / 58392 /NLp kip ft lb in= ⋅ + ⋅ ⋅ = =  

The subgrade reactions for liquefiable layers are estimated based on API (1993) for clay using 

liquefied residual strengths. The required equations are provided in Appendix-D. 

For the liquefied sand layer depth=40+12/2=46 ft 

The residual strength = 443 psf (Section 2.4) 

( )9 since X>X 8 ft
169 443 5316 / 443 /
12

L R

L

c B

lb ftp lb in

p

⋅ ⋅ =

=

= =
 

 

Table 4.3: Adjustment factors for softening near the liquefaction interface 

Distance from interface (ft) Pu adjustment factor (mp) 
1 1 443 443 11 1 0.42

58392 58392 1.83 1.33
L L

NL NL b

P P
P P S B

     + − = + − =     ⋅ ⋅    
 

2 1 443 443 21 1 0.82
58392 58392 1.83 1.33

L L

NL NL b

P P
P P S B

     + − = + − =     ⋅ ⋅    
 

2.4 1.0 
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4.2.5. p-y Curve Scaling Factors 

In this example, there is only one row so there is no group effect. The final p-multipliers for the 

equivalent pile along the depth are shown in Table 4.4. If the pile group has multiple rows, the 

group effect has to be considered as described in Section 3.3.5. 

 

Table 4.4: Summary of p-multiplier coefficient 

Depth 

interval (ft) 

p multipliers for single pile Combined p multiplier 

for all 10 piles Group effect Smeared profile 

0-40 1 1 1 

40-52 1 1 10 

52-53 1 0.42 4.2 

53-54 1 0.82 8.2 

54.4-67 1 1 10 

67-70 - - - 

 

4.2.6. Rotational Stiffness for Pile Cap 

As the current example only contains a single row, there would be no restraint at the cap. Since 

the abutment is integral no rotation is allowed at the pile cap. In LPILE the boundary condition is 

applied by prescribing zero rotation at the pile head. If the foundation has multiple rows, the 

rotational stiffness can be computed using the procedure described in Section 3.3.6. 

4.2.7. Inertial Loads on the Foundation 

In an integral abutment, the inertial loads from the superstructure and pile cap have to be 

considered. The inertial force at the superstructure can be roughly estimated as a function of 

pseudo-spectral acceleration (PSA) at its natural period, its weight (W), and some modification 

factors (i.e. Ccc and Cliq) as 

Inertial force ( ) (or ) cc liqV PSA PGA C C W=  

Wsuper-structure = 1180 kips (structural weight based on tributary area) 
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The Ccc and Cliq parameters are used to calculate the equivalent inertial force in superstructure 

and pile cap for liquefaction conditions. These parameters are obtained from Ashford et al. 

(2011) as shown in Table 4.5. Since no particular ground motion is selected in this example, the 

inertial load from the superstructure is computed using PGA. However, in routine practice, 

response spectrum analysis should be carried out to obtain the PSA. 

1180Inertial force from superstrucutre ( 0.4 0) .55 0.65 169 Super structureV g kips
g− = ⋅ ⋅ ⋅ =

 

Also, weight of pile cap (Wpilecap )= 3.5ft·49ft·10ft·150lb/ft3=257 kips (including abutment) 

257Intertial force for pile )cap( 0.4 0.75 0.85 66 pile capV g kips
g− = ⋅ ⋅ ⋅ =  

Total inertial load V= 169+66= 235 kips 

Fifty percent of this inertial force (118 kips) is applied to the foundation model. 

 

Table 4.5: Inertia coefficients for BNWF analysis of pile foundations in liquefied ground (Ashford 
et al. 2011) 

Design spectra for non-liquefied 

condition SaT=1s/ S aT=0s 

Pile Cap Superstructure 

Cliq Ccc Cliq Ccc 

1.7-2.4 1.4 0.85 0.75 0.65 

0.5-1.6 0.75 0.85 0.55 0.65 

≤0.4 0.35 0.85 0.45 0.65 

 

4.2.8. Lateral Spreading Displacement and Shear Stress in the Foundation 

Incremental crust displacement is imposed in the equivalent pile and the shear force in the pile at 

the middle of the liquefiable sand is obtained. The shape of the imposed displacement can be 

seen in Figure 4.4. 



101 

 

 

Figure 4.4: Imposed soil displacement into the analysis induced by lateral spreading 

 

Using all the data defined earlier, pushover analyses are conducted with a series of 

incremental lateral spreading displacement profiles. The shear forces at the midpoint of the 

liquefied layer (the assumed location of discrete slip surface) are obtained and plotted against the 

lateral displacement at the top of the equivalent pile. The pushover analysis results are shown in 

Figure 4.5. The equivalent constant restraining, which is obtained by taking the running average 

of the shear forces obtained from pushover analysis, are also plotted. This curve will be used for 

the compatibility analysis in the next section. 

 

 

Figure 4.5: Pushover analysis of the super pile and abutment wall from L-pile 
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4.3. Estimating Lateral Spreading displacements  

The lateral spreading displacement for the embankment slope is determined using the Newmark 

sliding block method. Slope stability analyses were carried out to determine the force required to 

move the soil mass. In the bridge abutment location, the bridge deck can provide longitudinal 

resistance to movement of the abutment wall and provides a “pinning” effect for the moving soil 

mass. The abutment is assumed to be fully restrained from the bridge deck and has enough 

capacity to resist the lateral earth pressures generated due to the sliding soil mass. In this case, 

the lateral earth pressure will be equal to the ultimate passive resistance of the soil behind the 

abutment back wall. The passive resistance force can be calculated as 

( )( )' 2DECK v p u p DECK TF K S K T Wσ= +
 

where WT is the equivalent width accounting for the non-rectangular embankment shape as 

shown in Figure 4.6. The value is computed as 

244 44 10 54
2 2T
mW H ft= + ⋅ = + ⋅ =  

( )( )' 2 3 115 3.53 6 54 395 DECK v p u p DECK TF K S K T W kipsσ == + = ⋅ ⋅ ⋅ ⋅ =  

This force is used in the slope stability analyses as force per unit abutment width. Assuming the 

equivalent width of the embankment is 54 ft, the restrained force is 395/54= 7.31 kips/ft.  

 

Figure 4.6: Estimation of tributary width of the embankment 

 

The slope stability analysis was carried out in Slope-w program using Spencer’s method. 

FDECK computed above is applied at the deck location. Then, the seismic yield coefficients (ky) 

were determined for different resisting forces located at the middle of the liquefied layer, for 

W

WT=W+  m2 H

H
m

1
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which the factor of safety is one. The slip surface was block type and forced to pass through the 

middle of the liquefied layer. The typical slip surface for the slope stability analysis of the 

embankment is shown in Figure 4.7. The embankment displacement is estimated using the Bray 

and Travasarou (2007) expression (Appendix C). The plot for ky and laterally spreading 

displacement is shown in Figure 4.8. Finally, using the pushover and slope stability analysis 

results, the compatibility force-displacement plot is developed as shown in Figure 4.9. The 

compatible displacement is found to be 9.4-in. The performance of the abutment foundation for 

9.4-in lateral spreading displacement is evaluated and presented in the next section. 

