
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

1-1998

StackGuard: Automatic Adaptive Detection and StackGuard: Automatic Adaptive Detection and

Prevention of Buffer-Overflow Attacks Prevention of Buffer-Overflow Attacks

Crispin Cowan
Oregon Graduate Institute of Science & Technology

Calton Pu
Oregon Graduate Institute of Science & Technology

David Maier
Oregon Graduate Institute of Science & Technology

Heather Hinton

Jonathan Walpole
Oregon Graduate Institute of Science & Technology

See next page for additional authors

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer and Systems Architecture Commons, and the Information Security Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Cowan, Crispin, Calton Pu, Dave Maier, Heather Hinton, Jonathan Walpole, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, and Qian Zhang. "StackGuard: Automatic adaptive detection and prevention of
buffer-overflow attacks." In Proceedings of the 7th USENIX Security Symposium, vol. 81, pp. 346-355.
1998.

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in
Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please
contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/77
mailto:pdxscholar@pdx.edu

Authors Authors
Crispin Cowan, Calton Pu, David Maier, Heather Hinton, Jonathan Walpole, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, and Qian Zhang

This conference proceeding is available at PDXScholar: https://pdxscholar.library.pdx.edu/compsci_fac/77

https://pdxscholar.library.pdx.edu/compsci_fac/77

StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks*

Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton! Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle and Qian Zhang

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

immunix-request@cse.ogi.edu, http://cse.ogi.eduiDISC/projects/immunix

Abstract

This paper presents a systematic solution to the per
sistent problem of buffer overflow attacks. Buffer over
flow attacks gained notoriety in 1988 as part of the Morris
Worm incident on the Internet. While it is fairly simple
to fix individual buffer overflow vulnerabilities, buffer
overflow attacks continue to this day. Hundreds of at
tacks have been discovered, and while most of the obvi
ous vulnerabilities have now been patched, more sophis
ticated buffer overflow attacks continue to emerge.

We describe StackGuard: a simple compiler technique
that virtually eliminates buffer overflow vulnerabilities
with only modest performance penalties. Privileged pro
grams that are recompiled with the StackGuard com
piler extension no longer yield control to the attacker,
but rather enter a fail-safe state. These programs require
no source code changes at all, and are binary-compatible
with existing operating systems and libraries. We de
scribe the compiler technique (a simple patch to gee),
as well as a set of variations on the technique that trade
off between penetration resistance and performance. We
present experimental results of both the penetration resis
tance and the performance impact of this technique.

"This research is partially supported by DARPA contracts F30602-
96-1-0331 and F30602-96-1-0302.

I Ryerson Polytechnic University

1 Introduction

This paper presents a systematic solution to the per
sistent problem of buffer overflow attacks. Buffer over
flow attack gained notoriety in 1988 as part of the Morris
Worm incident on the Internet (23]. Despite the fact that
fixing individual buffer overflow vulnerabilities is fairly
simple. buffer overflow attacks continue to this day, as re
ported in the SANS Network Security Digest:

Buffer overflows appear to be the most
common problems reported in May, with
degradation-of-service problems a distant sec
ond. Many of the buffer overflow problems are
probably the result of careless programming,
and could have been found and corrected by
the vendors, before releasing the software, if
the vendors had performed elementary testing
or code reviews along the way. (4]

The base problem is that, while individual buffer over
flow vulnerabilities are simple to patch, the vulnerabili
ties are profligate. Thousands of Hnes of legacy code are
still running as privileged daemons (SUID root) that
contain numerous software errors. New programs are be
ing developed with more care, but are often still devel
oped using unsafe languages such as C, where simple er
rors can leave serious vulnerabilities.

The continued success of these attacks is also due to
the "patchy" nature by which we protect against such at
tacks. The life cycle of a buffer overflow attack is simple:
A (malicious) user finds the vulnerability in a highly priv-

http://cse.ogi.eduiDISC/projects/immunix
mailto:immunix-request@cse.ogi.edu

ileged program and someone else implements a patch to
that particular attack, on that privileged program. Fixes
to buffer overflow attacks attempt to solve the problem at
the source (the vulnerable program) instead of at the des
tination (the stack that is being overflowed).

This paper presents StackGuard, a systematic solution
to the buffer overflow problem. StackGuard is a simple
compiler extension that limits the amount of damage that
a buffer overflow attack can inflict on a program. Pro
grams compiled with StackGuard are safe from buffer
overflow attack, regardless of the software engineering
quality of the program.

Section 2 describes buffer overflow attacks in detail.
Section 3 details how StackGuard defends against buffer
overflow attacks. Section 4 presents performance and
penetration testing of StackGuard-enhanced programs.
Section 5 discusses some ofthe abstract ideas represented
in StackGuard, and their implications. Section 6 de
scribes related work in defending against buffer overflow
attack. Finally, Section 7 presents our conclusions.

2 Buffer Overflow Attacks

Buffer overflow attacks exploit a lack of bounds check
ing on the size of input being stored in a buffer array.
By writing data past the end of an allocated array, the at
tacker can make arbitrary changes to program state stored
adjacent to the array. By far, the most common data struc
ture to corrupt in this fashion is the stack, called a "stack
smashing attack," which we briefly describe here, and is
described at length elsewhere [15, 17,21].

Many C programs have buffer overflow vulnerabil
ities, both because the C language lacks array bounds
checking, and because the culture of C programmers en
courages a performance-oriented style that avoids error
checking where possible [14, 13]. For instance, many
of the standard C library functions such as gets and
strcpy do not do bounds checking by default.

The common form of buffer overflow exploitation is
to attack buffers allocated on the stack. Stack smashing
attacks strive to achieve two mutually dependent goals,
illustrated in Figure 1:

OxFFFF

Stack
Growth

OxOOOO

Process Address Space

Top of Stack

Attack Code

Return Address
i Local Variables ...

buffer

J.
I String

Growth

Figure 1: Stack Smashing Buffer Overflow Attack

Inject Attack Code The attacker provides an input
string that is actually executable, binary code
native to the machine being attacked. Typically
this code is simple, and does something similar to
exec ("sh") to produce a root shell.

