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Abstract 

Virus and worm attacks that exploit system implementation details can be countered 
with a diversified set of implementations. Furthermore, immune systems show that attacks 
from previously unknown organisms require effective dynamic response. In the Synthetix 
project, we have been developing a specialization toolkit to improve the performance of 
operating system kernels. The toolkit helps programmers generate and manage diverse 
specialized implementations of software modules. The Tempo-C specializer tool generates 
different versions for both compile-time and run-time specialization. We are now adapting 
the toolkit to improve operating system survivability against implementations attacks. 

Index terms: specialization, information survivability, operating systems, software di
versity. 
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1 Motivation and Significance 

The construction of the National Information Infrastructure in the United States and Global 

Information Infrastructure (GIl) in the world is moving forward. With the recent terrorist 

attacks such as the Oklahoma City bombing, the regional wars around the world, and still 
unresolved incidents such as the TWA flight 800, the concern for the integrity of the GIl 
is shared by the governments, businesses, and the general public. The potential threat 
of information warfare and information terrorism is real and our preparation insufficient, as 
demonstrated several years ago by the Morris Internet Worm, which was fortunately harmless 
other than a massive denial of service. The United States government has recognized the 
importance of this problem with a recent Broad Agency Announcement [11] by the Defense 

Advanced Research Projects Agency (DARPA), calling for proposals to perform research 
specifically aimed at creating the technology for an area called Information Survivability, to 
improve the resilience of GIl against attacks. 

A significant portion of the information survivability program is inspired by biological 
models in general and immunity models in particular. Although steady progress is being 
made in the information security area, traditional security techniques are focused on keeping 
intruders out, with little help after the penetration has happened. Since most of the network 
researchers agree on the inevitability of penetration and initial damage, new techniques 
must be developed to react to new threats quickly and effectively. Of the ideas presented 
so far, immunity-based models seem to offer the most promising approach to increase GIl 

system resiliency against attacks. Concretely, we focus on implementation attacks, where the 
attacker (e.g., virus or worm) exploits specific representation of code or data in the system. 

We call these attacks security faults. 

An immunity-based approach to improve the survivability of the system against security 
faults is to increase the variety in the representation of components in the system. The 
general approach starts with detailed modeling of each kind of attack such as viruses and 
worms, followed by the development of monitoring techniques, and then response and re
covery strategies against the attacks. Each of the steps is a significant research challenge 
by itself. Probably the modeling and monitoring steps benefit the most from previous work 

on security. However, dynamic and effective response and recovery methods to counteract 
network attacks represent areas in need of research. In particular, we need fast, flexible, 

and low overhead mechanisms to support the incorporation and activation of a variety of 
response strategies against attacks. 

In the Synthetix project [3, 12, 5], we have been developing a toolkit for systematic 
specialization of operating system (OS) kernels. The first purpose of the specialization toolkit 

interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of 
the Defense Advanced Research Projects Agency, Rome Laboratory, or the U.S. Government. 
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is to help kernel programmers to improve system performance, but it is now being extended to 

support survivability needs. Our focus on dynamic adaptive mechanisms complements other 
research projects on modeling, monitoring, and response strategies. Synthetix specialization 

of OS kernels uses an explicit specification of invariants that allow dynamic generation of 
code at run-time to improve OS performance while preserving modularity. All the specialized 
cases preserve the same OS kernel functional interface semantics. Reusing these performance
oriented invariants and introducing artificial invariants where necessary, we can generate 
OS modules as complex and varied as we specify them to be, while maintaining the OS 
functionality. 

U sing the Synthetix toolkit has several advantages. First, explicit specification of invari
ants allows the system to guard their validity statically at compile time and dynamically at 

run-time. The invariants also facilitate the integration of available program verification and 
theorem proving technology. Furthermore, the variations introduced by artificial invariants 

are easy to verify since they are completely local. Second, specialization tools handle invari
ants as general predicates, thus combining invariants referring to performance and security 
fault resistance uniformly. Thus we can add survivability without sacrificing performance 
entirely. Third, specialization is inherently adaptive due to run-time code generation. There
fore, during the peace time, the system can run at high efficiency (with relatively low variety), 

and switch to high variety when under attack. The ability to adapt continuously is essential 
when facing attackers with adaptive or learning capability. 

