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Mortar estimates independent of number of
subdomains

Jayadeep Gopalakrishnan∗

Abstract

The stability and error estimates for the mortar finite element
method are well established. This work examines the dependence of
constants in these estimates on shape and number of subdomains. By
means of a Poincaré inequality and some scaling arguments, these es-
timates are found not to deteriorate with increase in number of sub-
domains.

1 Introduction

This paper proves that the stability and error estimates of the mortar finite
element method do not deteriorate with increase in number of subdomains,
under reasonable assumptions on the subdomain partitioning.

The mortar finite element method, as introduced by Bernardi, et al.
[2, 3], is a domain decomposition method which results in nonconforming
approximations to the solutions of second order elliptic boundary value prob-
lems. The domain where solution is required is partitioned into subdomains,
and each subdomain is independently triangulated. The mortar approxi-
mation space based on this partitioning consists of functions which when
restricted to a subdomain are standard finite element functions. Although
these functions are allowed to have jumps across subdomain interfaces, the
jumps are constrained by conditions associated with one of the two neigh-
boring meshes. The practical importance of the mortar method stems from
the flexibility it offers by allowing sub-structures of a complicated domain
to be meshed independently of each other.

In the papers introducing the mortar finite element method, it was es-
tablished that the mortar finite element problem is well-posed, and error
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estimates for the method were given [1, 2, 3]. However, it is unclear from
the analysis given there whether these estimates hold with constants inde-
pendent of the number of subdomains. In the analysis of domain decompo-
sition methods, it is customary to keep track of dependencies on the number
of subdomains. This requires showing that a uniform, independent of the
subdomain partitioning, coercivity estimate holds. This estimate is given
in Section 3. The final section proves error estimates with constants inde-
pendent of the number of subdomains. Most of the results here can also be
found in [13].

2 Preliminaries

In this section we establish notation for the Sobolev spaces and state some
results to be used later. We will also introduce a model problem and the
mortar method.

Let R denote the field of real numbers and N denote the set of non-
negative integers. For δ = (δ1, δ2, . . . δN ) ∈ NN , define |δ| = δ1 + δ2 +
. . . δN . Let O denote a connected open bounded subset of RN with Lipschitz
boundary [14]. For a distribution u on O, we denote by Dδu the derivative
(∂/∂x1)δ1 · · · (∂/∂xN )δN . Let ‖·‖0, denote the norm on L2(O), the space of
all Lebesgue measurable and square integrable functions on O. For positive
integers m, define the Sobolev seminorm |·|m, , and the Sobolev norm ‖·‖m,
by

|u|2m, =
∑

|δ|=m

∥∥∥Dδu
∥∥∥

2

0,
and ‖u‖2

m, =
∑

|δ|≤m

∥∥∥Dδu
∥∥∥

2

0,

respectively. As usual, we denote the space of all functions u in L2(O) for
which ‖u‖m, is finite by Hm(O). For s ∈ R, let #s$ denote the smallest
integer greater than or equal to s. If s > 0 is not an integer, then writing
s = σ + (#s$ − 1) for a σ ∈ (0, 1), we define the Sobolev seminorm |·|s, by

|u|s, =




∑

|δ|=#s$−1

∫∫

×

|Dδu(x) − Dδu(y)|2

|x − y|N+2σ
dxdy




1/2

,

and the Sobolev norm ‖·‖s, by ‖u‖s, = (‖u‖2
#s$−1, + |u|2s, )1/2. The space

of functions u in L2(O) for which ‖u‖s, is finite is Hs(O). It is well known
[5] that the space Hs(O) for non-integer s is the space obtained by interpo-
lation between H#s$−1(O) and H#s$(O) by, for example, the real method of
interpolation.
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In various estimates involving Sobolev norms, we will need to keep track
of the dependencies of constants on domain sizes. This is usually done by
the technique of proving statements on a reference domain and scaling back
to the domain under consideration. During such arguments, we will often
want to bound Sobolev norms with seminorms. Proposition 2.1 below is a
result in that direction. Its proof follows exactly along the lines of the proof
of Deny-Lions Lemma [10, 15] or Bramble-Hilbert Lemma [6, 18], and is
omitted.

Proposition 2.1 Let v be in Hs(O) for some positive real number s. There
exists a constant C(O) independent of v such that if

∫
Dδv = 0 for all δ ∈ NN with 0 ≤ |δ| ≤ #s$ − 1, (2.1)

then ‖v‖s, ≤ C(O) |v|s, .

Given a domain O of RN , we denote by Ô another domain of RN for
which there exists an invertible affine mapping F (x̂) = Bx̂ + b, (where B is
an N × N matrix and b is a vector in RN) such that O = F (Ô). For real
valued functions v(x) defined for almost every x ∈ O, we denote by v̂ the
function defined almost everywhere on Ô by v̂(x̂) = v(F (x̂)).

For φ ∈ Hs(O), and a segment γ contained in O, we will denote the trace
of φ on γ by φ|γ . We will often write ‖φ‖r,γ and |φ|r,γ for the Hr(γ) norm
and seminorm respectively, of the trace φ|γ .