Change the Return Address There is a stack frame for
a currently active function above the buffer being at
tacked on the stack. The buffer overflow changes
the return address to point to the attack code. When
the function returns, instead of jumping back to
where it was called from, it jumps to the attack code.

The programs that are attacked using this technique are
usually privileged daemons; programs that run under the
user-ID of root to perform some service. The injected
attack code is usually a short sequence of instructions that
spawns a shell, also under the user-ID of root. The ef
fect is to give the attacker a shell with root's privileges.

If the input to the program is provided from a locally
running process, then this class of vulnerability may al
low any user with a local account to become root. More
distressing, if the program input comes from a network
connection, this class of vulnerability may allow any user
anywhere on the network the ability to become root on
the local host. Thus while new instances of this class of
attack are not intellectually interesting, they are none the
less critical to practical system security.

Engineering such an attack from scratch is non-trivial.
Often, the attacks are based on reverse-engineering the
attacked program, so as to determine the exact offset from
the buffer to the return address in the stack frame, and the
offset from the return address to the injected attack code.
However, it is possible to soften these exacting require
ments [17]:

• The location of the return address can be approxi
mated by simply repeating the desired return address
several times in the approximate region of the return
address.

• The offset to the attack code can be approximated by
prepending the attack code with an arbitrary number
ofNOP instructions. The overwritten return address
need only jump into the middle of the field ofNOPs
to hit the target.

The cook-book descriptions of stack smashing at
tacks [15, 17, 21] have made construction of buffer
overflow exploits quite easy. The only remaining work
for a would-be attacker to do is to find a poorly protected
buffer in a privileged program, and construct an exploit.
Hundreds of such exploits have been reported in recent
years [4].

3 StackGuard: Making the Stack Safe for
Network Access

StackGuard is a compiler extension that enhances the
executable code produced by the compiler so that it
detects and thwarts buffer-overflow attacks against the
stack. The effect is transparent to the normal function
of programs. The only way to notice that a program is
StackGuard-enhanced is to cause it to execute C state
ments with undefined behavior: StackGuard-enhanced
programs define the behavior of writing to the return ad
dress of a function while it is still active.

As described in Section 2, the common form of buffer
overflow attacks are stack smashers. They function by
overflowing a buffer that is allocated on the stack, inject
ing code onto the stack, and changing the return address
to point to the injected code. StackGuard thwarts this

OxFFFF

Stack
Growth

OxOOOO

Process Address Space

Top of Stack

Return Address

Canary Word

Local Variables ...

buffer

I

String
Growth

Figure 2: Canary Word Next to Return Address

class of attack by effectively preventing changes to the
return address while the function is still active. If the re
turn address cannot be changed, then the attacker has no
way of invoking the injected attack code, and the attack
method is thwarted.

StackGuard prevents changes to active return ad
dresses by either detecting the change of the return ad
dress before the function returns, or by completely pre
venting the write to the return address. Detecting changes
to the return address is a more efficient and portable
technique, while preventing the change is more secure.
StackGuard supports both techniques, as well as adap
tively switching from one mode to the other.

Section 3.1 describes how StackGuard detects changes
to the return address. Section 3.2 describes how Stack
Guard prevents changes to the return address. Section 3.3
discusses motives and methods for adaptively switching
between techniques.

3.1 Detecting Return Address Cbange Before
Return

To be effective, detecting that the return address has
been altered must happen before a function returns.
StackGuard does this by placing a "canary"l word next

I A direct descendent of the Welsh miner's canary.

to the return address on the stack, as shown in Figure 2.
When the function returns, it first checks to see that
the canary word is intact before jumping to the address
pointed to by the return address word.

This approach assumes that the the return address is
unaltered IFF the canary word is unaltered. While this as
sumption is not completely true in general (stray pointers
can alter any word), it is true of buffer overflow attacks.
The buffer overflow attack method exploits the fact that
the return address word is located very close to a byte ar
ray with weak bounds checking, so the only tool the at
tacker has is a linear, sequential write of bytes to mem
ory, usually in ascending order. Under these restricted
circumstances, it is very difficult to over-write the return
address word without disturbing the canary word.

The StackGuard implementation is a very simple patch
to gcc 2.7.2.2. The gcc function_prologue and
function.epilogue functions have been altered to
emit code to place and check canary words. The changes
are architecture-specific (in our case, i3B6), but since
the total changes are under 100 lines of gcc, portabil
ity is not a major concern. All the changes in the gcc
calling conventions are undertaken by the callee, so code
compiled with the StackGuard-enhanced gcc is com
pletely inter-operable with generic gcc . 0 files and li
braries. The additional instructions added to the function
prologue are shown in pseudo-assembly form in Figure 3,
and the additional instructions added to the instruction
epilogue are shown in Figure 4. Section 4 describes test
ing and performance of this patch.

3.1.1 Randomizing the Canary

The Canary defense is sufficient to stop most buffer over
flow attacks that are oblivious to the canary. In fact, sim
ply changing the compiler's calling conventions is suf
ficient to stop most buffer overflow attacks [8]. Most
current buffer overflow attacks are quite brittle, mak
ing specific, static assumptions about the layout of the
stack frame. However, it is not very hard for attackers
to develop buffer overflows that are insensitive to minor
changes in the stack frame layout [17]:

• To adapt to changes in the location of the return ad
dress relative to the buffer being overflowed, the at-

tacker can repeat the new value several times in the
input string.

• To adapt to imprecision in the offset of the injected
code from the current program counter, the attacker
can inject attack code consisting of many NOPs, and
simply jump to somewhere in the middle of the NOP
sequence. Control flow will then drop down to the
attack code.

• To adapt to changes in alignment, the attacker need
only guess 4 times at most to get the alignment cor
rect.