2 Project Overview 

Information survivability, particularly of large software systems, depends on their ability 

to tolerate security faults. With an immunity-based approach, our first goal is to increase 
the inherent variety of OS code, to create resilience against malicious attacks (e.g., viruses 
and worms), and to contain the damage after the attacks have partially succeeded. Our 

technique, based on specialization [4, 6, 7, 13, 14] is particularly useful due to its ability to 
cooperate with verification techniques through explicit definitions of quasi-invariants, and to 
cooperate with security wrappers through meta-interfaces. 

Concretely, we are concerned with operating system survivability under two kinds of 

attacks. The first kind of attack is machine code dependent, for example, a virus or worm 
taking advantage of raw binary representation of programs and data, either in memory or 
on disk. We call this kind of attacks hardwired, since they only work for the exact intended 

configuration. The second kind of attack is a more subtle one, from programs that execute 
legal kernel calls but somehow performing functions outside the original intentions. For 
example, the worm program written by R.T. Morris, Jr. [8] uses the debugging feature 

of sendmail. We call the second kind of attack contextual, since they take advantage of 
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legitimate functionality outside of their intended context. When an attack succeeds, we call 
the penetration a security fault in analogy to other kinds of faults in the system. 

Although we have been developing specialization primarily for performance, it is appli

cable to other important system properties such as reliability. There are no restrictions 
on the specification of quasi-invariants about their purpose. For example, quasi-invariants 
make explicit the assumptions made by the specialized code, thus facilitating code verifica
tion. In applying specialization to improve operating system survivability, we plan to codify 
security-related quasi-invariants and create mechanisms to guard these security faults. The 
key advantage of our approach is that the same tools developed for specialization can be and 
should be used towards the preservation and enhancement of all important system properties 
such as performance, reliability, and survivability. 

On the systems building side, we plan to extend the ongoing research on specialization in 
the Synthetix project to respond to security faults. Although specialization was originally 
intended for simplifying execution paths for performance gains, it is relatively straightfor
ward to extend the technique to complicate execution paths for survivability gains. Against 
hardwired attacks, for example, we plan to extend the specialization toolkit (see Section 3) to 
introduce detours in the execution path during the specialization process. These detours are 
harmless regarding correct functionality of operating system code (other than slightly longer 
response times), but they dynamically change the executable representation in fundamental 
ways, thus stopping attacks hardwired against specific executables. Against contextual at
tacks, we plan to extend the specialization toolkit to support easy additions and reductions 
in functionality of specialized code. Attempts to use missing functionality are caught by the 
toolkit and analyzed. If a call is considered legitimate and accepted, it is added dynamically 
to the system and completed. Otherwise, the execution is rejected and the attack rebuffed. 

In contrast to traditional security and fault tolerance work, our approach is intended for 
both tolerance of and resistance to security faults. Fault tolerance usually means building 
redundancy into the system to handle situations where predictable faults occur. Our goal is 
to combine specialization with system monitoring research and provide dynamic adaptation 
to resist detected attacks. By introducing randomization into dynamic adaptation, we hope 
to increase operating system survivability by increasing the resistance to security faults as 
they occur. 

3 Specialization Toolkit for Survivability 

The key idea of specialization is to take advantage of certain assumptions (invariants and 
quasi-invariants) in the system to simplify the execution path. For example, in a Unix read 

kernel call, it is not necessary to lock the file and some system data structures (e.g., the 
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inode) if the file is under exclusive access by one process. Specialized code is a clear win 
if the assumptions hold for a significant amount of time. However, occasionally the quasi
invariants are invalidated; in the Unix file example, when another process opens the same 
file, a guard should detect the violation of exclusive access quasi-invariant and replace the 
specialized code with a generic kernel call that contains file access synchronization code. 