We are interested in the dependence of constants on domain size in some
well-known trace inequalities. When the domain under consideration is a
triangle, such dependencies can be examined easily using affine equivalences
and a standard scaling argument as the proof of the lemma below shows. By
definition, triangles and edges will be open. For any triangle T , we use hT

to denote the length of the largest side of T , and ρT to denote the diameter
of the largest ball contained in T .

Lemma 2.1 Let T be a triangle and L be one of its edges. Denote by rT the
ratio hT /ρT . Then, there exist positive constants C1, C2 and C3 independent
of T such that

|u|1/2,L ≤ C1 rT |u|1,T , (2.2)

‖u‖2
0,L ≤ C2 r2

T

(
ρ−1

T ‖u‖2
0,T + hT |u|21,T

)
and, (2.3)

‖u − ūL‖0,L ≤ C3 rT h1/2
T |u|1,T , (2.4)
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for all u in H1(T ). In the last inequality, ūL denotes the average of the trace
of u on L.

Proof. There is an affine correspondence between T and the reference
triangle T̂ bounded by the co-ordinate axes and the line x + y = 1 in the
(x, y) plane. Let L̂ be the image of L under the affine transformation. To
prove the first inequality of the lemma, we start by applying a well-known
trace inequality [14] on the reference domain to get

|û|1/2,L̂ ≤ Ĉ1 ‖û‖1,T̂ .

If ū denotes the average of û on T̂ , then using the above inequality for u− ū
we get

|û|1/2,L̂ ≤ Ĉ1 ‖û − ū‖1,T̂ ≤ Ĉ1
′ |û|1,T̂ .

The last inequality followed from Proposition 2.1. Here, the constant Ĉ1
′

is obviously independent of T . The analogous inequality for u now follows
using the standard scaling argument. This proves (2.2). The proofs of the
other inequalities proceed similarly. !

Now we introduce the model problem. Consider a bounded, connected
and open subset Ω of R2 with a polygonal boundary ∂Ω. Let ∂ΩD be a
closed subset of ∂Ω with positive measure, and denote by ∂ΩN the remainder
∂Ω \ ∂ΩD. Denote by H1

D(Ω) the subspace of H1(Ω) consisting of functions
whose trace on ∂ΩD is zero.

Let A(·, ·) be the bilinear form on H1
D(Ω) × H1

D(Ω) defined by

A(u, v) =
∫

Ω
∇u ·∇v dx,

and (·, ·) denote the L2(Ω)–innerproduct. We seek an approximate solution
to the following problem.

Problem 2.1 Find U ∈ H1
D(Ω) such that

A(U,φ) = (f,φ) for all φ ∈ H1
D(Ω),

for a given f in L2(Ω).

This problem has a unique solution [15, 18]. This is the variational form of
the problem of finding U that satisfies −∆U = f on Ω with the boundary
conditions

U = 0 on ∂ΩD, and
∂U

∂n
= 0 on ∂ΩN.
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Here and elsewhere, ∂U/∂n will denote the directional derivative of U in the
direction of the outward normal vector n, i.e., ∂U/∂n = ∇U · n. Although
our results are stated for this model problem, extension to more general sec-
ond order elliptic partial differential equations with more general boundary
conditions are straightforward.

We conclude this section by describing the mortar finite element method.
Consider a decomposition of Ω into disjoint open polygonal subdomains Ωi

with Ω =
K⋃

i=1

Ωi. Define the space Ṽ by

Ṽ =
{
u : u|Ωi ∈ H1(Ωi)

}
.

Associated with a decomposition of Ω is a set Z of interface segments defined
as follows. Each member of Z is an open straight line segment contained
in ∂Ωi ∩ ∂Ωj for some i and j. It will be convenient to have a notation
for adjacent subdomains of a γ ∈ Z. Out of the two subdomains that lie
adjacent to γ, pick one arbitrarily, and call it the mortar subdomain of γ.
Call the other the nonmortar subdomain of γ. Also, let m(γ) and nm(γ)
denote indices such that Ωm(γ) and Ωnm(γ) denote the mortar and nonmortar
subdomains respectively. For a function u ∈ Ṽ, let um

γ and unm
γ denote the

traces on γ of the restrictions of u to Ωm(γ) and Ωnm(γ) respectively, i.e., um
γ

is the trace from the mortar side and unm
γ is the trace from the nonmortar

side. The jump of u across the interface γ will be denoted by [u]γ , i.e.,
[u]γ = um

γ − unm
γ .

Denote by Ti a triangulation of Ωi. We assume that Ti are such that end-
points of a γ ∈ Z are vertices of both the triangulations on the subdomains
adjacent to γ.

To define the mortar finite element space, first let M̃(Ωi) denote the
space of functions on Ωi that are continuous and are polynomials of degree
at most di ≥ 1 when restricted to a triangle of Ti. We now define two spaces
S(γ) and W (γ) associated with a γ ∈ Z. W (γ) is the space of functions
on γ that vanish at the endpoints of γ, and are traces on γ of functions in
M̃(Ωnm(γ)). The space S(γ) consists of traces on γ of functions in M̃(Ωnm(γ))
that are polynomials of degree dnm(γ) − 1 on the two end sub-intervals of γ.
Let M̃ denote the space of functions on Ω whose restrictions to Ωi are in
M̃(Ωi). Then the mortar finite element space M is defined by

M =
{

v ∈ M̃ :
∫

γ
ν [v]γ ds = 0, for all ν ∈ S(γ), for all γ ∈ Z

}
.
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The “mortaring” is done by constraining the jump across interfaces by the
integral constraint above.