 

 
 

Figure 4.7: Slope stability analysis to computer ky for set of resisting forces. 

 

 

 
 

Figure 4.8: Results of embankment displacement analyses for different restraining forces: (a) yield 
acceleration from slope stability analysis using Spencer’s method and (b) embankment slide mass 
displacements estimated  
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Figure 4.9: Compatibility force-displacements plot 

 

4.4. Evaluate results against foundation performance criteria 

Based on the displacement obtained from the compatibility curve, the analysis is carried out to 

determine the demands on the foundation. The displacement is imposed on the pile foundation 

model obtained from Section 4.2. The results of the imposed displacement of 9.4-in are shown in 

Figure 4.10 and the summary of the results are presented in Table 4.6. 

Based on the results, the maximum bending moment in a pile is more than the allowable 

moment, which suggests yielding of the piles. Severe yielding of the pile may lead to partial or 

total collapse of the bridge. Therefore, the performance of the pile foundations at abutment needs 

to be improved. The shear demand on the pile is less than maximum allowable limits. No 

performance has been evaluated in terms of pile cap displacement demand. 
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Figure 4.10: Pushover analysis results for compatible displacement of 9.3 in 

 

Table 4.6: Summary response for pile group foundation at abutment 

Parameter Inertia and lateral 

spreading demand 
Allowable limit 

Disp. of pile cap 10.18 in - 
Max. shear in a single pile 105 kip 328 kip* 

Max. moment in a single pile 453 kip-ft 448 kip-ft 
 

4.5. Enhancing Performance/Retrofitting the Foundation 

As discussed in Section 3.3.9, seismic performance of the foundation can be improved by using 

different methods. For new foundations, the number of piles can be increased or the size of the 

pile can be increased or both. For existing foundations, additional piles can be added to reduce 

the seismic demand on the piles. In this example, the performance of the foundation is increased 

by increasing number of piles and connecting the pile foundation with additional drilled shafts.  

4.5.1. Performance Enhancement by Increasing Number of Piles 

In this example, trial and error method is used to determine the number of piles to be added in 

the existing foundation in order to satisfy the performance criteria. The layout of the retrofitted 

foundation is shown in Figure 4.11.  In the existing foundation, additional 20 piles are added so 
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that the size of pile cap is also increase to 11 ft x 49 ft x 4ft. By following the same procedure 

from Section 4.2.1 to Section 4.2.8, LPILE model was developed and analysis was carried out to 

determine new pushover curves. Then the compatible displacement of 8 in is determined as 

shown in Figure 4.12. The response of the retrofitted foundation is shown in Figure 4.13 and the 

summary of the results is presented in Table 4.7. The retrofitted foundation has satisfied both 

bending moment and shear force performance criteria. 

 

 

Figure 4.11: Foundation layout for retrofitting foundation by the addition of piles 

 

 

Figure 4.12: Compatibility force displacement plot for retrofitted foundation 
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Figure 4.13: Pushover analysis results for compatible displacement of 8 in 

 

Table 4.7: Summary response for pile group foundation at abutment 

Parameter Inertia and lateral 

spreading demand 
Allowable limit 

Disp. of pile cap 8.96 in - 
Max. shear in a single pile 89 kip 328 kip* 

Max. moment in a single pile 417 kip-ft 448 kip-ft 
 

4.5.2. Performance Enhancement by Connecting with Additional Drilled Shafts 

The trial and error method can be used to estimate the size of the drilled shaft. Similar to Section 

3.3.11.1, three 3-ft diameter drilled shafts are selected as a starting point. The layout of the 

retrofitted pile group foundation and the cross-section of new drilled shafts are shown in Figure 

4.14.The moment-curvature and moment-stiffness relationships for the new drilled shaft are 

shown in Figure 4.15 together with the moment-curvature relationships for equivalent pile. The 

combined moment-curvature relationships is obtained by adding the moment curvature for the 

existing single pile times number of pile and moment curvature for the new drilled shaft times 

number of drilled shafts. The sectional properties for the single existing pile and single new 

drilled shafts are shown in Table 4.8. 
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a) Foundation layout 

 

b) New drilled shaft cross section 

Figure 4.14: Foundation retrofitting by additions of new drilled shaft a) Layout plan view; b) cross-
section property of drilled shaft 
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a) Section properties for drilled shaft 

 

b) Moment curvature relationships for equivalent pile 

Figure 4.15: Moment and stiffness properties of a single pile and equivalent pile: a) moment 
curvature and stiffness moment relationships for new drilled shaft ; b) Combined moment –

curvature relationship for equivalent pile 

 

Table 4.8: Moment and stiffness properties of a single pile and drilled shaft 

Property Single existing pile Single drilled shaft 

Yield moment (My) (kip-in) 4.23 x103 3.51 x104 
Maximum moment (Mmax) (kip-in) 5.38 x103 5.45 x104 

Ultimate moment (Mult) (kip-in) 5.92 x103 6.00 x104 
Elastic EI (kip-in2) 2.11 x107 4.45 x108 
Plastic EI (kip-in2) 2.42 x105 6.24 x106 

 

The combined stiffness of the pile group and the drilled shaft can be computed as  
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1) Bending stiffness of 10 piles =2.12 x 108 kip-in2 (Section 4.2.2) 

2) Bending stiffness of new drill shaft= 4.45 x 108 kip-in2 (Table 4.8)  

3) Thus, total stiffness of equivalent pile =2.12 x 108 +3 x 4.45 x 108 = 1.54 x109 kip-in2 

4) Relative stiffness of 10 piles combined = 2.12 x 108 /1.54 x109
 = 0.14 

With these properties of the new equivalent pile, pushover analyses are carried out once again 

and compatibility displacements are determined, as shown in Figure 4.16. The compatible lateral 

displacement was found to be 7.8-in. This displacement is again imposed on the LPILE model 

and the performance is evaluated. The results of the pushover analysis for 7.8-in laterally 

spreading displacement are shown in Figure 4.17 and a summary of the pushover analysis results 

is shown in Table 4.9. The moment for a single pile in the retrofitted pile group is computed as 

5) The maximum moment in the equivalent pile in the LPILE model = 200000 kip-in 

6) The moment in the 10 piles = 200000 x0.14 = 28000 kip-in =2333 kip-ft 

7) Therefore, moment in 1 pile = 2333/10 = 233 kip-ft < 448 kip-ft OK 

8) Moment in 1 drilled shaft = (200000 x (1-0.14))/(3 x12) = 4777 kip-ft < 5000 kip-ft 

OK 

From the results, it can be seen that retrofitted foundation satisfies both displacement and 

moment performance criteria. In this example, only the procedure to retrofit the bridge 

foundation is shown and the proposed drilled shaft size may not be an optimal. Additional 

analysis can be carried out with different sectional properties of drilled shaft. 

