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Dielectric saturation in dipolar fluids. I. The single-molecule 
distribution functional 

John D. Ramshaw 

Theoretical Division. University of California. Los Alamos Scientific Laboratory. Los Alamos. New 
Mexico 87545 
(Received 27 February 1980; accepted 16 July 1980) 

The functional-derivative fonnalism is used to investigate the fonn of the equilibrium single-molecule 
distribution function n (I) in a finite fluid system of rigid polar molecules subjected to a strong external 
electric field that varies slowly with position. The investigation is based on the assumption that the long-range 
asymptotic behavior of the direct correlation function is independent of the external field, and is hence the 
same as in the unperturbed fluid. This assumption implies that n(l) has the fonn of a single-molecule 
Boltzmann factor in which the interaction energy is that of a defonnable quasidipole with the local Lorentz 
electric field EL (r1). If the chemical potential fl is held fixed, n(l) is a local function of EL (r1). In a closed 
system, however, the number of molecules N is held fixed and fl varies with the field. Consequently, n(l) is 
an inherently nonlocal functional of EL (r), except in the linear approximation where local behavior is 
regained. The implications of these results for the polarization and higher angular moments of n(l) will be 
explored in a subsequent article. 

I. INTRODUCTION 

This article and its sequel are part of a continuing 
study of dielectric behavior and pair correlations in 
fluids composed of rigid (unpolarizable) polar molecules_ 
Previous work in this studyl-6 has been concerned with 
linear dielectric polarization and its relation to pair cor­
relations in the unperturbed fluid. A primary objective 
of this work has been to clarify the conditions under 
which there is a local proportionality between the polar­
ization Per) and the Maxwell electric field E(r), so that 
the dielectric constant E: exists and is a property of the 
sample material. It was found that the direct correla­
tion function c(12) is of fundamental importance to this 
question, and that its asymptotic behavior at long range 
is especially crucial. 2 The importance of c(12) in this 
context is due to its interpretation in terms of an inverse 
response kernel, an interpretation provided by the func­
tional-derivative approach to the theory of fluids. 7,8 The 
known asymptotic behavior of c(12) [together with the 
assumption that c(12) depends only on relative positions 
and orientations at short range 1 is sufficient to establish 
the existence of E:, provided that the external electric 
field varies slowly with position in a molecular sense. 4,5 

When the latter condition is violated, the relation be­
tween P(r) and E(r) assumes a nonlocal convolution 
form. 6 The convolution kernel is short ranged, how­
ever, so that P(r) still depends only on the values of E 
in the molecular neighborhood of the point r. 

Our purpose here is to study dielectric saturation in 
dipolar fluids from a similar point of view. By the term 
"dielectric saturation" we refer in a general way to the 
nonlinear response of the system to a strong static ex­
ternal electric field. The polarization Per) is an im­
portant aspect of this response, but it is by no means 
the only response quantity of interest. Considerably 
more information is obtained, at no extra cost, by con­
sidering the single-molecule distribution function n(l), 

a) Work performed in part under the auspices of the United 
States Department of Energy. 

from which per) and many other observable properties 
of the system may be obtained by quadrature. The pres­
ent article is therefore devoted to an analysis of n(l). 
Attention is restricted to external fields that vary slowly 
with position in a molecular sense. 

In the present context, it becomes necessary to use 
the finite-field form of the functional-derivative rela­
tions, instead of the zero-field form that sufficed for the 
linear case. The direct correlation function and its 
asymptotic behavior again assume a position of crucial 
importance. The development is based upon the funda­
mental assumption that the asymptotic form of c(12) is 
independent of the field, and is therefore the same as in 
zero field. The validity of this assumption is implied by 
the same sort of formal cluster-expansion procedures 
that are used to infer the asymptotic form of c(12) in an 
unperturbed fluid. 9 This assumption implies an expres­
sion for n(l) in the form of a single-molecule Boltzmann 
factor, in which the interaction energy is that of a de­
formable (polarizable) quasidipole with the local Lorentz 
electric field E L(rl)' This new formal expression for 
n(l) is valid to all orders in the field strength, and is 
the prinCipal result of this article. 