The mortar constraint makes the size of the jump across interfaces small.
More precisely, we have the following result.

Proposition 2.2 For all v ∈ M ,
∥∥∥[v]γ

∥∥∥
0,γ

≤ inf
χ∈S(γ)

∥∥∥[v]γ − χ
∥∥∥

0,γ
.

Proof. The result follows immediately from
∫

γ
[v]2γ ds =

∫

γ
[v]γ ([v]γ − χ) ds

and Cauchy-Schwarz inequality. !

Note also that there is a projection operator Πγ : L2(γ) → W (γ) that
is associated with the integral constraints. It can be shown [3] that for a
u ∈ L2(Ω) there exists a unique v ∈ W (γ) satisfying

∫

γ
vχ ds =

∫

γ
uχ ds for all χ ∈ S(γ).

This v is defined to be Πγu. Clearly, if w is a function that satisfies the
integral constraints (i.e., w ∈ M), then Πγ [w]γ is zero. The stability of this
projection with respect to H1

0 (γ) and L2(γ) norms are also known [3, 20].
Consequently, there exists a constant CΠ such that

‖Πγu‖H
1/2
00 (γ)

≤ CΠ ‖u‖
H

1/2
00 (γ)

for all u ∈ H1/2
00 (γ), (2.5)

where ‖·‖
H1/2

00 (γ)
denotes the norm on H1/2

00 (γ), the space half-way in the

interpolation scale between L2(γ) and H1
0 (γ) (the latter normed with |·|1,γ).

Although we will use (2.5) only when each of the meshes Ti are quasiuniform,
we point out that this result is known to hold true under much weaker
assumptions on meshes [20]. Note that CΠ can be chosen independent of
the size of γ, as a simple scaling argument readily shows.

The discrete mortar problem can now be described as the problem of
finding a Galerkin approximation to U from M :

Problem 2.2 Find UM ∈ M such that

Ã(UM , w) = (f,w) for all w ∈ M.
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Here Ã(·, ·) is a bilinear form on Ṽ × Ṽ defined by

Ã(u, v) =
K∑

i=1

∫

Ωi

∇u ·∇v dx. (2.6)

As we will in the next section, there is a unique UM that solves Problem 2.2.

3 A Poincaré inequality

We provide a Poincaré inequality for some nonconforming spaces in this
section. Of particular interest to us will be the dependence of the constant
in such an inequality. For v ∈ Ṽ, let

|v|2Σ =
K∑

i=1

|v|21,Ωi
and ‖v‖2

Σ = ‖v‖2
0,Ω + |v|2Σ . (3.1)

In general, |·|Σ may not be a norm on Ṽ.
Consider the space

V =
{

v ∈ Ṽ : v|∂ΩD = 0, and
∫

γ
[v]γ ds = 0 for all γ ∈ Z

}
. (3.2)

This space arises naturally in the analysis of mortar finite elements, as all
mortar finite element spaces (based on the same partitioning {Ωi}) are sub-
spaces of V. We shall provide a Poincaré inequality for the space V. Such
inequalities have have been proved before [2] using a contradiction argument
involving compact imbedding of H1(Ωi) in L2(Ωi). However, those analyses
give no indication of the dependence of the constant on subdomain shape,
size and number. Under the following fairly general condition on the subdo-
main partitioning, we will show that the constant in the Poincaré inequality
can be taken independent of the partitioning.

Assumption 3.1 There is a triangulation T corresponding to the partition-
ing which satisfies the following conditions:

1. The triangulation is locally quasiuniform, i.e., the minimal angle of
any triangle in T is greater than or equal to some positive constant C∗.

2. The triangles align with the partitioning of Ω in the sense that each
Ωi is the union of the closures of triangles in T and each interface in
Z is an edge of some triangle in T.
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· · · · · ·

Fig. 1: A sequence of decompositions of the unit square satisfying Assump-
tion 3.1. (The thick lines delineate subdomains, while the dotted lines show
the associated triangulations. Here C∗ = π/4 − arctan 1/2.)

3. The triangles align with ∂ΩD in that ∂ΩD is a union of edges (and their
end points) of triangles in T.

Clearly, Assumption 3.1 constrains the angles of the polygonal subdo-
mains. One may consider a sequence of partitionings of Ω for which the
number of subdomains tend to infinity (see Figure 1 for an example). For
each partitioning, it may be easy to construct a triangulation that satisfies
the last two conditions of Assumption 3.1. But, for the assumption to hold
for all the partitionings in the sequence, the minimal angles of all such tri-
angulations must be uniformly bounded away from zero. We now state the
Poincaré inequality for V.

Theorem 3.1 Let V be the space defined by (3.2) for a decomposition of Ω
that satisfies Assumption 3.1. Then there exists a constant C0 depending
only on Ω, ∂ΩD, and C∗ such that

‖v‖0,Ω ≤ C0 |v|Σ (3.3)

for all v ∈ V. In particular, C0 is independent of the number of subdomains.