 

 

Figure 4.16: Compatibility of forces and displacements for new super pile 
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Figure 4.17: Response of pile foundation to lateral spreading at 8.0-in imposed soil displacement 

 

Table 4.9: Summary response of retrofitted bridge foundation  

Parameter Inertia and lateral 

spreading demand 

Allowable limit 

Disp. of pile cap 8.0 in - 

Max. shear in a single pile 35 kip 328 kip* 

Max. moment in a single pile 233 kip-ft 448 kip-ft 

Max. moment in a single drilled shaft 4780 kip-ft 5000 kip-ft 
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Chapter 5: Design Example for Ground Improvements 
 

5.1. Introduction 

As discussed in previous sections, performance of the bridge foundation can be improved under 

earthquake loading if liquefaction is prevented at the site. The most common method to mitigate 

liquefaction is by ground improvement using discrete elements such as stone column or deep soil 

mixing column (DSM). In particular, stone columns are effective to mitigate liquefaction by 

densifying the surrounding loose soil during installation. Thus, stone columns are effective for 

loose sand with nominal fine contents. On the other hand, DSM grids are effective in mitigating 

liquefaction based on the shear stress distribution mechanism. Since densification or drainage is 

difficult to achieve in silty soils, reducing the seismic shear stress in the soil is effective 

mechanism to mitigate risk of liquefaction. The DSM grids are effective for this purpose.  

This chapter is focused on ground improvement using stone columns. Since ODOT is 

interested in the design of DSM grids in silty soil, design examples are also presented for DSM 

grids. The main working principle for the DSM grid is exactly same as the shear reinforcement 

mechanism of stone columns as presented in Section 1.2.1.3. As a result, no additional literature 

review is presented; however, necessary information (and references) required to design the 

DSM grids are presented in the subsequent sections. Designs for stone columns are carried out 

based on densification mechanisms, while shear reinforcement mechanism is used for DSM. It is 

noted that the stone columns can also be designed for shear reinforcement purpose following the 

procedures for DSM grids that is provided herein. 

5.2. Example problem 

Assuming the bridge foundation site has easy access the ground improvement can be carried out. 

From chapter 3, it is found that the liquefiable loose sand layers at bridge interior bent are 

potentially liquefiable. Thus, the same soil profile is used to demonstrate design examples for 

ground improvement. To follow easily and for completeness, the soil profile is shown in Figure 

5.1. The same earthquake scenario is used as described in chapter 3. ODOT provided the design 

earthquake scenario from the CSZ event with Mw=8.7. The designed peak ground acceleration 

(PGA) given by the ODOT is 0.40g. Since, the examples provided in this report serve as a 

guideline rather than specific answer for a particular site, the data provided by ODOT is used for 
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all calculations. However, for the actual performance evaluation of a bridge site, characterization 

of the seismic hazard using appropriate techniques is highly recommended. 

 

 

Figure 5.1: Design example soil profile for ground improvement 

 

5.3. Design Calculations for Stone Column 

Based on the literature review, stone columns are mainly effective as densification mechanisms 

rather than drainage and reinforcement mechanisms. Therefore, the design calculation is only 

based on the densification method only. It is noted that all the stresses are calculated at the 

middle of the liquefiable layers. 

For the upper sand layer  

Total Stress = 1380 psf 

Effective stress= 568.8 psf 

SPT value (N1)60 = 10 

Relative Density=
( )1 60 10 47%

46 46
N

= =  
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CSR is calculated using Youd et al. (2001) (Appendix A) as  

1380 0.65 0.4 0.97 0.61
568 

psfCSR
psf

= ⋅ ⋅ =  

 

From Figure 5.2, the equivalent clean sand SPT value for CSR of 0.61 with 10% fine 

contents is 30. Since, the SPT value for the given layer is 10, which is less than the required SPT 

value of 30, ground improvement is necessary. From the Figure 5.3, the required area 

replacement ratio for the SPT value of 30 and 10% fines is obtained as 22%.  

 

For lower sand layer 

Total Stress = 2040 psf 

Effective stress= 854.4 psf 

SPT value =6  

Relative Density=
( )1 60 6 36%

46 46
N

= =  

 

The cyclic stress ratio is then calculated as 

20400.65 0.65 0.4 0.96 0.60
' 854.4

v max
d

v

aCSR r
g

σ
σ

= = ⋅ ⋅ =  

From Figure 5.2, the equivalent clean sand SPT value for CSR of 0.60 with 10% fine 

contents is 30. Since, the SPT value for the given layer is 6, which is less than the required SPT 

value of 30, ground improvement is necessary.  

From Figure 5.3, the required area replacement ratio for the SPT value of 30 and 10% 

fines is obtained as 22.0%. Applying 1.1 as a safety margin, the area replacement ratio for 

liquefaction mitigation is 24.2. 

Thus, the required area replacement ratio to mitigate the liquefaction =24.2 %. 

Assuming 3-ft diameter columns triangular grid pattern, the required spacing would be 
2 2

2 2

3 0.242
4 0.87 4 0.87

sc
r

A dA
A s s

π π ⋅
= = = =

⋅ ⋅ ⋅ ⋅  
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The factor of 0.87 is to account the triangular grid pattern for calculating the tributary area, as 

shown in Figure 5.3 (Barksdale and Bachus 1983). 

2
2 3

4 0.87 0.242
5.79ft

s

s

π ⋅
⋅ ⋅

=

=

 

 

The horizontal spacing of the stone column (s) is 5.8-ft measured from center to center of 

the stone columns. The stone columns are designed for triangular grid pattern with 3-ft diameter. 

Generally the horizontal extent of treatment is carried out to 2/3 of the liquefiable depth. In this 

example, the depth of liquefiable soil is 22ft so the horizontal extend for stone column 

installation is 15ft (2/3 x 22 = 14.66 ≅ 15 ft) measured from the side of the bridge foundation. 