It is also possible to write attacks specifically designed
to overcome StackGuard.2 There are two ways to over
come the Canary method of detecting buffer overflows:

1. Skip over the canary word. If the attacker can lo
cate a poorly checked copy of an array of structs,
which have alignment requirements, and are not big
enough to fulfill the alignment requirements while
densely packing the array, then it is possible that the
copy could occur such that the canary word is in one
of the holes left in the array. We expect this form of
vulnerability to be rare, and difficult to exploit.

2. Simulate the canary word. If the attacker can easily
guess the canary value, then the attack string can in
clude the canary word in the correct place, and the
check at the end of the function. If the canary word
is completely static, then it is very easy to guess.
This form of attack is problematic.

To deal with easily-guessed canaries, we use randomly
chosen canary values. Our current implementation en
hances the crtO library to choose a set of random ca
nary words at the time the program starts. These random
words are then used as distinct random canary words, one
per function in the object code. While it is not impossible
to guess such a canary value, it is difficult: the attacker
must be able to examine the memory image of the running
process to get the randomly selected word. Even so, a de
termined attacker could break such a defense eventually;
we discuss our approach to this problem in Section 3.3.

2 Naturally, none have been found to date ;-)

move canary-index-constant into register[S]
push canary-vector[register[S])

Figure 3: Function Prologue Code: Laying Down a Canary

move canary-index-constant into register [4]
move canary-vector[register[4]] into register[4]
exclusive-or register[4] with top-of-stack
jump-if-not-zero to constant address .canary-death-handler
add 4 to stack-pointer
< normal return instructions here>

.canary-death-handler:

Figure 4: Function Epilogue Code: Checking a Canary

3.2 Preventing Return Address Changes With
MemGuard

The Synthetix project [18, I, 2, 24] introduced a no
tion called "quasi-invariants." Quasi-invariants are state
properties that hold true for a while, but may change
without notice. Quasi-invariants are used to speciry op
timistic specializations; code optimizations that are valid
only while the quasi-invariants hold. We have extended
this work to treat return addresses on the stack as quasi
invariant during the activation lifetime of the function.
The return address is read-only (invariant) while the func
tion is active, thus preventing effective buffer overflow
against the stack.

MemGuard [3] is a tool developed to help debug op
timistic specializations by locating code statements that
change quasi-invariant values. MemGuard provides fine
grained memory protection: individual words of memory
(quasi-invariant terms) can be designated as read-only,
except when explicitly written via the MemGuard API.
We have used MemGuard to produce a more secure, if
less performant, version of the StackGuard compiler.

MemGuard is used to prevent buffer overflow at
tacks by protecting a return address when a function
is called, and un-protecting the return address when
the function returns. The protection and un-protection
occur in precisely the same places as the canary

push a
push b
move 164 into a
move arg[O] into b
trap Ox80
pop b
pop a

Figure 5: Function Prologue Code; Protecting the Return
Address With MemGuard

placement and checks described in Section 3.1: the
function_prologue and function.epilogue
functions. Figure 5 shows the prologue code sequence
for MemGuard. The epilogue code sequence is identical,
but uses system call 165 instead of 164.

MemGuard is implemented by marking virtual mem
ory pages containing quasi-invariant terms as read-only,
and installing a trap handler that catches writes to pro
tected pages, and emulates the writes to non-protected
words on protected pages. The cost of a write to a
non-protected word on a protected page is approximately
1800 times the cost of an ordinary write. This is an ac
ceptable cost when quasi-invariant terms are in quiet por
tions of the kernel's address space, and when MemGuard
is primarily used for debugging.

This cost is not acceptable when the protected words
are located near the top of the stack, next to some of the
most frequently written words in the program. Mem
Guard was originally designed to protect variables within
the kernel. To protect the stack, MemGuard had to be ex
tended in several ways:

• Extend VM model to protect user pages.

• Deal with the performance penalties due to "false
sharing" caused by frequent writes to words near the
return address.

• Provide a light-weight system-call interface to
MemGuard. Loading virtual memory hardware is a
privileged operation, and so the application process
must trap to kernel mode to protect a word.

Most of these extensions are simple software devel
opment, but the performance problems are challenging.
Fortunately, the Pentium processor has four "debug" reg
isters. These registers can be configured to watch for
read, write, and execute access to the virtual address
loaded into each register, and generate an exception when
such access occurs.

We use these registers as a cache of the most recently
protected return addresses. The goal is to eliminate the
need for the top-most page of the stack to be read-only,
to eliminate page faults resulting from writes to variables
at the top ofthe stack. Because of the locality behavior of
stack variables, restoring write privileges to the top ofthe
stack should handle most of the writes to stack variables.

It is only probabilistically true that protecting the four
most recent return addresses will capture all protection
needs for the top of the stack. However, if the compiler
is adjusted to emit stack frames with a minimum size of
1/4 of a page, then it is always true that 4 registers will
cover the top page. The time/space trade-off implied by
this approach can be continuously adjusted, reducing the
minimum size of stack frames to reduce space consump
tion, and also increasing the probability that the top page
of the stack actually will require MemGuard protection,
with its associated costs.

3.3 Adaptive Defense Strategies

StackGuard is a product of the Immunix project [11],
whose focus is adaptive responses to security threats.
Thus we provide an adaptive response to intrusions,
switching between the more performant Canary version,
and the more robust MemGuard versions of Stack Guard.

The basic model of operation for StackGuard is that
when a buffer overflow is detected, either by the Canary
or by MemGuard, the process is terminated. The process
must exit, because an unknown amount of state has al
ready been corrupted at the time the attack is detected,
and so it is impossible to safely recover the state of the
process. Thus the process exits, using only static data and
code, so as to avoid any possible corruption from the at
tacker.

Replacing the dead process is context-dependent. In
many cases, it suffices to just let inetd re-start the dae
mon when a connection requests service. However, if the
daemon is not managed by inetd, then it may be neces
sary for a watch-dog process to re-start the daemon, most
especially in the case of inetd itself.