In the proofs and elsewhere, it will be convenient to denote by C a generic
constant that is independent of the number of the subdomains. Its value at
different occurrences may differ.

With T as given by Assumption 3.1, consider the space V defined exactly
as in (3.2) but with respect to the partitioning

Ω =
⋃

τ∈
τ̄ ,

8



with Z equal to the set of interior edges of T. For the remainder of this
section we let |·|Σ denote the seminorm ∗ resulting from this partitioning.
Note that |·|Σ coincides with the seminorm defined by (3.1) when applied to
functions in V. Moreover, V contains V. Therefore, to prove Theorem 3.1,
it suffices to prove (3.3) for v ∈ V .

Define the discrete spaces

Ṽ = {v : v is linear on each τ ∈ T and v = 0 on ∂ΩD} and,

V = {v ∈ Ṽ : v is continuous on Ω},

and the norm ||| · ||| on V by

|||v||| =
( ∑

τ∈
h−2
τ ‖v‖2

0,τ

)1/2

.

The proof of Theorem 3.1 is based on the following lemma.

Lemma 3.1 For every v ∈ V , there exists a v ∈ V such that

|||v − v ||| ≤ C |v|Σ , and (3.4)
|v |1,Ω ≤ C |v|Σ . (3.5)

Proof. We start by noting that there exists ṽ ∈ Ṽ such that on each
triangle τ of T,

|v − ṽ |s,τ ≤ Ch1−s
τ |v|1,τ for s = 0 and 1. (3.6)

For example, we can take ṽ |τ to be the L2(τ) orthogonal projection for
triangles whose edges do not intersect ∂ΩD and ṽ |τ = 0 for the remaining
triangles. It immediately follows that

|||v − ṽ ||| ≤ C |v|Σ . (3.7)

Because of (3.7), (3.4) will follow if we construct v satisfying

|||v − ṽ ||| ≤ C |v|Σ . (3.8)

Let {xi} denote the vertices of the triangulation T. At each xi, ṽ gen-
erally has multiple values, each being a limit from one of the triangles with
vertex xi. Pick one triangle which has xi as a vertex and denote it by τ i. If

∗We will revert to the previous definitions of |·|Σ and Z in the next section.
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xi ∈ ∂ΩD, we always choose a triangle which has an edge contained in ∂ΩD

and ending at xi. Define v ∈ V by

v (xi) = ṽ
∣∣∣
τ i

(xi).

Fix τ ∈ T. We clearly have that

h−2
τ ‖v − ṽ ‖2

0,τ ≤ C
∑

xi∈τ
(v (xi) − ṽ (xi))2.

Let E(i) denote the set of all edges of the triangulation which are contained
in Ω and have xi as an endpoint. Let [ṽ ]e (xi), for an edge e in E(i) denote
the difference of values of ṽ (xi) from the triangles adjacent to e. Since
the value of v coincides with the value of ṽ on τ i at xi, we can write
(v − ṽ )(xi) as a sum of a few of the differences [ṽ ]e (xi), e ∈ E(i). This is
true even for boundary nodes. Thus,

(v (xi) − ṽ (xi))2 ≤ (n(i) − 1)
∑

e∈ (i)

[ṽ ]2e (xi),

where n(i) is the cardinality of E(i). By the angle condition, n(i) can be
bounded above in terms of C∗ (independently of i). In addition, if τ1 and τ2
are two triangles which meet at the vertex xi then

chτ1 ≤ hτ2 ≤ Chτ1

holds with constants c and C which only depend on C∗. Thus,

h−2
τ ‖v − ṽ ‖2

0,τ ≤ C
∑

xi∈τ

∑

e∈ (i)

[ṽ ]2e (xi)

≤ Ch−1
τ

∑

e

∫

e
[ṽ ]2e ds

≤ Ch−1
τ

∑

e

[ ∫

e
[v − ṽ ]2e ds +

∫

e
[v]2e ds

]
,

(3.9)

where the last two sums run over the interior edges which have one of the
vertices of τ as an endpoint. For each such edge e there are two triangles τ1
and τ2 which have e as an edge. Then,

∫

e
[v − ṽ ]2e ds ≤ 2

∥∥vτ1 − ṽτ1
∥∥2

0,e
+ 2

∥∥vτ2 − ṽτ2
∥∥2

0,e
.
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Here vτ
i and ṽτ

i denote the values of v and ṽ taken from τ i. Using
Lemma 2.1 and (3.6), we have
∥∥∥vτ

i − ṽτ
i
∥∥∥

2

0,e
≤ C(h−1

τ i ‖v − ṽ ‖2
0,τ i + hτ i |v − ṽ |21,τ i) ≤ Chτ i |v|21,τ i . (3.10)

To bound the second term of the last inequality in (3.9), we note that
the averages of vτ1 and vτ2 are the same on e. Let v̄e denote this number.
Then ∫

e
[v]e

2 ds ≤ 2 ‖vτ1 − v̄e‖2
0,e + 2 ‖vτ2 − v̄e‖2

0,e

≤ C

(
hτ1 |v|

2
1,τ1

+ hτ2 |v|
2
1,τ2

)
,

where the second inequality followed from Lemma 2.1. Combining the above
inequalities and summing over τ ∈ T proves (3.8) and hence (3.4).