 

Figure 5.2: SPT clean-sand base curve for magnitude 7.5 earthquakes with data from liquefaction 
case histories (Youd et al. 2001) 
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Figure 5.3: Approximate variation of relative density based on tributary area (Barksdale and 
Bachus, 1983; Baez and Martin 1993) 

 

5.4. Design Calculations for DSM Grids 

As explained before, the design of DSM grids is based on the shear reinforcing mechanism rather 

than the densification and drainage mechanisms. In this design method, the cyclic stress ratio is 

calculated based on the seed and Idriss (1971) framework. The ratio of CSR for improved   

(CSR,I) ground and CSR for unimproved  (CSR,U) ground is calculated as  

,
,

s
G

CSR IK
CSR U

τ
τ

= =  

The DSM grids are mainly designed using shear reinforcement mechanism assuming 

shear strain compatibility between the DSM grid and enclosed soil. Based on shear strain 

compatibility, the shear stress reduction factor, KG, is calculated as (Baez 1995; Baez and Martin 

1993) 

( )

1
1 1

G

r r r
r

sK
G A A

G

τ
τ

= =
 

+ − 
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where τs is the shear stress in improved ground surface and τ is the average shear stress in 

unimproved ground, Ar is area replacement ratio, Gr is the shear modulus ratio. 

Recent research shows that the strain compatibility assumption is not valid and the level 

of shear stress by the above equation may be unconservative. Ngyugen et al. (2012) has 

conducted numerical investigations on these assumptions and provides new methods for 

calculating KG factor by incorporating shear strain incompatibility in the DSM and surrounding 

soil as 

1min ,1
1 (1 )

rd

r r G r r
r

R
G A C A

G
γ

 
 
 =   

⋅ ⋅ ⋅ + ⋅ −     

  

where CG is a factor for accounting for flexural deformation in the DSM grid, γr is the shear 

strain ratio between the DSM grid and the surrounding soil. It is noted that for static loading, KG 

and Rrd are equivalent. Detailed information about the computation of Rrd can be found in 

Nyugen et al. (2012) and the paper is presented in Appendix E for ODOT review. Based on 

Nyugen et al. (2012), the CG and γr factors are computed as 

1 0.5 1G rC A= − −  

( )
0.4

1.3 11 1 min ,1
185

r
r r

G HA
S

γ
 −   = − − ⋅ ⋅    

    
)
 

where H is the height of the DSM grid and S is the spacing of the grid. 

Using this framework, the DSM grid can be designed for liquefaction mitigation. All the stresses 

are calculated at the middle of the liquefiable layers 

For upper sand layer  

Total Stress = 1380 psf 

Effective stress= 568.8 psf 

SPT value (N1)60 = 12  
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Shear wave velocity= 85[(N1)60+2.5]0.25=165.8 m/s [modified fit of Andrus and Stokoe 

(2000) at p’r =1atm]  

Unit weight of soil (ρ) = 110 pcf =1762 kg/m3 

Shear modulus= 2 2 7 91762 165.8 4.84 1 0 1.01 1 0  V x kPa x psfρ = ⋅ = =  

The cyclic stress ratio is then calculated as 

13800.65 0.65 0.4 0.97 0.61
' 568.8

v max
d

v

aCSR r
g

σ
σ

= = ⋅ ⋅ =  

Then, for an earthquake Mw=8.7, the modified CSR = 0.61/0.68 = 0.89. 

From Figure 5.2, the CSR value for an SPT value of 10 and 10% of fines is 0.12 

The shear stress ratio is, 

0.12 0.14
0.89GK = =  

For a 3-ft thick DSM grid and shear modulus ratio (Gr) of 50, the required area replacement 

ratio Ar is 35% from Figure 5.4. It is noted that the Rrd and KG are equivalent as both are the 

shear stress reduction ratio in the soil. 

 

 

 

Figure 5.4: Design chart for DSM grid (Nyugen et al. 2012) 

 

Since the DSM grids are installed in a square pattern as shown in Figure 5.5, the spacing of 

the grid can be calculated as 
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2

2

4 4 22 2 2
r

t t tS tS tA
S S S

⋅ ⋅ − ⋅ ⋅ −
= =

⋅
 

Solving this quadratic equation, 
2 22 4 4

2
r

r

t t A t
S

A
± −

=  

Thus, for Ar = 35% and t= 3 ft, S = 1.66 ft and 15.48 ft.  

Since, 1.66-ft is unrealistic, the spacing of the grid is rounded to 15ft.  

 
Figure 5.5: DSM grid unit cell and dimensions  

 

For lower sand layer 

Total Stress = 2040 psf 

Effective stress= 854.4 psf 

SPT value (N1)60 = 6  

Shear wave velocity= 85[(N1)60+2.5]0.25=144.1 m/s [modified fit of Andrus and Stokoe 

(2000) at p’r =1atm]  

Unit weight of soil (ρ) = 110 pcf =1762 kg/m3 

Shear modulus= 2 2 7 81762 144.1 3.66 1 0 7.64 1 0  V x kPa x psfρ = ⋅ = =  

The cyclic stress ratio is then calculated as 

20400.65 0.65 0.4 0.96 0.60
' 854.4

v max
d

v

aCSR r
g

σ
σ

= = ⋅ ⋅ =  

Then, for an earthquake Mw= 8.7, the modified CSR = 0.60/0.68 = 0.88 
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Now, from Figure 5.2, the CSR value for SPT value of 6 and 10% of fines is 0.08. In this 

case, using a factor of safety of 1.1, the CSR value is = 0.08/1.1= 0.07. 

The shear stress ratio is, 

0.07 0.08
0.82GK = =  

For a 3-ft thick DSM grid and shear modulus ratio of 50, the required area replacement ratio 

Ar is 50% from Figure 5.4. For Ar=50% and t = 3 ft, the spacing S = 1.76 ft and 10.24 ft. Since, 

1.76-ft is unrealistic; the spacing of the grid is 10.24 ft rounded to 10 ft. Thus, based on two 

layers the DSM grid spacing is designed as 10-ft with 3-ft thick of DSM grid and stiffness of the 

DSM grid material is 50 times higher than the stiffness of the lower sand layer (5.0 x 1010 psf). 

Similar to stone column design, the DSM grids are horizontally extended to at least of 15-ft 

measured from the bridge foundation. 

It is also noted that rather than using the chart, the calculation can be carried out using 

equations provided above. A trial and error method can be used by changing the thickness of 

grid, area replacement ratio, and shear modulus ratio. 

For example, assume thickness of DSM grid is3ft and Ar is 20 % for the upper sand layer as 

an initial trial. Then the following steps can be carried out to check the design conditions: 

1) calculate CG factor to account flexure in DSM grid 

1 0.5 1 1 0.5 1 0.20 0.552G rC A= − − = − − =  

2) calculate shear strain ratio γr  

( )

( )

0.4
1.3

0.4
1.3

11 1 min ,1
185

50 1 161 1 0.20 min ,1 0.56 57 0.32
185 28

r
r r

G HA
S

γ
 −   = − − ⋅ ⋅    

    
 −   = − − ⋅ ⋅ = ⋅ =    

       

 The spacing is determined from the quadratic equation presented above using t and Ar. 