To support methodical specialization, we have been developing a toolkit that helps the 
kernel programmer in the tedious but important task of making specialized modules correct. 
For example, we have developed a specializer (called Tempo-C) [2, 1J for dynamic partial 
evaluation of C code, to simplify program optimization. We are also implementing a guard 
checker, a program that detects all the locations where quasi-invariants may be invalidated 
(assuming that the kernel code does not contain arbitrary pointer arithmetic, which may 
touch any memory location at run-time). Even though the toolkit has been designed for 
applying specialization to improve performance and modularity, it supports the generic re
placement of modules under circumstances that can be verified to be correct. That is, a 
module is replaced if and only if the quasi-invariants of the replacement are verified to hold. 

The toolkit design is based on the concept of specialization class, which represents all the 
specialized versions of a module. Specialization classes contain the invariants, the guards 
for quasi-invariants, and actions to be taken when guards are triggered by the invalidation 
of a quasi-invariant. Specialization tools operate both on specialization classes (using type 
information) and on specialization objects (using instance information). 

The variety of specialization objects is a direct function of the number of invariants its 
specialization class contains. Seldom used code, for example, may not have been specialized 
since there is little performance gain. For all modules compiled under Tempo-C, however, 
we can complicate its physical representation by adding artificial invariants. By artificial 
invariants we mean predicates that do not alter the logical execution path under the normal 
interface, but that change the physical layout of data structures and code location. In other 
words, we can safely introduce some no-ops as part of the specialization process and the 
program will still work. 

Traditionally, program verification is done statically, before the program is executed. 
Since specialization involves run-time code generation, verification of specialized programs is 
a serious research question. Our idea is to verify entire specialization classes, which contain 

all the instances. If we succeed in convincingly verifying specialization classes and our 
toolkit, then code generated dynamically (in a disciplined way) may become more trusted 
than before, with its attendant advantages. Since specialized code is created and used only 
when its invariants are guaranteed to be true, we believe the verification of specialization 
classes is feasible. In addition, type systems have been used in program verification and we 
intend to build on that line of work. 
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In Synthetix we have extended partial evaluation by applying to a dynamic environment. 
Instead of partially evaluating programs only on immutable invariants, we also apply partial 
evaluation using quasi-invariants. The correctness of thus specialized programs is maintained 
by guards that watch over the invalidation of quasi-invariants. The key idea is to separate the 
events that may affect program correctness from the optimization of programs. Analogously, 
we plan to separate the events that trigger dynamic code generation from the verification of 
programs themselves. This way, we expect to extend static verification of programs to the 
verification of programs generated at run-time, by watching over the quasi-invariants. 

Another technique we have used successfully in both Synthetix and extended transac
tion research is Open Implementation [10, 91, which advocates the separation of a module's 
functional interface from its meta-interface, which contains attributes and implementation 
details that affect the other properties of the module, such as performance and fault toler
ance. We plan to apply it generally in the interface design of Synthetix research, for example, 
separating out the security interface and specification of survivability requirements into a 
security fault tolerance microlanguage. This approach allows us to preserve legacy func
tional interfaces while developing our own meta-interface to communicate with the newly 
specialized portion (the wrapper) of the system. 

An integral part of our research is an experimental evaluation to test and demonstrate 
the effectiveness of the extended specialization toolkit in a significant operating system com
ponent. For example, we have demonstrated the performance gains of specialization in the 
HP-UX Unix File System [13]. Suppose we choose file system code as a test vehicle, the 
extended specialization toolkit is expected to increase the survivability of the component. 
Verification, analysis, and evaluation are discussed in sections below. 

4 Dynamic Adaptation 

By extending the specialization toolkit we are creating a mechanism to increase the variety 
of OS kernel code. The policy of when and how to control the code variability is an equally 
important question. Our research is not intended to settle the policy question. Instead, we 

plan to build the support for several practical policies, including operator control, indepen
dently randomized (each component of the system chooses a degree of variety randomly), 
and feedback-based (higher variety when intrusion is detected). For example, to survive an 
attacker with operator privileges and learning ability would require at least a combination 
of feedback and randomized strategies. 