It only remains to prove (3.5). By the triangle inequality and a local
inverse inequality,

|v |1,Ω ≤ |v − ṽ |Σ + |ṽ |Σ
≤ C|||v − ṽ ||| + |ṽ |Σ .

Application of (3.8) and (3.6) now finishes the proof. !

Remark 3.1 It is well-known [8, 19] that for every v ∈ H1
D(Ω), there exists

a v ∈ V such that
∑

τ∈
h−2
τ ‖v − v ‖2

0,τ ≤ C |v|21,Ω .

Since H1
D(Ω) ⊂ V , Lemma 3.1 is a generalization of this result.

Proof of Theorem 3.1. For v ∈ V, let v be as given by Lemma 3.1.
By the triangle inequality,

‖v‖0,Ω ≤ ‖v ‖0,Ω + ‖v − v ‖0,Ω . (3.11)

The standard Poincaré inequality on H1
D(Ω) gives a constant CΩ such that

‖v ‖0,Ω ≤ CΩ |v |1,Ω . (3.12)

From Lemma 3.1, we have that |v |1,Ω ≤ C |v|Σ. Therefore it suffices to
verify that

‖v − v ‖0,Ω ≤ C |v|Σ . (3.13)
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Since the obvious inequality ‖v − v ‖0,Ω ≤ C|||v−v ||| and Lemma 3.1 implies
(3.13), the proof is complete. !

Remark 3.2 Consider the case of partitioning Ω = ∪τ∈ τ̄ with Z equal to
the set of interior edges, and let

V′ =
{

v :
v|τ ∈ H1(τ) for triangles τ of T,

∫
e v ds = 0 for

edges e ⊆ ∂ΩD of T, and
∫
γ [v]γ ds = 0 for γ ∈ Z.

}
(3.14)

Assume that the triangulation T satisfies the conditions of Assumption 3.1.
It is possible to modify the proof of Lemma 3.1 to show that its conclusion
holds for functions in V′ . Thus Theorem 3.1 holds for V′ .

Remark 3.3 Consider the P1 [9] or P2 [12] nonconforming finite element
space based on a quasiuniform triangulation T of mesh size h. Such a space
is a subspace of V′ defined by (3.14). Let u be the continuous solution
and uh be its nonconforming finite element approximation. By (3.3) and
Remark 3.2,

‖u − uh‖0,Ω ≤ C |u − uh|Σ ≤ Chl |u|l+1,Ω .

The second inequality above is, with l = 1 or 2, the standard error estimate
for the nonconforming method. Thus, the finite element error estimate for
the nonconforming method in the discrete energy norm at least implies a
(weak) error estimate in L2(Ω) without any further regularity assumptions
on the problem.

We close this section by stating an application of the Poincaré inequality
to the mortar finite element method. The following result is an immediate
consequence of Theorem 3.1.

Theorem 3.2 Suppose that Assumption 3.1 holds. Then Problem 2.2 has
a unique solution UM , and UM satisfies the following a priori stability esti-
mate:

‖UM‖2
Σ ≤ C2

0 (1 + C2
0 ) ‖f‖2

0,Ω .

Thus, the stability of the mortar finite element method does not deteriorate
as the number of subdomains increases.

The stability result above can also be deduced from a another work [21]
independent of ours. There, a Poincaré inequality is proved for the discrete
mortar finite element spaces with a constant independent of the subdomain
diameters. Our assumption and techniques are different from those in [21],
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and we arrive at a Poincaré inequality on the infinite dimensional space V.
Moreover, our assumption yields error estimates independent of the number
of subdomains, as the next section shows.

4 Error estimates

In this section we prove that under the previous assumption on the subdo-
main partitioning, the error estimates for the mortar finite element solution
hold with constants independent of the number of subdomains.

We assume, throughout this section, that the mesh on Ωi, namely Ti,
is quasiuniform with mesh size hi, i.e, the ratios h/hτ for any triangle τ
of any of the triangulations Ti are bounded above and below by fixed con-
stants (independent of τ and i). We will also assume that the solution to
Problem 2.1, namely U , is in H3/2+ε(Ω) for some ε > 0.

Before proving the error estimates, let us note a consequence of As-
sumption 3.1 involving some extension operators. Let L̂ be an edge of the
reference triangle T̂ . It is a well-known result (cf. [16, Chapter 2, Theo-
rem 5.7]) that there is an extension operator R̂ : H1/2

00 (L̂) → H1(T̂ ) such
that ∣∣∣R̂ν̂

∣∣∣
1,T̂

≤ Ĉ ‖ν̂‖
H1/2

00 (L̂)
for all ν̂ ∈ H1/2

00 (L̂). (4.1)

Moreover, the trace of R̂ν on ∂T̂ \L̂ is zero. Using R̂, we can define extension
operators Rγ : H1/2

00 (γ) → H1(Ωnm(γ)) for all γ ∈ Z. Indeed, if T ⊆ Ωnm(γ)

is the triangle from the triangulation T given by Assumption 3.1 having
γ as an edge, and F is the affine map that takes T̂ one-one onto T (with
L̂ = F−1(γ)), then for ν ∈ H1/2

00 (γ), define Rγν almost everywhere on Ωnm(γ)

by

Rγν(x) =
{

R̂ν̂(F−1(x)) if x ∈ T, and
0 if x ∈ Ωnm(γ) \ T.