It is also possible for these re-start mechanisms to
adaptively select which form of protection to use next.
The Canary and MemGuard variants of StackGuard of
fer different points in the trade-off between security and
performance. The Canary version is more performant,
while the MemGuard version is more secure (see Sec
tion 4). More specifically, the important security vulner
ability in the Canary variant is that it is potentially subject
to guessing of the canary value. The Canary variant can
defend itself against guessing by exiting, and replacing
the attacked Canary-guarded daemon with a MemGuard
guarded daemon.

This adaptive response allows systems to run in a rela
tively high-performance state most of the time, and adap
tively switch to a lower-performance, higher-security
state when under attack. At worst, the attacker can
carry out a degradation-of-service attack by periodically
attacking daemons, forcing them to run in the lower
performance MemGuard mode most of the time. How
ever, service is not totally denied, because the daemons
continue to function, and the attacker no longer is able to
obtain illegitimate privilege via buffer overflow attack.

4 Experimental Results

This section describes experimental evaluation of
StackGuard. Subsection 4.1 describes penetration exper
iments, to show StackGuard's effectiveness in deterring
past and future attacks. of Subsection 4.2 describes the
performance cost of StackGuard under various circum
stances.

4.1 StackGuard Effectiveness

Here we illustrate StackGuard's effectiveness in
thwarting stack smashing buffer overflow attacks.
StackGuard is intended to thwart generic stack smashing
attacks, even those that have not yet appeared. To
simulate that, we sought out buffer overflow exploits,
and tried them against their intended software targets,
with and without protection from StackGuard. Table 1
summarizes these results.

The programs listed in Table I are conventionally in
stalled as SUID root. If the attacker can get one of
these programs to start a shell, then the attacker gets a
root shell.

In each case, the experiment is to install the vulnerable
program SUID root (SUID httpd for wwwcount)
and attack it with the exploit. We then re-compile the pro
gram with the Canary variant of StackGuard, re-install
the StackGuard-enhanced program as SUID root, and
attack it again with the exploit. We did not alter the
source code of any of the vulnerable programs at all, and
StackGuard has no specific knowledge of any of these at
tacks. Thus this experiment simulates the effect of Stack
Guard defending against unknown attacks.

In all cases we have studied, both the Canary and the
MemGuard variants of StackGuard stopped what would
have been an attack that obtains a root shell. Several
cases deserve special discussion:

umount 2. Ski 1 ibc S. 3 . 12: The buffer over
flow vulnerability is actually in Hbc, and not
in umount. Simply re-compiling umount with
either varian t of StackGuard does not suffice to stop
the attack. However, when 1 ibc is also compiled

using StackGuard (either variant) then the attack is
defeated. Thus for full protection, either the system
shared libraries must be protected with StackGuard,
or the privileged programs must be statically linked
with libraries that are protected with StackGuard.

SuperProbe: This attack does not actually attack the
function return address. Rather, it over-writes a
function pointers in the program that is allocated on
the stack. The Canary variant stopped the attack by
perturbing the layout of the stack, but an adjusted at
tack produced a root shell even with Canary pro
tection. The MemGuard variant stopped the attack
because a return address was in the way ofthe buffer
overflow. Proper treatment of this kind of attack re
quires an extension to StackGuard, as described in
Section 5.4.

Perl: Like SuperProbe, the Perl attack does not
attack the function return address. This attack over
writes data structures in the global data area, and
thus is not properly a "stack smashing" attack. Per
mutations in the alignment of the global data area
induced by the StackGuard's vector of canary val
ues prevented the attack from working, but a mod
ified form of the attack produced a root shell de
spite Canary protection. MemGuard had no effect
on the attack.

Samba, wwwcount: These buffer overflow vulnerabil
ities were announced after the StackGuard com
piler was developed, yet the StackGuard-enhanced
versions of these programs were not vulnerable to
the attacks. This illustrates the point that Stack
Guard can effectively prevent attacks even against
unknown vulnerabilities.

We would like the list of programs studied to be larger.
Two factors limit this kind of experimentation:

Obtaining the Exploit: It is difficult to obtain the ex
ploit code for attacking programs. Security orga
nizations such as CERT are reluctant to release ex
ploits, and thus most of these exploits were obtained
either from searching the web, or from the bugtraq
mailing list [16].

Obtaining Vulnerable Source Code: Buffer overflow
attacks exploit specific, simple vulnerabilities in
popular software. Because of the severe security

Vulnerable Result Without Result With I Result With
Program StackGuard Canary Stack Guard MemGuard StackGuard

dip 3.3.7n root shell program halts program halts
elm 2.4 PL25 root shell program halts program halts
Perl 5.003 root shell program halts irregularly root shell
Samba root shell program halts program halts
SuperProbe root shell program halts irregularly program halts
umount 2. 5k1libc 5.3.12 root shell program halts program halts
wwwcount v2.3 httpdshell program halts program halts
zgv 2.7 root shell program halts program halts

Table 1: Protecting Vulnerable Programs with StackGuard

risks posed, and the ease of patching the individ
ual vulnerability, new releases appear soon after
the vulnerability is publicized. Moreover, the
vulnerability is often not publicized until it can
be announced with a patch in hand. The older
vulnerable source code is often not easily available.
We have begun archiving source code versions,
so that we will be able to add experiments as new
vulnerabilities appear.

4.2 StackGuard Overhead

This section describes experiments to study the per
formance overhead imposed by StackGuard. Note that
StackGuard need only be used on programs that are surD
root, and such programs are not usually consumers
of large amounts of CPU time. Thus it is only neces
sary that the overhead be sufficiently low that the priv
ileged administrative daemons do not impose a notice
able compute load. The MemGuard and Canary variants
of StackGuard impose different kinds of overhead, and
so we microbenchmark them separately in Sections 4.2.1
and 4.2.2. Section 4.2.3 presents macrobenchmark per
formance data.

4.2.1 Canary StackGuard Overhead

The Canary mechanism imposes additional cost at two
points in program execution:

• function prologue: there is a small cost in pushing
the canary word onto the stack.