3) calculate shear stress reduction factor Rrd  
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1min ,1
1 (1 )

rd

r r G r r
r

R
G A C A

G
γ

 
 
 =   

⋅ ⋅ ⋅ + ⋅ −     

 ( )1min ,1 min 0.39,1
150 0.20 0.552 0.32 (1 0.20)

50
0.39 0.14for upper sand layer. GK NOT OK

 
 
 = =

  ⋅ ⋅ ⋅ + ⋅ −    
= > =

 

Thus, the chosen initial trial for DSM grids does not satisfy the required KG of 0.14 for upper 

sand layer. Now, provide second trial conditions, with t=3-ft and Ar=35 %.  

4) calculate CG factor 

1 0.5 1 1 0.5 1 0.35 0.596G rC A= − − = − − =  

5) calculate γr  

( )
0.4

1.3 50 1 161 1 0.35 min ,1 0.664 1 0.664
185 15rγ

 −   = − − ⋅ ⋅ = ⋅ =    
     

 6) calculate Rrd  

( )1min ,1 min 0.13,1
150 0.35 0.596 0.664 (1 0.35)
50

0.13 0.14

rd

G

R

K OK

 
 
 = =

  ⋅ ⋅ ⋅ + ⋅ −    
= < =

 

Thus, the chosen design parameters for DSM grids satisfy the required shear stress 

reduction ratio (KG=0.14) for upper sand layer. Similarly, other parameters for DSM grids for 

lower sand layer can be determined as well. 
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APPENDIX-A 

Assessing Liquefaction Potential 
 

In the past four decades, several frameworks have been proposed for liquefaction assessment of 

soils. The most common framework is semi-empirical field based procedures. In this method, 

earthquake induced cyclic stresses are compared with cyclic shear resistance of the soils. The 

earthquake induced dynamic stresses, also known as cyclic stress ratio (CSR), are estimated 

based on the “simplified procedure” proposed by Seed and Idriss (1971). Over the years, the 

simplified procedure of estimating CSR has been modified by several researchers (e.g., Seed et 

al. 1985; Youd et al. 2001; Cetin et al. 2004; and Idriss and Boulanger 2008). The soil 

resistance, also known as cyclic resistance ratio (CRR), is based on in-situ index tests such as 

Standard Penetration Test (SPT), Cone Penetration Test (CPT) or shear wave velocity (Vs), 

typically obtained from empirical correlations (Youd et al. 2001; Idriss and Boulanger 2008). 

These correlations are based on documentation of liquefaction and non-liquefaction case 

histories in past earthquakes.  

Liquefaction in the soil is likely to happen when the CSR exceeds the CRR. Thus, a factor 

of safety against liquefaction (FSL) can be calculated as the ratio of CRR divided by the CSR as 

( ) ( ) / ( )LFS z CRR z CSR z=       (A.1) 

From this equation, the liquefaction potential of the soils can be assessed at any depth z. 

Liquefaction is likely to occur when the FSL is less than unity (<1.0), whereas liquefaction is not 

likely to occur when the FSL exceeds unity (>1.0). However, the parameters used in the above 

equation are developed from semi-empirical relationships, and therefore the value of FSL is not 

an exact value to evaluate the liquefaction potential. Furthermore, several researchers have 

proposed different relationships to estimate the CSR and CRR of the soils, and thus FSL obtained 

from different methods will results in different values. Therefore, careful engineering judgment 

would be required to properly assess the liquefaction potential of soils. 
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Determination of the Earthquake Induced Cyclic Stress Ratio (CSR) 

The basic relationship proposed by Seed and Idriss (1971) is as follows 

max
' '0.65av vo

d
vo vo

aCSR r
g

τ σ
σ σ

  
= =   

       (A.2) 

where τav is the average, or uniform, earthquake-induced cyclic shear stress, σ’vc is the pre-

earthquake effective overburden stress, σvo is the vertical total stress in the soil at the depth in 

question, amax is the peak horizontal acceleration at the ground surface modified for site specific 

soil conditions, g is the acceleration due to gravity, and rd is a stress reduction factor which takes 

into account the flexibility of the soil column.  

In the above equation, the amax can be estimated by using site specific response analysis. 

The site specific response analysis provides detailed modeling of the site conditions and provides 

better conversion of bed rock peak acceleration to the peak ground surface acceleration. 

However, the site response analyses can directly predict the CSR; they are not used with a 

simplified procedure. By using the indirect method, the maximum surface acceleration can be 

obtained by multiplying the bedrock maximum acceleration values by amplification factors (F). 

Stewart et al. (2003) provided the amplification factors for different soil formation, which 

account for nonlinear response at higher levels of shaking. The factor can be obtained as 

maxln ( )rockF aα β= +       (A.3) 

where α and β are shown in Table A.1. 

Table A.1 Coefficients for estimation of F (after Stewart et al. 2003) 

Surface Geology Category α β 
Quaternary alluvium -0.15 -0.13 
Holocene lacustrine/marine -0.59 -0.39 
Holocene coarse -0.11 -0.1 
Holocene fine/mixed -0.5 -0.33 
Pleistocene 0.14 0.02 
Tertiary 0.23 -0.02 
Mesozoic+ Igneous -0.13 -0.08 
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Over the past four decades, many researchers have proposed different semi-empirical 

correlations to estimate the rd factor (e.g., i.e. Ishihara 1977, Iwasaki et al. 1978, Golesorkhi 

1989, Idriss 1999, Seed et al. 2001, and Cetin et al. 2004). From previous research, it was shown 

that the rd factor is mainly dependent on the earthquake ground motion characteristics (e.g., 

intensity and frequency content), earthquake magnitude, nonlinear dynamic soil properties, soil 

depth, and thickness of the soil layer. Thus, different correlations have been proposed by 

incorporating different parameters. 

For routine practice and non-critical projects, Youd et al. (2001) proposed a correlation to 

determine the rd factor, which is shown in equation A.4. The correlation is modified from the 

recommendation given by Seed and Idriss (1971) (Figure A.1). 
0.5 1.5

0.5 1.5 2

1.000 -0.4113z  + 0.04052z + 0.001753z
1.000 - 0.4177z  + 0.05729z - 0.006205z  1 0.001210zdr =   (A.4) 

where z is the depth below the ground surface in meters. Even though the equation provides the 

rd factor to a depth of 23-m, the simplified procedure was only verified to depth of 15-m by 

Youd et al. (2001). Thus, the equation is only applicable to the maximum depth of 15-m and is 

not recommended for use at greater depths.  

Based on several parametric site response analyses, and extending the work of 

Golesorkhi (1989), Idriss (1999) developed a correlation for rd as a function of depth and 

earthquake magnitude (M). The expression is shown in equation A.5.  