It is then immediate from (4.1) and the way ‖·‖
H1/2

00 (γ)
and |·|1,T scale, that

|Rγν|1,Ωnm(γ)
≤ C ‖ν‖

H1/2
00 (γ)

, (4.2)

with C independent of γ.
The existence of discrete extension operators also follows. Let Ii :

H1(Ωi) → M̃(Ωi) denote the averaging interpolant operator defined in [19].
Then Theorem 3.1 there gives constants C (i) depending only on the mini-
mal angle of Ti such that

|Iiu|1,Ωi
≤ C (i) |u|1,Ωi

for all u ∈ H1(Ωi). (4.3)
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For each γ ∈ Z, define a discrete extension operator Rγ : W (γ) → M̃(Ωnm(γ))
by

Rγν = Inm(γ)Rγν.

Rγ is indeed an extension operator, since Inm(γ), by construction, leaves
traces that are continuous piecewise polynomials of degree dnm(γ) invariant.
By (4.2) and (4.3), we have the following result.

Proposition 4.1 If Assumption 3.1 holds, then there exist extension op-
erators Rγ : W (γ) → M̃(Ωnm(γ)), such that for all ν ∈ W (γ), the traces of
Rγν on γ and ∂Ωnm(γ) \ γ are ν and zero respectively, and there exists a
constant CR such that

|Rγν|1,Ωnm(γ)
≤ CR ‖ν‖

H1/2
00 (γ)

. (4.4)

In particular, CR is independent of γ.

We now provide some auxiliary results which help in error analysis. Re-
call that Proposition 2.2 estimated the jump of functions in M by a best
approximation error. The error in best approximation by a function in S(γ)
can be estimated, under the current assumptions on meshes, by well-known
techniques. Using also the familiar scaling argument, we conclude that the
constant in such estimates can be chosen independent of the size of γ.

Proposition 4.2 If q denotes the L2 orthogonal projection into S(γ), then
for any 0 < α ≤ dnm(γ),

‖ν − q(ν)‖0,γ ≤ Chαnm(γ) |ν|α,γ for all ν ∈ Hα(γ).

The importance of the next result also lies in the independence of the
constant involved on the subdomain size.

Lemma 4.1 Let Assumption 3.1 hold and consider a γ ∈ Z. If the restric-
tion of U to Ωnm(γ) is in Hs(Ωnm(γ)) for 3/2 < s ≤ dnm(γ) + 1, then

∥∥∥∥
∂U

∂n
− q(

∂U

∂n
)
∥∥∥∥

0,γ

≤ Chs−3/2
nm(γ) |U |s,Ωnm(γ)

.

Proof. Let T ⊆ Ωnm(γ) be the triangle of T (the triangulation guaran-
teed by Assumption 3.1), which has γ as an edge. Also let F (x̂) = Bx̂ + b
be the affine mapping that takes T̂ one-one onto T , and let γ̂ = F−1(γ).
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The standard estimate for L2 projection when applied on γ̂ gives
∥∥∥∥∥
∂Û

∂n̂
− q̂(

∂Û

∂n̂
)

∥∥∥∥∥
0,γ̂

≤ Ĉqĥ
s−3/2
n

∥∥∥∥∥
∂Û

∂n̂

∥∥∥∥∥
s−3/2,γ̂

.

Here, as before, ĥ = hnm(γ)/|γ|, Û = U ◦ F , and n̂ = B−1n/
∥∥B−1n

∥∥
)2

. A
trace theorem now gives

∥∥∥∥∥
∂Û

∂n̂
− q̂(

∂Û

∂n̂
)

∥∥∥∥∥
0,γ̂

≤ Ĉq,1ĥ
s−3/2

∥∥∥Û
∥∥∥

s,T̂
.

Since s ≤ dnm(γ) + 1, polynomials on γ of degree #s$ − 2 are in S(γ). If
p is a polynomial of degree at most #s$ − 1, then (∂p/∂n̂)|̂γ is a polynomial
of degree at most #s$ − 2 on γ̂, and q̂ preserves it. Hence,
∥∥∥∥∥
∂Û

∂n̂
− q̂(

∂Û

∂n̂
)

∥∥∥∥∥
0,γ̂

=

∥∥∥∥∥
∂(Û + p)
∂n̂

− q̂(
∂(Û + p)
∂n̂

)

∥∥∥∥∥
0,γ̂

≤ Ĉq,1ĥ
s−3/2

∥∥∥Û + p
∥∥∥

s,T̂

≤ Ĉq,2ĥ
s−3/2

∣∣∣Û
∣∣∣
s,T̂

, (4.5)

where in the last step we have used Proposition 2.1. Noting that (∂U/∂n)(x)
is equal to

∥∥B−1n
∥∥
)2

(∂Û/∂n̂)(x̂), the proof can now be finished easily using
a scaling argument. !