• function epilogue: there is a moderate cost in check
ing that the canary word is intact before performing
the function return.

We model this cost as a % overhead per function call.
The % overhead is a function of the base cost of a func
tion call, which varies depending on the number of argu
ments and the return type, so we studied a range offunc
tion types.

The experiments seek to discover the % overhead of
a function call imposed by StackGuard. We did this by
writing a C program that increments a statically allocated
integer 500,000,000 times. The base case is just "i++",
and the experiments use various functions to increment
the counter. The results are shown in Table 2. All ex
periments were performed on a 200 MHz Pentium-S with
512K of level 2 cache, and 128M of main memory.

The "i++" is the base case, and thus has no % over
head. The "void inc ()" entry is a function that does
i++ where i is a global variable; this shows the over
head of a zero-argument vo i d function, and is the worst
possible case, showing a 125% overhead on function
calls. The "void inc (int *)" entry is a function
that takes an int * argument and increments it as a side
effect; this shows that there is 69% overhead on a one
argument void function. The Hint inc (int) " en
try is an applicative function that takes an int argument,
and returns that value + 1; this shows that the overhead of
a one-argument function returning an int is 80%.

Increment Standard! Canary ! %
Method Run-Time • Run-Time Overhead
i++ 15.1 15.1 NA
void inc () 35.1 60.2 125%
void ine(int *) 47.7 70.2 69%
int inc (int) 40.1 60.2 80%

Table 2: Microbenchmark: Canary Function Call Overhead

Numerous other experiments are possible, but they all
increase the base cost of function calls, while the cost
of the Canary mechanism remains fixed at 7 instructions
(see Figures 3 and 4), decreasing the Canary % overhead.
Thus these overhead micro benchmarks can be considered
an upper-bound on the cost of the Canary compiler.

4.2.2 MemGuard StackGuard Overhead

The MemGuard variant of StackGuard suffers substan
tial performance penalties compared to the Canary vari
ant, for reasons described in Section 3.2. Section 4.1
showed that the MemGuard variant provides better secu
rity protection for stack attacks than the Canary variant
(specifically, MemGuard stopped the SuperProbe at
tack, and guessing canary values will not help get past
MemGuard). This section measures the cost of that added
protection.

The MemGuard variant of Stack Guard is still under de
velopment, but as of this writing, we have some prelimi
nary results. We have measured the performance of two
versions of MemGuard StackGuard:

MemGuard Register This version uses only the Pen
tium's debugging registers for protection, so only
the four most recent function calls' return addresses
are protected. This version pays no penalty for page
protection faults induced by protecting the stack
with virtual memory protection. NOTE: this ver
sion stopped all of the stack smashing attacks that
we tested3 •

MemGuard VM This version uses the virtual memory
page protection scheme described in Section 3.2. It

3 Except Perl. which is not really a stack smashing attack.

has not fully exploited the optimization of using the
debugging registers as a cache, to keep the top page
of the stack writable. Thus this version suffers sub
stantial performance penalties due to a large number
of page protection faults.

Table 3 shows the overhead costs for the MemGuard
variant of StackGuard. Because of the use of a heavy
weight system call to access privileged hardware for pro
tection, function calls slow down by 70 x for the Mem
Guard Register protection. The additional penalty of
page protection fault handling for false sharing of the
page on the top of the stack raises the cost of function
calls by 160 x. Proper use of the debugging registers as
a cache for the VM mechanism should bring the costs in
line with the MemGuard Register costs.

4.2.3 StackGuard Macrobenchmarks

Sections 4.2.1 and 4.2.2 present microbenchmark re
sults on the additional cost of function calls in pro
grams protected by StackGuard. However, these mea
surements are upper bounds on the real costs of running
programs under StackGuard; the true penalty of running
Stack Guard-enhanced programs is the overall cost, not
the microbenchmark cost. We have benchmarked two
programs: ctags, and the StackGuard-enhanced gee
compiler itself.

The etags program constructs an index of C source
code. It is 3000 lines of C source code, comprising 68
separate functions. When run over a small set of source
files (78 files, 37,000 lines of code) with a hot buffer
cache, etags is completely compute-bound. When run
over a large set offiles (1163 files, 567,000 lines of code)
etags it is still compute-bound, because of the large

Increment Standard MemGuard Register % MemGuardVM %
Method Run-Time Run-Time Overhead Run-Time Overhead

i++ 15.1 15.1 NA NA NA
void ine () 35.1 1808 8800% 34,900 174,300% .

void ine(int *) 47.7 1820 5400% 40,420 123,800%
int ine(int) 40.1 ; 1815 7000% 41,610 166,200%

Table 3: Microbenchmark: MemGuard Function Call Overhead

amount of RAM in our test machine.

On a smaller machine, the test becomes I/O bound,
consuming 50% of the CPU's time, so it is approximately
balanced. While the Canary variant still consumes more
CPU time than the generic program, it is overlapped with
disk I/O, and the program completes in the same amount
of real time. The MemGuard variants consume so much
CPU time that the program's real time is dramatically im
pacted.

Table 4 shows etag's run-time in these two cases.
The Canary variant's performance penalties are moder
ate, at 80% for the small case, and 42% for the large
case. The MemGuard Register penalties are substantial,
at II 00% for the small case, and 1000% for the large
case. The MemGuard VM performance penalties are pro
hibitive, at 46,000% for the small case, and 36,000% for
the large case.

Table 5 shows a similar experiment for the run-time
of a StackGuard-protected gee compiler. We thus use a
Stack Guard-protected gee to measure the performance
cost of StackGuard for a large and complex program.
To be clear, the experiment measures the cost of run
ning gee protected by StackGuard, and only incidentally
measures the cost of adding StackGuard protection to the
compiled program.

Table 5 shows the time to compile etags using gee
enhanced with StackGuard. Because there is more com
putation per function call for gee than etags, this time
the costs are lower. The Canary version consumes only
6% more CPU time, and only 7% more real time. The
MemGuard variants benefited as well; the Register ver
sion's additional real time cost is 214%, and the VM ver
sion's additional cost is 5100%.