[ ]exp ( ) ( )d wr z z Mα β= +      (A.5) 

where 

( ) 1.012 1.126sin 5.133
11.73

zzα  = − − + 
     (A.6) 

( ) 0.106 0.118sin 5.142
11.28

zzβ  = + + 
     (A.7) 

and z is depth in meters, M is moment magnitude, and the arguments inside the sine terms are in 

radians. The above equation is mathematically applicable to a depth of 34-m; however, Idriss and 
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Boulanger (2008) recommended applying the equation to a maximum depth of 20-m. At higher 

depths, site specific response analysis is recommended.  

Determination of the Cyclic Resistance Ratio (CRR) 

As mentioned earlier, only SPT based correlations are summarized for the estimation of CRR. 

The CRR for any earthquake magnitude (M) and effective stress (σ’vc) is estimated as  

' ', 7.5, 1vo voM M atm
CRR CRR MSF Kσσ σ= =

= ⋅ ⋅     (A.8) 

where CRRM=7.5,σ’vc=1  is the reference cyclic stress ratio adjusted for the earthquake magnitude 

of 7.5 (Mw) and effective vertical consolidation pressure of 1 atmosphere, MSF is the earthquake 

magnitude scaling factor to account for the earthquake magnitude under consideration, and Kσ is 

the overburden correction factors to account for the overburden stresses at the depth of interest. 

To be consistent in determining the CRR, all the simplified procedure evaluate the 

CRRM=7.5,σ’vc=1 first and then additional factors (MSF, Kσ) are applied to account for the site 

specific conditions. 

Estimation CRR7.5,1 atm 

Youd et al. (2001) recommended a correlation for CRR modified from Seed et al. (1985) and 
shown in the equation below 

[ ]
1 60

7.5,1 2
1 60 1 60

( )1 50 1
34 ( ) 135 2010 ( ) 45

cs
atm

cs cs

NCRR
N N

= + + −
− ⋅ +    (A.9) 

where (N1)60cs is the equivalent clean sand SPT values corrected for the percentage of fine 

contents (FC). A chart developed based on the above equation is shown in Figure A.2. For the 

case of sand with fines, Youd et al. (2001) proposed the correlation to compute equivalent clean 

sand (N1)60cs based on (N1)60 for clean sand. The correction factors are as follows 

( ) ( )1 160 60cs
N Nα β= +      (A.10) 

where α and β are calculated as 
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2

0  5%
exp[1.76 (190 / )]  5 35%

5.0  35%

for FC
FC for FC

for FC
α

≤
= − < <
 ≥

   

(A.11) 

1.5

1.0  5%
[0.99 (FC /1000)]  5 35%

1.2  35%

for FC
for FC

for FC
β

≤
= + < <
 ≥

   

 (A.12) 

The above equation of CRR is only applicable for (N1)60cs < 30, as recommended by Youd et al. 

(2001) because soils with (N1)60cs ≥ 30 are considered to be non-liquefiable. 

Idriss and Boulanger (2008) presented the CRR relationship from work initially proposed 

by Idriss and Boulanger (2004) for clean sand and shown in the equation below. The graph of the 

equation is shown in Figure A.3 
2 3 4

1 60 1 60 1 60 1 60
7.5,1

( ) ( ) ( ) ( )exp 2.8
14.1 126 126 126

cs cs cs cs
atm

N N N NCRR
      = + − + −      

       

  

(A.13) 

 

The fine content correction factor to compute the equivalent clean sand is given as 

1 60 1 60 1 60( ) ( ) ( )csN N N= + ∆

     

(A.14) 

2

1 60
9.7 15.7( ) exp 1.63N
FC FC

  ∆ = + −     

   

(A.15) 

Estimation of Magnitude Scaling Factor(MSF) 

CRR depends on the number of loading cycles, which strongly correlates with earthquake 

magnitude (Seed et al. 1975). The MSF is used to adjust the CRR7.5,1 atm to account for different 

magnitude earthquakes that can occur at a specific site Different researchers have proposed 

different relationships for MSF. 

Youd et al. (2001) recommended the lower bound of MSF as 

2.24

2.56

10

w

MSF
M

=       (A.16) 
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Idriss and Boulanger (2008) recommended the relationship originally developed by Idriss (1999) 

with the following relationship;  

6.9exp 0.058 1.8
4
MMSF − = − ≤ 

 

   

(A.17) 

Estimation Overburden Correction Factor (Kσ) 

The overburden correction factor (Kσ) is used to adjust the CRR for effective overburden stress at 

different depths. Effective stress in the soil is a function of depth and CRR of sand depends on 

the effective stress. Thus, the liquefaction resistance of the same sand would be different at 

different depths. To be consistent the CRR values are corrected for the overburden stress. 

Youd et al. (2001) recommended the Kσ for engineering practice based on the work of 

Hynes and Olsen (1999). The proposed relationship is  

( )( 1)' / 1.0
f

vo aK Pσ σ
−

= ≤

     

 (A.18) 

where f is an exponent that is a function of site conditions including relative density (Dr), stress 

history, aging, and overconsolidation ratio (f = 0.7 – 0.8 for Dr = 40 – 60% and f = 0.6 – 0.7 for 

Dr = 60 – 80%), and Pa is the atmospheric pressure measured in the same units as σ’vo.  

Idriss and Boulanger (2008) adopted the procedure to compute Kσ from Idriss and 

Boulanger (2004) with the following relationships; 

'

1 ln 1.1vo

a

K C
Pσ σ

σ 
= − ≤ 

 

     

 (A.19) 

1 60

1 0.3
18.9 2.55 ( )

C
Nσ = ≤

−
     (A.20) 

where (N1)60cs is the equivalent clean sand SPT values corrected for the percentage of fine 

contents (FC), σ’vo  is the effective stress at given depth, and Pa is the atmospheric pressure 

measured in the same units as σ’vo.  
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Figure A.1: Range of rd values for different soil profiles by Seed and Idriss (1971) together with the 
approximate average value predicted by equation A.3 (Youd et al. 2001) 

 

 

Figure A.2: SPT Clean-Sand Base Curve for Magnitude 7.5 Earthquakes (Youd et al. 2001; Seed et 
al. 1985) 

 



A-8 

 

 

Figure A.3: CRR for M=7.5 and σ’vc = 1 atm proposed by Idriss and Boulanger (2008) 
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APPENDIX-B 

Residual Strength of Liquefied Soil 
 

One of the most severe effects of liquefaction is the loss of soil shear strength, which ultimately 

causes instability in the ground deformation under static loading alone (i.e., after the earthquake 

shaking). When the shear strength of liquefied soil is not sufficient to maintain stability, flow 

slide occurs, which can involve a large volume of soil and produce very large soil deformation. 

Bridges foundations resting on soils involved in flow slides can lead to complete damage of 

entire superstructure. Therefore, estimating the residual shear strength (Sr) of liquefied soil 

should be considered when assessing the post-liquefaction performance of a bridge foundation. 