For technical reasons, the development is carried out 
in the grand canonical ensemble, in which the chemical 
potential jJ. replaces the number of molecules N as a 
basic independent variable. At constant jJ., n(l) is a lo­
cal function of EL(rt), but this is unfortunately not the 
case of interest. We are concerned with the behavior of 
a closed system, in which N is held fixed and jJ. varies 
with the field. We must therefore eliminate jJ. in favor 
of N. However, the relation between jJ. and N involves 
EL(r) in an inherently nonlocal way, i. e., at fixed N, jJ. 

is a nonlocal functional of EL(r). When jJ. is eliminated, 
therefore, n(l) becomes an inherently nonlocal functional 
of EL(r). The only exception to this behavior occurs in 
the linear approximation, in which local behavior is re­
gained. 

We emphasize that this nonlocal behavior is unrelated 
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to, and quite different in character from, that which ac­
companies rapid spatial variations in the electric field. 
In the latter case, the nonlocal behavior occurs even in 
the linear regime, but it is confined to the molecular 
neighborhood of the point in question and it vanishes for 
slowly varying fields. In contrast, the present nonlocal 
behavior occurs when the field is slowly varying and in­
cludes contributions from the entire sample volume, but 
it is intrinsically nonlinear and vanishes in the linear 
approximation. 

Our conclusions about the form and nonlocal behavior 
of n(l) have interesting implications for the various ob­
servable quantities that can be expressed in terms of 
n(l). A detailed discussion of these implications for the 
polarization P(r) and higher angular moments of n(l) will 
be deferred to a subsequent article. Here we merely ob­
serve that the local number density p(rt) == I dWtn(l) is 
also a nonlocal functional of EL(r), except in the linear 
approximation where it is uniform. It is similarly clear 
that P(rt) = I dwlmln(l) is in general a nonlocal functional 
of EL(r), contrary to intuitive expectations. In the lin­
ear regime, however, P(r) becomes locally proportional 
to EL(r), in agreement with our earlier results for this 
case. 4,5 

Most previous work on dielectric saturation in polar 
fluids has been concerned with the global response of the 
sample as a whole, rather than with the more general 
questions of local behavior which concern us here. 
Work of the former type has been reviewed by Kielich. to 
Previous analyses of the single-molecule distribution in 
both rl and WI appear to be limited to those of Nienhuis 
and Deutchl1 (NO) and H~ye and Ste1l9 (HS). Although 
there are several points of contact between our work 
and that of HS, they focus for the most part on a differ­
ent set of issues than we do. They are concerned with 
an infinite system rather than a finite closed system, 
and nonlocal effects consequently play no role in their 
development. Moreover, they are primarily interested 
in quantities other than n(l), and obtain explicit results 
for the latter only in the weak-field and mean-field 
limits. NO, on the other hand, attempt to derive a gen­
eral formal expression for n(l) in a finite closed system, 
and it is of interest to contrast our result with theirs. 

The result of the NO theory reduces, for slowly vary­
ing fields, to their Eq. (4.30) for n(l) as an infinite se­
ries in E(r), the Maxwell electric field. (The appear­
ance of the Maxwell field rather than the Lorentz field 
is not an essential difference; it merely reflects a dif­
ferent convention in the definition of the dipole tensor,) 
The coeffiCients in this series involve complicated n­
molecule correlation functions in the unperturbed fluid. 
Because of the infinite series and the reduction to zero­
field correlations, the NO expression for n(l) bears no 
apparent resemblance to our closed-form expression. 
One may still inquire, however, whether the two expres­
sions are somehow equivalent. The answer is that they 
are not, because the NO result for n(l) is a purely local 
function of E(rt) [or, equivalently, of EL(rt)], whereas 
our result is inherently nonlocal. 