Recall that the StackGuard protective mechanism is
only necessary on privileged administrative programs.
Such programs present only a minor portion of the com
pute load on a system, and so the StackGuard overhead
will have only a modest impact on the total system load.
Thus the overhead measured here could be considered
within reason for heightened security, without a signifi
cant change in the administrative complexity of the sys
tem. We discuss administration of StackGuard in Sec
tion 5.

5 Discussion

This section discusses some ofthe abstract ideas repre
sented in Stack Guard, and their implications. Section 5.1
describes how Stack Guard can help defend against fu
ture attacks. Section 5.2 describes potential adminis
tration and configuration techniques for systems using
StackGuard. Section 5.3 describes some possible perfor
mance optimizations. Section 5.4 describes future en
hancements to StackGuard.

5.1 Defending Against Future Attacks

Fundamentally, the attacks that StackGuard prevents
are not very interesting. They are serious security faults
that result from minor programming errors. Once dis
covered, fixing each error is easy. The significant contri
bution that StackGuard makes is not only that it patches
a broad collection of existing faults, but rather that it
patches a broad collection offuture faults that have yet
to be discovered. That StackGuard defeats the attacks
against Samba and wwweount discovered after Stack
Guard was produced is testament to this effect.

Input I Version I User Time I System Time I Real Time I
37,000 lines Generic 0041 0.14 0.55 I

Canary 0.68 0.13 0.99 •
MemGuard Register 1.30 5.45 6.84
MemGuard VM 16.5 238.0 255.1

586,000 lines Generic 7.74 2.08 10.2
Canary 11.9 2.07 14.5
MemGuard Register 21.1 91.5 115.0

I MemGuardVM 236 3482 i 3728

Table 4: Macrobenchmark: etags

Version I User Time I System Time I Real Time

i Generic 1.70 0.12 1.83 I
Canary 1.79 0.16 1.96 !

MemGuard Register 2.22 3.35 5.76 I
MemGuardVM 8.17 87.7 96.2 I

Table 5: Macrobenchmark: gee of the etags program

Using StackGuard does not eliminate the need to fix
buffer overflow vulnerabilities, but by converting root
vulnerabilities into mild degradation-of-service attacks,
it does eliminate the urgency to fix them. This gives soft
ware developers the breathing room to fix buffer over
flows when it is convenient (i.e. when the next release is
ready) rather than having to rush to create and distribute a
patch. More importantly, StackGuard eases security ad
ministration by relieving the system administrators of the
need to apply these patches as soon as they are released,
often several times a month.

5.2 Administration and Confignration

The adaptive response described in Section 3.3 re
quires management: StackGuard causes programs to give
notice that they need to be replaced because they have
been (unsuccessfully) attacked, but does not make policy
about what version, if any, to replace it with.

Different policy decisions will have different impli
cations; switching to a higher level of protection will
drastically reduce performance, yet failure to switch can
lead to successful penetration via guessing. The deci-

sion to revert to the more performant, less secure mode
is even more difficult, because the attacker may try to
induce such a switch. Making the right choice. auto
matically, is challenging. We propose to create a small,
domain-specific language [19] for specifying these pol
icy choices.

StackGuard comes with a performance price, and can
be viewed as an insurance policy. If one is very sure that
a program is correct, I.e. contains no buffer overflow
vulnerabilities because it has been verified using formal
methods, or a validation tool [9], then the program can be
re-compiled and installed without benefit of StackGuard.

Stack Guard offers powerful protection of any program
compiled with the StackGuard compiler, but does nothing
for programs that have not been thus compiled. However,
tools such as COPS [7], which search for programs that
should not be SUlD root, can be configured to look for
programs that are SUlD root, and have not been com
piled using StackGuard or some other security verifica
tion tool [9]. If COPS reports that all SUID root pro
grams on a machine have been protected, then one can
have some degree of assurance that the machine is not
vulnerable to buffer overflow attacks.

5.3 Performance Optimizations

Section 4.2.2 mentions that a light-weight trap to ker
nel mode can reduce the overhead of the MemGuard
mechanism. However, it is also possible for the compiler
to optimize StackGuard performance, both for the Mem
Guard and Canary variants.

If it is the case that no statement takes the address of
any stack variable in the function foo, then foo does not
need Stack Guard protection. This is because any buffer
overflow must attack an array, which is always a pointer.
If an attack seeks to alter a variable in a function above
foo on the stack, then it must come from below foo.
But to get to the variable above foo it would have to
go through the StackGuard protection that necessarily ex
ists on the function below f 00 because of the array being
overflowed.

The information regarding whether any variable has
been aliased is already available in gee, so it should be a
simple matter to tum StackGuard protection off for func
tions that do not need it. We are working on th is optimiza
tion, and expect to have it available in a future release of
StackGuard.

5.4 Future Work

StackGuard defends against stack smashing buffer
overflow attacks that over-write the return address and in
ject attack code. While this is the most common form of
buffer overflow attack, it is not the only form, as illus
trated by SuperProbe in Section 4.1.

In the general case, buffer overflow attacks can write
arbitrary data to arbitrary pieces of process state, with ar
bitrary results limited only by the opportunities offered
by buggy programs. However, some data structures are
far easier to exploit than others. Notably, function point
ers are highly susceptible to buffer overflow attack. An
attacker could conceivably use a buffer overflow to over
write a function pointer that is on the heap, pointing it to
attack code injected into some other buffer on the heap.
The attack code need not even overflow its buffer.

We propose to treat this problem by extending Stack
Guard to protect other data sensitive structures in addi-

tion to function return addresses. "Sensitive data struc
tures" would include function pointers, as well as other
structures as indicated by the programmer, or clues in the
source code itself.