The error analysis of the mortar method uses interpolation error esti-
mates. Let UI ∈ M̃ denote the finite element interpolant of U . The next
lemma states some estimates involving UI in a form that will be of use later.

Lemma 4.2 Suppose Assumption 3.1 holds. Also assume that U |Ωi ∈ Hsi(Ωi)
with 3/2 < si ≤ di + 1. Then, for a γ ∈ Z, with n = nm(γ) and m = m(γ),
we have

∥∥∥(U − UI)mγ
∥∥∥

H1/2
00 (γ)

≤ Chsm−1
m |U |sm,Ωm

, and (4.6)
∥∥∥(U − UI)nm

γ

∥∥∥
H1/2

00 (γ)
≤ Chsn−1

n |U |sn,Ωn
. (4.7)

Proof. We prove (4.6) using standard estimates for the interpolant and
a scaling argument. The proof of (4.7) is similar. As before, we let T ⊆ Ωm

be the triangle of T with γ as an edge. Also let E = (U − UI)|T .
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Two standard estimates for error in interpolation [7, 11] are
∣∣∣Ê

∣∣∣
1,γ̂

≤ Ĉ ′
E ĥsm−3/2

∣∣∣Û
∣∣∣
sm−1/2,γ̂

and
∥∥∥Ê

∥∥∥
0,γ̂

≤ Ĉ ′′
E ĥsm−1/2

∣∣∣Û
∣∣∣
sm−1/2,γ̂

,

where ĥ = hm/|γ|. Interpolation of operators, and a trace inequality [14,
Theorem 1.5.2.8] gives that

∥∥∥Ê
∥∥∥

H
1/2
00 (γ̂)

≤ Ĉ ′′′
E ĥsm−1

∥∥∥Û
∥∥∥

sm−1,T̂
.

Now, if p is any polynomial of degree at most #sm$−1 ≤ dm, the interpolant
of Û + p is ÛI + p. So,

∥∥∥Ê
∥∥∥

H1/2
00 (γ̂)

≤ Ĉ ′′′
E ĥsm−1

m

∥∥∥Û + p
∥∥∥

sm,T̂
≤ ĈE ĥsm−1/2

m

∣∣∣Û
∣∣∣
sm,T̂

,

where we have used Proposition 2.1. The scaling argument now finishes the
proof. !

We now prove error estimates for the mortar method that do not dete-
riorate with increase in number of subdomains.

Theorem 4.1 Suppose that Assumption 3.1 holds. If the restriction of U
to Ωi is in Hsi(Ωi) for an si satisfying 3/2 < si ≤ di + 1, then

|U − UM |2Σ ≤ C4

K∑

i=1

(
hsi−1

i |U |si,Ωi

)2
.

Here, C4 is a constant independent of the number of subdomains and of mesh
sizes hi.

Proof. The proof is based on the ideas in [2]. However, in contrast
to [2], we will eliminate dependencies on subdomain sizes in the constants
in our estimates. As usual, we first write the error as a sum of an “ap-
proximation error” term and a “consistency error” term, as in the proof
of the so-called Second Strang Lemma [18]. Each of these terms are then
separately estimated.

For any z ∈ M (z 0= UM ) we clearly have that

|U − UM |2Σ ≤ 2 |U − z|2Σ + 2 |UM − z|2Σ (4.8)

Since

Ã(UM − z, UM − z) = Ã(U − z, UM − z) − Ã(U,UM − z) + (f, UM − z),
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integration by parts and Cauchy-Schwarz inequality gives

|UM − z|Σ ≤ |U − z|Σ +
1

|UM − z|Σ

∑

γ∈Z

∣∣∣∣
∫

γ

∂U

∂n
[UM − z]γ ds

∣∣∣∣ .

This with (4.8), gives that

|U − UM |2Σ ≤ 4e2
A + 2e2

C , (4.9)

where

eA = inf
w∈M

|U − w|Σ and eC = sup
w∈M

1
|w|Σ

∑

γ∈Z

∣∣∣∣

∫

γ

∂U

∂n
[w]γ ds

∣∣∣∣ .

To estimate eA, we choose a w in M that approximates U . Note that al-
though UI approximates U , it is not in M . We let w = UI+

∑
γ∈Z RγΠγ [UI ]γ .

Here Πγ is as in (2.5) and Rγ is as given by Proposition 4.1. Clearly, w is
in M , and

U − w = (U − UI) −
∑

γ∈Z

RγΠγ [UI ]γ .

When restricted to a triangle of T, the sum in the last term above has
at most three nonzero summands. Summing the squares of H1–seminorms
triangle by triangle, we have

|U − w|2Σ ≤ 4 |U − UI |2Σ + 4
∑

γ∈Z

∣∣∣RγΠγ [UI ]γ
∣∣∣
2

1,Ωnm(γ)

≤ 4 |U − UI |2Σ + 4C2
RC2

Π

∑

γ∈Z

∥∥∥[UI ]γ
∥∥∥

2

H
1/2
00 (γ)

. (4.10)

Let τ be a triangle in Ti. Then by standard estimates for interpolation error
[7, Theorem 3.1.6], there is a constant, say CI , depending only on si, di and
the minimal angle of Ti such that |U − UI |1,τ ≤ CIh

si−1
i |U |si,τ

. Summing,
we have

|U − UI |2Σ ≤ C2
I

K∑

i=1

(
hsi−1

i |U |si,Ωi

)2
.