We believe that this discrepancy is due to the factt2 

that NO neglect the finite-volume correction terms that 

appear in the distribution functions of a finite system in 
the canonical ensemble. These terms are not negligible 
in the present context, t3 and their omission leads to 
serious error. It seems likely, however, that a deriva­
tion similar in structure to that of NO could be per­
formed in the grand canonical ensemble, and that the 
resulting expression for n(l) would be similar in form 
to that of NO. Such a result would exhibit the same kind 
of nonlocal behavior that we have found here, because 
the zero-field correlation functions would then depend 
impliCitly on /J., which is a nonlocal functional of E(r). 
Even if this could be done, however, the expression for 
n(l) derived herein has the advantage of being much sim­
pler in structure, and it has an appealing intuitive in­
terpretation in terms of a deformable quasidipole that 
is lacking in a series solution of the NO type. Thus, the 
present result is likely to be a more fruitful starting 
point for approximations: It requires only that one as­
sume physically reasonable behavior for the quasidipole, 
rather than for an infinite set of many-particle correla­
tion functions. 

II. THE SINGLE-MOLECULE DISTRIBUTION 
FUNCTION 

We consider a system composed of N identical rigid 
polar molecules (of arbitrary symmetry) confined to a 
finite volume V (of arbitrary shape) at absolute tempera­
ture T. The mean number density N/V is denoted by p. 
The position and orientation of molecule k are denoted 
by r k and W k, respectively, and are collectively repre­
sented by the shorthand notation (k). The angular mea­
sure f dWt is denoted by n. If Wt is specified by the 
Euler angles, t4 then n == 81T2 

• The dipole moment of 
molecule k is denoted by m k • Since the molecules are 
rigid, m k depends only on W k , and its magnitude is a 
constant mo. 

The system is imagined to be suspended in vacuum in 
the presence of a strong external electriC field Eo(r). 
The latter is assumed to vary slowly (in a molecular 
sense) with the position r, but is otherwise arbitrary. 
The interaction energy of the sample with the field is 
~kcJ>o(k), where 

cJ>0(1) == - mt . Eo(rt) . (1) 

The properties of the sample in the presence of the ex­
ternal field may be considered as functionals of the sin­
gle-molecule function cJ>0(1), or alternatively of the func­
tion Yo(l) == - )3cJ>0(1), where)3 == (kTt t and k is Boltz­
mann's constant. It is therefore not surprising that the 
calculus of functionals and functional derivatives will 
prove useful. 

A convenient summary of the basic functional-deriva­
tive relations has been given by Rushbrooke. 8 Although 
these relations are usually derived for spherical mole­
cules interacting via short-range forces, they are also 
valid in the present context if certain reinterpretations 
are made. 4 Specifically, it is necessary to interpret the 
notation (k) in the generalized sense (rk , w k ), to interpret 
p as N/(Vn), and to identify the spatial integration do­
main with the finite volume V. 

The functional-derivative relations in their usual 
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form 7,8 are valid in the grand canonical ensemble. The 
corresponding relations in the canonical ensemble are 
somewhat different. 13 The differences arise from the 
presence of a finite-volume correction term in the ca­
nonical total correlation function, and are related to the 
fact that canonical variations occur at constant N, while 
grand canonical variations occur at constant chemical 
potential jJ.. [Throughout this article, jJ. refers to the 
total chemical potential of the system including that as­
sociated with the field, i. e., jJ. = - kT(a lnQ/aN)v, T> 

where Q is the canonical partition function in the pres­
ence of the external field.] The prinCipal formal differ­
ence is that rpo(1) is replaced by rpo(l) - jJ. in the canoni­
cal ensemble. In the linear approximation this differ­
ence vanishes, because jJ. contains no term linear in 
rpo{l). The grand canonical relations may then be ap­
plied in the canonical ensemble, as was done in our pre­
vious work on linear dielectric polarization. 4,5 In the 
present context, however, the field strength is arbitrary 
and the canonical and grand canonical formulations are 
no longer interchangeable. We must therefore select 
either one or the other, and consistently adhere to it 
throughout the development. 

Since we are concerned with a closed system, we 
would prefer to use the canonical ensemble. The de­
velopm ent is simpler, however, in the grand canonical 
ensemble, and the quantities that naturally appear are 
more easily given physical interpretations. We shall 
therefore use the grand canonical ensemble, in which the 
usual functional-derivative relations apply without modi­
fication. It is essential to remember that the functional 
derivatives are then taken at constant jJ. rather than at 
constant N, and that a finite change in rpo{l) at constant 
jJ. will be accompanied by a finite change in N. At the 
end of the derivation, it will therefore be necessary to 
eliminate jJ. as a basic independent variable in favor of 
N. It is this elimination that will give rise to nonlocal 
behavior. 