As long as specialized modules maintain reasonable performance, higher variety is a safe 
choice. In addition, we can define a notion of distance between two variants in terms of 
how different their physical representations are. By introducing a larger number of artificial 
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invariants, we can make specialized modules that are further apart. Assuming that modules 
that are more distant from each other will be less likely to succumb to the same attack, 
and also assuming that we can propagate dynamic specialization faster than the spread of 

the attacking virus/worm, then a sufficiently large system using specialization can be made 
tolerant against increasing levels of security faults by augmenting its variety in quantity and 
in quality (distance). 

As mentioned in the previous section, we plan to adopt existing monitoring tools for 
security. From specialization point of view, we want to integrate with as many monitoring 
tools as possible. Therefore, our primary concern is defining a generic interface between 
dynamic adaptation specialization and monitoring. The generic interface will facilitate the 
integration of different monitoring tools since we only have to build mediator and translators 
between the imported tools and the generic interface. 

Our research on dynamic adaptation will be driven by a practical demonstration scenario. 
We plan to build specialized operating system components as part of the experimental eval
uation. As monitoring tools detect the attacks, adaptation actions are triggered, and new 
code is put in place. Typical adaptation action is to replug the current version with another 
version of equivalent functionality, but different survival properties. We will consider two 
alternatives here. 

The new version may add complexity to make the specialized code more difficult to pen
etrate. This is the most likely appropriate response to hardwired attacks. Many of the 
hardwired attacks are tied closely to particular implementations, and changing the imple
mentation will increase system resistance to such security faults. The additional complexity 
may be another "natural" version with different quasi-invariants, or an "artificial" version 
with artificially introduced quasi-invariants. 

Alternatively, the new version may reduce complexity and simplify the code. This may 
be an appropriate response to contextual attacks. Many of the contextual attacks depend on 
using features and facilities that were not intended for a particular situation, thus creating 
an unforeseen loophole. The sendmail debugging facility is an obvious example. There 
are many similar features that are convenient to leave in, but that could lead to security 
weaknesses. During the "peace time", there is no harm in leaving these features in. It may 

be important to take them out quickly during "war time". This is particularly the case for 
the millions of computers that will not have system administrators to recompile programs 
or to turn obscure system features on and off. 

So far we have considered only conventional attacks that have limited or no adaptation 
ability. Once the specialization toolkit becomes available, we must consider the possibility 
of its use in the construction of attacking vehicles such as virus and worm programs. In the 
biological world, we already know that adaptive microorganisms such as malaria and AIDS 
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virus are among the most difficult to control due to their fast mutation rates. Analogously, 
current technology to identify virus signatures may need to be improved to take into account 
specialization techniques used by the attackers. 

Although our primary goal is to develop adaptive countermeasures against hardwired 
and contextual attacks, we must also investigate the possibility of applying the specializa
tion techniques to reduce their own effectiveness as a countermeasure. There are obvious 
approaches to preserve the integrity and identifiability of our specialization toolkit with en
crypted signatures, for example. But for the long term, we will also investigate the inherent 
limitations (and potential) of specialization as applied to attacking software on the one side 
and operating system survivability on the other side. 

5 Experimental Evaluation 

An integral part of this research is to validate our results, both the tools and the demonstra
tion systems, since claiming survivability without assurance has little meaning. The subcon
tract address the issue of verification directly, both in the static verification of specialized 
code and in the development of verification tools for the dynamic assurance of run-time 
generated code. However, the variety of foreseeable attacks greatly exceed our resources 
for complete verification. We will use experimental observation, evaluation, and statistical 
techniques to help us validate the additional survivability provided by our techniques and 

tools. 

We plan to test our tools in a systematic way in a limited environment. Instead of simul
taneous variety in space, we plan to create variety over a period of time. After generating a 
variant, we subject it to attack and verify the integrity of the system, and then move on to 
the next variant. With statistical sampling techniques we may be able to establish confidence 
in our experimental evaluation of the system within a reasonable budget and time schedule. 