This extension highlights a property of StackGuard,
which is that it is "destination oriented." Rather than
trying to prevent buffer overflow attacks at the source,
StackGuard strives to defend that which the attacker
wants to alter. Following the notion that a TCB should
be small to be verifiable (and thus secure) we conjecture
that the set of data structures needing defending is smaller
than the set of data structures exposed to attackers. Thus
it should be easier to defend critical data structures than
to find all poorly defended interfaces.

6 Related Work

There have been several other efforts pertinent to the
problem of buffer overflow attacks. Some are explicitly
directed at the security problem, while others are more
generally concerned with software correctness. This sec
tion reviews some of these projects, and compares them
against StackGuard. The result is not a conclusion of
which approach is better, but rather a description of the
different trade-off's that each approach provides.

6.1 Non-Executable Stack

"Solar Designer" has developed a Linux patch that
makes the stack non-executable [6], precisely to address
the stack smashing problem. This patch simply makes
the stack portion of a user process's virtual address space
non-executable, so that attack code injected onto the
stack cannot be executed. This patch offers the advan
tages of zero performance penalty, and that programs
work and are protected without re-compilation. How
ever, it does necessitate running a specially-patched ker
nel, unless this extension is adopted as standard.

This patch was non-trivial and non-obvious, for the
following reasons:

• gee uses executable stacks for function trampolines

for nested functions .

• Linux uses executable user stacks for signal han
dling.

• Functional programming languages, and some other
programs, rely on executable stacks for run-time
code generation.

The patch addresses the problem of trampolines and
other application use of executable stacks by detect
ing such usage, and pennanently enabling an executable
stack for that process. The patch deals with signal han
dlers by dynamically enabling an executable stack only
for the duration of the signal handler. Both of these com
promises offer potential opportunities for intrusion, e.g.
a buffer overflow vulnerability in a signal handler.

In addition to the above vulnerabilities, making the
stack non-executable fails to address the problem of
buffer overflow attacks that do not place attack code on
the stack. The attacker may inject the attack code into a
heap-allocated or statically allocated buffer, and simply
re-point a function return address or function pointer to
point to the attack code. This is exactly the kind of attack
brought against Perl as described in Section 4.1, and a
non-executable stack is no more effective than the current
StackGuard in stopping it.

The attacker may not even need to inject attack code
at all, if the right code fragment can be found within the
body ofthe program itself. Thus additional protection for
critical data structures such as function pointers and func
tion return addresses, as described in Section 5.4.

6.2 FreeBSD Stack Integrity Check

Alexander Snarskii developed a FreeBSD patch [22]
that does similar integrity checks to those used by the
Canary variant of StackGuard. However, these integrity
checks were non-portable, hard-coded in assembler, and
embedded in 1 ibe. This method protects against stack
smashing attacks inside libe, but is not as general as
StackGuard.

6.3 Array Bounds Checking for C

Richard Jones and Paul Kelly have developed a gee
patch [12] that does full array bounds checking for C pro
grams. Programs compiled with this patch are compat
ible with ordinary gee modules, because they have not
changed the representation of pointers. Rather, they de
rive a "base" pointer from each pointer expression, and
check the attributes of that pointer to detennine whether
the expression is within bounds.

The perfonnance costs are substantial: a pointer
intensive program (ijk matrix multiply) experienced 30 x
slowdown. Since the slowdown is proportionate to
pointer usage, which is quite common in privileged pro
grams, this perfonnance penalty is particularly unfortu
nate.

However, this method is strictly more secure than
StackGuard, because it will prevent all buffer overflow
attacks, not just those that attempt to alter return ad
dresses, or other data structures that are perceived to be
sensitive (see Section 5.4). Thus we propose that pro
grams compiled with the bounds-checking compiler be
treated as the "backing store" for MemGuard-protected
programs, just as MemGuard-protected programs are the
back-up plan for Canary-protected programs (see Sec
tion 3.3).

6.4 Memory Access Checking

PurifY [10] is a debugging tool for C programs with
memory access errors. PurifY uses "object code inser
tion" to instrument all memory accesses. The approach
is similar to StackGuard, in that it does integrity checking
of memory, but it does so on each memory access, rather
than on each function return. As a reSUlt. Purify is both
more general and more expensive than StackGuard, im
posing a slowdown of 2 to 5 times the execution time of
optimized code, making PurifY more suitable for debug
ging software. StackGuard, in contrast, is intended to be
left on for production use of the compiled code.

6.S Type-Safe Languages

All of the vulnerabilities described here result from the
lack of type safety in C. If the only operations that can be
performed on a variable are those described by the type,
then it is not possible to use creative input applied to vari
able foo to make arbitrary changes to the variable bar.

Type-safety is one of the foundations of the Java secu
rity model. Unfortunately, errors in the Java type check
ing system are one of the ways that Java programs and
Java virtual machines can be attacked [5, 20). If the cor
rectness of the type checking system is in question, then
programs depending on that type checking system for se
curity benefit from these techniques in similar ways to
the benefit provided to type-unsafe programs. Applying
StackGuard techniques to Java programs and Java virtual
machines may yield beneficial results.

7 Conclusions

We have presented StackGuard, a systematic compiler
tool that prevents a broad class of buffer overflow secu
rity attacks from succeeding. We presented both security
and performance analysis of the tool. Because the tool is
oblivious to the specific attack and vulnerability being ex
ploited, it is expected that this tool will also be able to stop
buffer overflow attacks that have yet to be discovered, re
ducing the need for constant, rapid patching of software
to stay secure.

In its most basic form, the tool requires only re
compilation to make a program largely secure against
buffer overflow attacks. In more elaborate forms, it pro
vides an adaptive response to buffer overflow attacks, al
lowing systems to be configured to trade performance for
survivability. We concluded with discussion on how to
generalize these techniques to other areas of security vul
nerability.

8 Availability

StackGuard is a small set of patches to gee.
We are releasing StackGuard under the Gnu Pub
lic License, while retaining copyright to OGI.
StackGuard is available both as a patch to gee
2.7.2.2, and as a complete tar file, at this location:
http://www/ese.ogi.edu/DISC/projeets/
immunix/StaekGuard/.

