Barriers to Mass Timber Adoption Mid to High-Rise Buildings

Bianca Viggiano
Portland State University, viggiano@pdx.edu

Chad Wallace
Portland State University

Corey T. Griffin
Portland State University, cgriffin@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/research_based_design

Let us know how access to this document benefits you.

Recommended Citation

Viggiano, Bianca; Wallace, Chad; and Griffin, Corey T., "Barriers to Mass Timber Adoption Mid to High-Rise Buildings" (2016). *Research-Based Design Initiative*. 75.
https://pdxscholar.library.pdx.edu/research_based_design/75

This Book is brought to you for free and open access. It has been accepted for inclusion in Research-Based Design Initiative by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Barriers to Mass Timber Adoption

Mid to High-Rise Buildings

Blanca Veggiaro - Chad Wallace - with Corey Griffin
ARCH 563 | Papaothmou | Winter 2017

Introduction
Advancements in technology and manufacturing have provided the means to construct tall wood buildings that are safe and cost effective while gaining the aesthetic and environmental benefits associated with mass timber. The objective of this research is to identify perceived barriers of the integration of mass timber as a desirable building material for architects and structural engineers. Building on a previous study, surveys will be distributed to professionals in the building profession about the benefits of mass timber also ranked high among participants.

Results
The survey yielded 62 responses during the three week period.

The Participants:
92% had heard of CLT
85% knew the various attributes of CLT
The median of the self-assessed familiarity of the professionals with mass timber was seven and over two-thirds of the participants have previously or are currently working on a project that uses mass timber. This knowledgeable and experienced pool of professionals give meaningful results as they are amongst the community affected by current barriers and will benefit the most from future research in this field.

PSU Seismic Testing -
Simulated earthquake movement on a full-scale beam-column-floor assembly. Data analysis will inform the construction and design of framework, a 12-story primarily mass timber building.

Fire Testing -
Fire testing is the highest ranked research project needed based on participant responses. Specifically to develop more accurate ratings associated with mass timber. The less conservative values will make it a more desirable option for assemblies.

Renewables -
Further research is also needed to elucidate and amplify the sustainability benefits of mass timber when compared to other building materials. This includes life cycle analysis, embodied energy, carbon emissions, etc.

Conclusion -
There is a large correlation between the top ranked factors for the selection of any structural system and the main barriers associated with the implementation of mass timber in urban, mid to high-rise buildings. Of the participants surveyed, building code is the top ranked factor and construction cost is the third ranked factor for both criteria. This identifies that research needs to be initiated or expanded upon with respect to fire rating, seismic response modification factor (R-value) and other code related projects. This correlation is further highlighted by the responses to the survey question regarding what mass timber research projects are currently needed. Fire testing to develop fire ratings for mass timber assemblies is the top ranked project, followed by research on seismic load resisting systems that minimize damage to mass timber elements. Research on the seismic response modification factor (R-value) and public education and outreach about the benefits of mass timber also ranked high among participants.