Over the past three decades, several researchers have proposed empirical relationships for 

estimating the in-situ Sr of liquefied sand by back-analyses of liquefaction flow slides. The 

pioneering work of back-analysis of liquefaction flow slides to estimate the Sr was first carried 

out by Seed (1987). Since then, several researchers have modified the method (e.g., Seed and 

Harder 1990, Stark and Mesri 1992, Olsen and Stark 2002, Idriss and Boulanger 2008). Seed and 

Harder (1990) provides an estimation of Sr in residual strength, as shown in Figure B.1 whereas 

Olsen and Stark (2002) [Figure B.2], Idriss and Boulanger (2008) [Figure B.3], provide the 

estimation of Sr in terms of overburden stress normalized by residual strength. Recently, Kramer 

(2008) proposed a new hybrid model based on the work of Kramer and Wang (2007) to estimate 

the Sr in terms of strength normalized by atmospheric pressure. 

The Kramer (2008) method to compute the residual strength is  

( )
0.1'

1 60
exp 8.444 0.109  5.379 

1
v

rS N
atm
σ  

 = − + +     
    (B.1) 

where Sr is in terms of atmospheric pressure. In this model, fine corrections are not performed. 

In literature, no consensus has been met for estimating the residual strength of the 

liquefied soil. Different procedures available in literature (e.g., Seed and Harder 1990, Stark and 

Mesri 1992, Olsen and Stark 2002, Idriss and Boulanger 2008) estimate the residual strength of 

liquefied soil with significant uncertainty (as shown in Figures B.1-B.3). Therefore, in practice 
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all procedures are recommended to use in estimating the residual strength of the liquefied soil 

and based on engineering judgment appropriate weightage factor should be applied different 

methods. 

 

 

Figure B.1: Estimation of residual strength from SPT resistance (Seed and Harder, 1990) 

 

Figure B.2: Estimation of normalized residual strength from SPT resistance (Olson and Stark 2002) 
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Figure B.3: Estimation of normalized residual strength from SPT resistance (Idriss and Boulanger 
2008) 
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APPENDIX-C 

Estimating Lateral Spreading Displacement 
 

Liquefaction induced-lateral spreading can occur in gently sloping ground and in the vicinity of 

natural and cut slopes. It is crucial to determine the amount of lateral spreading, particularly for 

the design of bridge foundations. However, predicting the level of ground movement due to 

liquefaction is very complex and difficult. The magnitude of the displacement within lateral 

spreads depends upon local topography, soil stratigraphy, material properties, and ground 

motion. A number of different procedures are proposed in the past by several researchers, 

ranging from empirical correlation to nonlinear site response analyses. For routine engineering 

practice, simplified displacement procedures are commonly used.  

The most common procedures to estimate the lateral spreading are based on estimated 

shear strain potential (e.g., Shamoto et al. 1998, Zhang et al. 2004, Faris et al. 2006, Idriss and 

Boulanger 2008) and Newmark sliding block (e.g., Lin and Whitman 1983, Kramer and Smith 

1997, Bray and Travasarou 2007). The shear strain potential approach is most applicable to 

conditions where the ground surface is a gentle slope and the ground displacement is typically 

the result of distributed shear. On the other hand, the Newmark sliding block based procedure is 

applicable to the conditions where the failure surface is reasonably predictable. It is noted that all 

the procedures predict different values of lateral spread with quite large uncertainty. Therefore, 

cautions and engineering judgment are required in using the methods available in the literature.  

 

Estimated Shear Strain Potentials  

The Idriss and Boulanger (2008) procedure is used to estimate the lateral displacement due to 

liquefaction. In this method, the lateral spreading displacement or lateral displacement index 

(LDI) is calculated by integrating maximum shear strain within a liquefiable layer over the 

thickness of the liquefaction layers as 
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max

max0

Z
LDI dzγ= ∫

      
(C.1) 

where Zmax is the depth of the liquefiable layer, γmax is the maximum shear strain during 

undrained cyclic loading, which can be computed as 

( )max lim

lim

0 2.0

1min ,0.035 2 2

liq

liq liq
liq

liq

if FS

FFS if FS F
FS F

if FS F

α
α

α

α

γ γ

γ

≥


   −
= − > >     −   

 ≤
  

 (C.2) 

 

where 

( )
3

lim

1 60
1.859 1.1 0

46
N cs

γ
 
 = − ≥
 
 

     (C.3) 

( ) ( )1 160 60
0.032 0.69 0.13

cs cs
F N Nα = + −

   
 (C.4) 

γmax is the limiting shear strain for the lateral spreading, FSliq is the factor of safety against 

liquefaction, and (N1)60cs is SPT values for corrected fine contents. 

Newmark Sliding Block  

In the Newmark sliding block method, the soil mass is assumed to slide incrementally when the 

shaking-induced inertial forces cause the total shear stress to exceed the available shear 

resistance. The inertial force causing the yielding (onset of the sliding) of the mass is described 

by the yield acceleration coefficient (ky), which is given by the inertial force at yield divided by 

the slide mass. In routine engineering work, ky can be obtained by conducting slope stability 

analysis of the ground profile by which entails incrementally increasing the horizontal 

acceleration until the factor of safety becomes unity. For slope stability analysis, the strength of 

the liquefiable soil is replaced with its liquefied residual strength (Sr). 
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Bray and Travasarou (2007) developed an empirical relationship to estimate the ground 

deformation, which was based on a very large set of ground motion records and nonlinear 

deformable sliding block model. The model proposed by Bray and Travasarou incorporated 

different parameters such as design earthquake magnitude (Mw), ky, and pseudo-spectral 

acceleration (PSA) at the fundamental period of the sliding mass as a ground motion input 

parameter If the sliding mass is assumed to be Newmark rigid block, peak ground acceleration 

(PGA) can be used in estimating the lateral displacement by replacing the PSA. The correlation 

provided by Bray and Travasarou (2007) for the Newmark rigid block case can be written as 

( ) ( )( ) ( ) ( )

( ) ( )( )

2

2

( ) [ 0.22 2.83 0.333 0.566 

3.04 0.244 0.278 ( 7)]

y y y

w

cm Exp ln k ln k ln k ln PGA

ln PGA ln PGA M

= − − − +

+ − + −

D     (C.5) 
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APPENDIX-D 

Estimating p-y Curve for Pile Cap 
 

As recommended in CALTRANS (2011) guidelines, different passive failure scenarios have to 

be considered for non-liquefied crust layer. There are two possible scenarios for the failure of the 

crust layer as shown in Figure D.1. The ultimate crustal load, Pult, is then calculated from both 

cases and the minimum value between these two is taken as the controlling condition. In Case A, 

a log-spiral based passive pressure is applied to the face of the pile cap. This passive pressure is 

combined with the lateral resistance provided by the portion of the pile length that extends 

through the crust. A side force on the pile cap is added to the passive resistance. On the other 

hand, case B assumes that the pile cap, soil crust beneath the pile cap, and piles within the crust 

act as a composite block. This block is loaded by a Rankine passive pressure and the side force is 

developed over the full height of the block. Rankine passive pressure is assumed in this case 

because the weak liquefied layer directly beneath the composite block cannot transfer the 

stresses required to develop the deeper log-spiral failure surface that is generated by wall face 

friction. More detailed information can be found in CALTRANS (2011). 

