CLT Parking Garage Tally Analysis

Ashwaq Al Khalil
Portland State University

Janna Ferguson
Portland State University

Austin Zeitz
Portland State University

Nicholas Papaefthimiou
Portland State University, ndp4@pdx.edu

Corey T. Griffin
Portland State University, cgriffin@pdx.edu

See next page for additional authors

Follow this and additional works at: https://pdxscholar.library.pdx.edu/research_based_design

Let us know how access to this document benefits you.

Recommended Citation

Al Khalil, Ashwaq; Ferguson, Janna; Zeitz, Austin; Papaefthimiou, Nicholas; Griffin, Corey T.; Jones, Tucker; and SRG Partnership, "CLT Parking Garage Tally Analysis" (2016). *Research-Based Design Initiative*. 74.
https://pdxscholar.library.pdx.edu/research_based_design/74

This Book is brought to you for free and open access. It has been accepted for inclusion in Research-Based Design Initiative by an authorized administrator of PDX Scholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Introduction

The goal of this research project is divided into three components. First, utilize Tally to calculate the embodied energy and carbon of the CLT structural system of the Glenwood Parking Garage. Second, the embodied energy and carbon values will be compared against values found in a previous study for different structural systems in parking garages (pre-cast concrete, cellular steel, post-tensioned concrete). Finally, the subsequent dataset and process entailed in its generation will provide the basis for an evaluation of Tally as a tool for life cycle assessment as part of the design process. The assessment was completed using the established methodology for LCAs in conjunction with the Autodesk Revit Plug-in Tally, developed by Kieran Timberlake Innovations and released in 2016. By doing so, this study analyzes the role and accuracy of this new tool available to design teams, as well as the reduced environmental impact of an alternative structural system.

Methodology

The total primary energy consumed during the processing of a material, including resource extraction, transportation, manufacturing and fabrication of construction.

Table: Embodied Energy (MJ/ft²) and Embodied Carbon (kgCO₂e/ft²)

<table>
<thead>
<tr>
<th>Material</th>
<th>Embodied Energy</th>
<th>Embodied Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-cast concrete</td>
<td>143,562.94 kg</td>
<td>5,661,611.10 kg</td>
</tr>
<tr>
<td>Cellular steel</td>
<td>1,757,716.52 kg</td>
<td></td>
</tr>
<tr>
<td>Post-tensioned concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

After comparing the CLT structural system with the other parking garages, we concluded that it is comparable to the others in terms of its embodied energy; however, it’s embodied carbon is significantly less.