To complete the estimation of eA, it now suffices to estimate the last term
in (4.10). But since [UI ]γ is equal to [UI − U ]γ , the triangle inequality and
Lemma 4.2 estimates this term as needed.

It now only remains to estimate eC . Since
∫

γ

∂U

∂n
[w]γ ds =

∫

γ
(
∂U

∂n
− χ) [w]γ ds, for all χ ∈ S(γ),
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by Cauchy-Schwarz inequality and Proposition 2.2, we have that

∫

γ

∂U

∂n
[w]γ ds ≤

(
inf
χ∈S(γ)

∥∥∥∥
∂U

∂n
− χ

∥∥∥∥
0,γ

)(
inf
χ∈S(γ)

∥∥∥[w]γ − χ
∥∥∥

0,γ

)
.

The first infimum on the right hand side can be bounded using Lemma 4.1
and the second using Proposition 4.2. These together with the discrete
Cauchy-Schwarz inequality gives that

∑

γ∈Z

∣∣∣∣
∫

γ

∂U

∂n
[w]γ ds

∣∣∣∣ ≤ C

(
K∑

i=1

h2si−2
i |U |2si,Ωi

)1/2



∑

γ∈Z

∣∣∣[w]γ
∣∣∣
2

1/2,γ




1/2

.

Estimating the summands of the last sum above using the first inequality
of Lemma 2.1, we find that eC is bounded as required. This completes the
proof. !

Finally, we provide an error estimate in L2(Ω)–norm. Note that L2 error
estimates for the mortar finite element method were proved before in [1] and
[4]. What is new in our theorem is the independence of the constant in the
error estimate on number of subdomains.

Theorem 4.2 In addition to the assumptions of Theorem 4.1, if Prob-
lem (2.1) admits H2–regularity of solutions (see (4.11)), U is in Hs(Ω)
for 2 ≤ s ≤ mini di + 1, and the meshes in all subdomains are quasiuniform
with same mesh size h, then

‖U − UM‖0,Ω ≤ C5h
s |U |s,Ω

where C5 is a constant independent of h and the number of subdomains.

Proof. The argument is analogous to the well-known Aubin-Nitsche
duality argument [17, 18]. For any g ∈ L2(Ω), let Ug and U g

M solve Prob-
lem (2.1) and Problem (2.2) respectively, with g replacing f on the right
hand side. Regularity of solutions implies the existence of a constant C
such that

‖Ug‖2,Ω ≤ C ‖g‖0,Ω . (4.11)

We start by observing that for e = Uf − U f
M ,

‖e‖0,Ω = sup
g∈L2(Ω)

(Uf , g) − (Uf
M , g)

‖g‖0,Ω

= sup
g∈L2(Ω)

A(Ug, Uf ) − Ã(Ug
M , Uf

M )
‖g‖0,Ω

.
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Now if we let

e1 = Ã(Ug − U g
M , e),

e2 = Ã(Ug
M , Uf ) − (g, Uf

M ), and e3 = Ã(Uf
M , Ug) − (f, Ug

M ),

then
A(Ug, Uf ) − Ã(Ug

M , Uf
M ) = e1 + e2 + e3.

So, if we show that
ei ≤ Chs |Ug|2,Ω |Uf |s,Ω , (4.12)

for i = 1, 2, and 3, the proof will be complete by virtue of (4.11). Theo-
rem 4.1 readily gives this estimate for e1. Obviously, if we prove (4.12) for
e2, the same will hold for e3 also.

To estimate e2, we first do an integration by parts to get

|Ã(Ug, Uf
M ) − (g, Uf

M )| ≤
∑

γ∈Z

∣∣∣∣
∫

γ

∂Ug

∂n
[Uf

M ]γ ds

∣∣∣∣

Now, as in the proof of Theorem 4.1, applying Cauchy-Schwarz inequality
and Proposition 2.2 gives

∣∣∣∣

∫

γ

∂Ug

∂n
[Uf

M ]γ ds

∣∣∣∣ ≤
(

inf
χ∈S(γ)

∥∥∥∥
∂Ug

∂n
− χ

∥∥∥∥
0,γ

)(
inf
χ∈S(γ)

∥∥∥[Uf
M ]γ − χ

∥∥∥
0,γ

)

≤ Ch |Ug|2,Ω

∣∣∣[Uf
M ]γ

∣∣∣
1/2,γ

.

Here, as before, the last inequality is obtained by estimating the first in-
fimum using Lemma 4.1, and the second using Proposition 4.2. Replacing
[Uf

M ]γ by [U f
M − U f ]γ and applying Lemma 2.1 we have

∑

γ∈Z

∣∣∣∣

∫

γ

∂Ug

∂n
[Uf

M ]γ ds

∣∣∣∣ ≤ Ch |Ug|2,Ω |Uf − U f
M |Σ .

Theorem 4.1 now yields (4.12) for e2 and finishes the proof. !
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