We plan to evaluate our system systematically. The first step is to use the Synthetix 
methodology to define the quasi-invariants and then use the toolkit to create the specialized 
code and guards. The second step is to verify statically the specialized code that it does what 
it is supposed to do. The third step is to design simulated attack scenarios and implement 

attack generators to attempt penetration. The fourth step is to observe the responses of the 
specialized code, evaluate the effectiveness of the attack and defense, and use this information 
to improve our technique and tools. 

For concreteness, let us assume that we use the extended specialization toolkit to increase 
the survivability of the Unix File System component of an operating system. We first 
specify the security and survivability quasi-invariants and use the extended toolkit to create 
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specialized code and write the guards. After the code and guards have been statically verified, 
we design simulated attacks. We may make simplifying assumptions to test specific aspects 
of security fault resistance. For example, we may assume the attacker has obtained root 
privileges and is attacking the file system from that vantage point. The interesting part of 
the experiment is to observe the responses of specialized code under the attacks. 

For static specialization, our evaluation consists of generating different attack scenarios 
and running them through the many different flavors of specialized code. The task is to tally 
the statistics on the survivability of the variants of specialized code under the different attack 
scenarios. Our hypothesis is that as the complexity and variety of specialized code increases, 
an increasing percentage of specialized code should survive (be immune to) a specific attack. 

One step further is the evaluation of dynamic adaptation. After combining a monitoring 
system with the static specialization evaluation scenario, we add the dynamic adaptation 
part of our toolkit. The experiment consists of attack detection (either through a real 
monitoring system or simulated monitoring) and starting the dynamic adaptation. As the 
attacks intensify, our response is to increase the variety of specialized code through run
time code generation and replugging. The result is an evaluation of the effectiveness of the 
dynamic adaptation mechanism in the increase of variety and the observed survival rate in 
response to specific attacks. Note that the variety of code can be increased by both increasing 
and decreasing the complexity of specialized code. 

After we have evaluated survivability independently, the next goal is to show that sur
vivability and security can be combined with good performance. The experiment is to study 
the performance and survivability rates of the variety of specialized code and observe the 
different trade-offs. Statically, we expect the survivability to increase with complexity and 
therefore decreased performance. The additional complexity and survival overhead, however, 
may still be competitive as compared to a generic algorithm in a normal implementation. 
The interesting part of this study is the evaluation of dynamic adaptation. We expect the 
strategy to decrease code complexity (if applicable) to improve both the survivability and 
performance of the system. 

The extended specialization toolkit obviously builds on existing Synthetix efforts. Al
though the Synthetix tools have been designed for performance and modularity, we believe 
their extension to tolerate security faults can be done in a systematic way. There are sev
eral parts of current tools that will help security, including dependency analysis, predicate 
verification, as well as pointer analysis and aliasing. The main new research question is 
the addition of a new dimension to specialization: security fault resistance in combination 
performance. Our challenge is to show that the specialization idea can accommodate and 
harmonize multiple dimensions and the extended toolkit can support both and resolve the 
trade-offs between them. 
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6 Conclusion 

We have described our plans for increasing operating system (OS) resistance against security 
faults, e.g., virus and worm attacks. Our work builds on the existing Synthetix project 
[3, 12, 5] research on specialization. The basic idea is to increase the representational variety 
of OS components in a systematic way, by using the Synthetix specialization toolkit. The 
same way biological systems need variety to resist bacterial and virus attacks, we see the need 
to increase the variety of software systems, even if all varieties provide the same functions. 

Our research for increasing the variety of software systems goes beyond building a single 
prototype to experiment with the usefulness of the idea. We are building a concrete toolkit to 
support the systematic construction of specialized components in the OS, which will provide 
OS designers many choices, for example, in the trade-off between higher resistance against 
security faults and performance. The toolkit supports both compile-time specialization and 
run-time specializatiion, allowing the specialized OS to adapt dynamically to resist sudden 
attacks. 

This research complements other projects working on immunity-based approaches to 
increase the variety of components and systems. Our toolkit is a mechanism that facilitates 
the construction of software systems with static and dynamic variation in representation 
while supporting the same functionality. When used in combination with techniques to 
monitor attacks and to respond to attacks, we hope to increase the survivability of software 
systems in the GIl of the near future. 
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