 

 

Figure D.1: Possible failure wedges for crust overlain in liquefiable soil under group piles 
(CALTRANS 2011) 

The p-y curves for the pile cap are developed using the same procedure recommended in 

the CALTRANS (2011). For convenience, all the expressions available in CALTRANS (2011) 
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guidelines for computing p-y curves for pile caps are listed in this Appendix. The variables used 

in the expression are defined in Figure D.2. 

 

Figure D.2: Description of the variables used in calculation (CALTRANS 2011) 

 

Case A 

For case A, the ultimate load can be calculated as 

ULT A PASSIVE A PILES A SIDES AF F F F− − − −= + +    (D.1) 

FPASSIVE-A 

where, FPASSIVE-A is computed depending upon the type of soil in the crust layer given 

below. The passive force of the cohesive soil is estimated using the expression provided 

by CALTRANS (2011) 

( )( )' 2 ' ( )( ) for cohesion-friction (c- ) soil
 ( ) ( )( for cohesive (c) so4 2 il only)

4 2

v p p T w

PASSIVE

T
T

K c K T W k
F D T D T D TcW

c W

σ φ

γ α

 +
=  + + +

+ + +


  

 (D.2) 

Loading Direction 
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where, σ’v is the vertical effective stress, c is the undrained shear strength, D is the depth 

of pile cap from ground surface, WT is the width of the pile cap, Zc is the depth of the 

crust layer from ground surface, kw is an adjustment factor for a wedge shape failure 

surface obtained from Ovesen (1964) and Brinch Hansen (1966), α is the adhesive factor, 

and Kp is coefficient of passive earth pressure. For cohesive clay, CALTRANS (2011) 

adopted the expression for passive resistance developed by Mokwa and Duncan (2000). 

The factors kw and Kp are computed as  

( )
( )2

2
3

4

3

0.4 1
1.61 1.1 1 5 0.051 1

p a

w p a
T T

TK K
T B D Tk K

D
T

B
K W WT

T

  − −  +    = + − − + +  +  + + 
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φ
−

     +  + − + −  >    =     


=
   (D.4) 

where B is based on spacing of multiple anchor block (B=1 for a single pile cap) Ka is the 

active earth pressure coefficient and computed as 

2 45
2aK Tan φ = − 

 
      (D.5)

 
FPILES-A 

The ultimate lateral resistance of the pile can be estimated using API (1993) as 

For sand material 

1 2ult Pilep C H C B H for sandγ
− −

−
 = + 
 

   

(D.6) 
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where H is the average pile depth in the crust, B is the pile diameter, γ is the effect unit 

weight of the soil, and C1 and C2 are coefficients computed as 

2
1

2
2

3.42 0.295 0.00819
20 40

0.99 0.0294 0.00289

C
for

C
φ φ

φ
φ φ

= − +  ≤ ≤
= − +     

(D.7) 

The expressions for C1 and C2 are developed by the CALTRANS (2011) based on the 

chart provided in API (1993).  

For the clay material, the ultimate resistance of soil per unit length varies from 3c to 9c 

depending upon depth of the clay layer. 

R3 ' for X<X

9 for
ult Pile

R

Xc X J c B
p B

c B X X

γ
−

 + + =  
 ≥    

(D.8) 

where X is depth below ground surface, J is the empirical constant varies from 

0.25 to 0.5, c is the cohesion, B is the diameter of pile, γ is the effect unit weight of the 

soil, and XR is the depth below the ground surface and estimated as 

6
'R

BX B J
c

γ
=

+
    

(D.9) 

Then, using the pult-pile of a single pile, the total force can be calculated as  

PILES A ult pile cF n GRF p L− −= ⋅ ⋅ ⋅
     (D.10) 

where n is the number of piles in the group, GRF is the group reduction factor, and Lc is 

the length of the pile extended through the crust. 

FSIDES-A 

Based on the centrifuge tests, Boulanger et al. (2003) found that the interface friction 

along the side and base of the pile cap are significant and recommended to considered in 

the design. The base friction force in the pile cap can be ignored when a gap between the 
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pile cap base and underlain soil layer is likely to occur (Boulanger et al. 2003). 

Therefore, engineering judgment would be required whether to consider the base friction 

force or not. In this report, the base friction is ignored assuming that the sufficient gap 

will be developed during liquefaction and only side friction force is considered. The load 

on the side of the pile cap can be estimated as 

( )' for soil
2 ( )
2(   ')

for s il
 (

o
)v L

SIDES
L

cTan c T W
c T

F
W c

σ δ

α

φα += 
−

    
(D.11) 

 All the variables are described earlier in the above sections. 

Case B 

For the case B, the ultimate load can be calculated as 

ULT B PASSIVE B SIDES BF F F− − −= +      (D.12) 

 

In this case, the piles and the cap act as a composite block. The calculation of FPASSIVE-B is 

similar to that of case A except the Kp is calculated from Rankine earth pressure theory as 

2 45
2pK Tan φ = + 

        
(D.13) 

Also, FSIDES-B can be calculated from the above equation by replacing pile cap thickness, 

T, by the thickness of the composite block (pile cap-pile-soil) (i.e., Zc-D). 

Once the passive pressure is computed from above two methods, the lower passive earth pressure 

force controls failure of the non-liquefied crust layer.  

Determination of ΔMAX 

To develop the p-y curves for the cap, the maximum relative displacement to fully 

mobilize passive resistance against the bent-wall needs to be determined. As described in 

the CALTRANS (2011) design example, ΔMAX is determined with following relationship  
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( ) (0.05 0.45 )MAX depth widthT f f∆ = +     (D.14) 

where fdepth and fwidth are adjustment factors to account the effect of finite thickness and 

width of pile cap and calculated as 

3( 1)cZ D
T

depthf e
−

− −
=

     

(D.15)

 
4

1

10 1
4

width

T

f

W
T

=
 
 

+ 
 +
       

(D.16)

 
Finally, the lateral force (p) for the p-y curve of the pile cap can be computed by distributing the 

passive force (computed above) along the depth of the non-liquefied crust layer. Then, the 

idealized p-y curve for the pile cap can be computed as shown in Figure D.3. 

 

Figure D.3: Idealized p-y curve for pile cap) 
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(2013). "Design of DSM Grids for Liquefaction Remediation." ASCE, Journal of 
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