References

[1] Crispin Cowan. Tito Autrey, Charles Krasic, Cal
ton Pu, and Jonathan Walpole. Fast Concurrent Dy
namic Linking for an Adaptive Operating System.
In International Conference on Configurable Dis
tributed Systems (ICCDS '96), Annapolis, MD, May
1996.

[2] Crispin Cowan, Andrew Black, Charles Krasic,
Calton Pu, Jonathan Walpole, Charles Consel,
and Eugen-Nicolae Volanschi. Specialization
Classes: An Object Framework for Specialization.
In Proceedings of the Fifth International Work
shop on Object-Orientation in Operating Systems
(IWOOOS '96), Seattle, WA, October 27-28 1996.

[3] Crispin Cowan, Dylan McNamee, Andrew Black.
Calton Pu, Jonathan Walpole, Charles Krasic. Re
naud Marlet, and Qian Zhang. A Toolkit for Spe
cializing Production Operating System Code. Tech
nical Report CSE-97-004, Dept. of Computer Sci
ence and Engineering, Oregon Graduate Institute,
March 1997.

[4] Michele Crabb. Curmudgeon's Executive Sum
mary. In Michele Crabb, editor, The SANS Network
Security Digest. SANS, 1997. Contributing Editors:
Matt Bishop, Gene Spafford, Steve Bellovin, Gene
Schultz, Rob Kolstad, Marcus Ranum, Dorothy
Denning, Dan Geer, Peter Neumann, Peter Galvin,
David Harley, Jean Chouanard.

[5] Drew Dean, Edward W. Felten, and Dan S. Wal
lach. Java Security: From HotJava to Netscape and
Beyond. In Proceedings of the IEEE Symposium
on Security and Privacy, Oakland, CA, 1996.

http://www/ese.ogi.edu/DISC/projeets

http://www.cs.princeton.edu/sip/
pub/ secure96 . html.

[6] "Solar Designer". Non-Executable User Stack.
http://www.false.com/security/
linux-stack/.

[7] D. Fanner. The COPS Security Checker
System. In Summer 1990 USENlX Confer-
ence, page 16S, Anaheim, CA, June 1990.
http://www.trouble.org/cops/.

[8] Stephanie Forrest, Anil Somayaji, and David. H.
Ackley. Building Diverse Computer Systems. In
HotOS-VI, May 1997.

[9] Virgil Gligor, Serb an Gavrila, and Saban Gupta.
Penetration Analysis Tools. Personal Communica
tions, July 1997.

[10] Reed Hastings and Bob Joyce. Purify: Fast Detec
tion of Memory Leaks and Access Errors. In Pro
ceedings of the Winter USENlX Conference, 1992.
http://www.rational.com/support/
techpapers/ fast_detection/.

[11] Immunix. Adaptive System Survivabil-
ity. http://www.cse.ogi.edu/DISC/
projects/immunix, 1997.

[12] Richard Jones and Paul Kelly.
Bounds Checking for C.
http://www-ala.doc.ic.ac.uk/-phjk/
BoundsChecking. html, July 1995.

[13] Barton P. Miller, David Koski, Cjin Pheow Lee,
Vivekananda Maganty, Ravi Murthy, Ajitkumar
Natarajan, and Jeff Steidl. Fuzz Revisited: A re
examination of the Reliability of UNIX Utilities and
Services. Report, University of Wisconsin, 1995.

[14] B.P. Miller. L. Fredrikson, and B. So. An Empiri
cal Study of the Reliability of UNIX Utilities. Com
munications of the ACM, 33(12):33-44, December
1990.

[IS] "Mudge". How to Write Buffer Overflows.
http://lOpht.com/advisories/
bufero.html,1997.

[16] "Aleph One". Bugtraq Mailing List.
http://geek-girl.com/bugtraq/.

[17] "Aleph One". Smashing The Stack For Fun And
Profit. Phrack, 7(49), November 1996.

[18] Calton Pu, Tito Autrey, Andrew Black, Charles
Consel, Crispin Cowan, Jon Inouye, Lakshmi
Kethana, Jonathan Walpole, and Ke Zhang. Op
timistic Incremental Specialization: Streamlining
a Commercial Operating System. In Symposium
on Operating Systems Principles (SOSP), Copper
Mountain, Colorado, December 1995.

[19] Calton Pu, Andrew Black, Crispin Cowan, Jonathan
Walpole, and Charles Conse!. Microlanguages for
Operating System Specialization. In SIGPLAN
Workshop on Domain-Specific Languages, Paris,
France, January 1997.

[20] Jim Roskind. Panel: Security of Downloadable Ex
ecutable Content. NDSS (Network and Distributed
System Security), February 1997.

[21] Nathan P. Smith. Stack Smashing vul-
nerabilities in the UNIX Operating Sys
tem. http://millcomm.com/-nate/
machines/security/stack-smaehing/
nate-buffer .pe, 1997.

[22] Alexander Snarskii. FreeBSD Stack Integrity
Patch. ftp: / /ftp.lucky.net/pub/unix/
local/libc-letter, 1997.

[23] E. Spafford. The Internet Worm Program: Analysis.
Computer Communication Review, January 1989.

[24] Eugen N. Volanschi, Charles Consel, Gilles Muller,
and Crispin Cowan. Declarative Specialization of
Object-Oriented Programs. In Proceedings of the
Conference on Object-Oriented Programming Sys
tems, Languages, and Applications (OOPSLA '97),
Atlanta, GA, October 1997.

ftp.lucky.net/pub/unix
http://millcomm.com/-nate
http://geek-girl.com/bugtraq
http://lOpht.com/advisories
http://www-ala.doc.ic.ac.uk/-phjk
http://www.cse.ogi.edu/DISC
http://www.rational.com/support
http://www.trouble.org/cops
http://www.false.com/security
http://www.cs.princeton.edu/sip

	StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks
	Let us know how access to this document benefits you.
	Citation Details
	Authors

	tmp.1391716746.pdf.tZki6