We now proceed to summarize the relevant functional­
derivative relations. The quantity of central interest is 
the single-molecule distribution function nCr, w), which 
is the ensemble average of the molecular quantity 
~ko{r - rk)o{w - wk) in the presence of the external field 
Eo{r). Consider the consequences of effecting an infini­
tesimal change oEo{r) in Bo{r) at constant jJ.. The cor­
responding changes orpo{l) and oyo{l) to the functions 
rpo(1) and yo{l) follow trivially from Eq. (I). The re­
sulting change on{l) to n{l) is 

f on{l) 
on{l) = d(2) 01'0(2) oyo(2) , (2) 

where the functional derivative on{I)/oYo{2) is given by 

on{l) 
oyo(2) =n{l)n{2)h{12) +n{l)o{12) , (3) 

and h(12) is the total correlation function in the pres­
ence of the field. The inverse relation to Eq. (2) is 

f 01' (1) 
01'0(1) = d(2) 0:(2) on(2) , (4) 

where 

01'0(1) 1 
on(2) = - c(12) + n (1) 0(12) , (5) 

and c(12) is the direct correlation function in the pres­
ence of the field. It follows from Eqs. (2)-(5) that h(12) 
and c(12) are related by the generalized Ornstein­
Zernike equation 

h(12) = c(12) + f d(3)n(3)c(13)h(32) . (6) 

The fundamental importance of c(12) in dielectric theory 
is due to Eqs. (4) and (5), which allow one to isolate the 
external electric field Eo(r). This facilitates the elimi­
nation of Eo(r) in favor of the Maxwell electric field E{r), 
or, preferably, the Lorentz electric field EL(r) =E(r) 
+ (47T/3)P{r). The fact that this elimination effects a 
simplification is a consequence of the particularly sim­
ple asymptotic behavior of c(12) at long range (large 
Irl -r21). 

The asymptotic behavior of c(12) in unperturbed fluids 
has been examined in a number of independent studies, 
many of which were cited in Ref. 4. In these studies it 
was found that c(12) becomes asymptotic to - ,Bv(12) at 
long range, where v(12) is the intermolecular pair po­
tential. The asymptotic behavior of c(12) in the pres­
ence of an external field has received much less atten­
tion. Fortunately, the formal cluster-expansion pro­
cedures from which one infers the asymptotic form of 
c(12) in zero field are largely indifferent to the presence 
of an external field, so indifferent indeed that the as­
ymptotic form of c(12) is found to be unaffected by the 
field. 9 It would be an exaggeration to say that this re­
sult has been rigorously established, for the convergence 
properties of the cluster-expansion procedures are 
largely unknown (especially for liquids!). In the present 
development, therefore, we shall incorporate this re­
sult as an assumption, but one whose validity appears 
very likely. We assume, then, that c(12) becomes 
asymptotic to - ,Bv(12) for large I rl - r21, even in the 
presence of an external field. In the present context, 
the dipole-dipole potential dominates v(12) at long range. 
Our assumption may therefore be stated in the form 

c(12) = co(12) - ,B8(12) , (7) 

where co(12) is a short-ranged function (i. e., one that 
decays to zero faster than Irl-r21-3) and 8(12) is the 
dipole-dipole potential with a spherical cutoff 

(8) 

Here r12=rl-r2' T 5(r)=H(lrl -o)VVirl-t, H(x) is zero 
if x< 0 and unity otherwise, and it is understood that the 
limit 0 - 0 is ultimately to be taken. 

Combining Eqs. (4), (5), and (7), we obtain 

01' L(l) = f d(2) [- co(12) + n~l) 0(12)] on(2) , 

where 

Now the polarization P(rl) is given by 

(9) 

(10) 
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P(rt) = f dwtmtn(l) • (11) 

This relation, together with Eqs. (1) and (8), allows Eq. 
(10) to be rewritten in the form 

(12) 

where 

(13) 

is the Lorentz electric field. The appearance of the 
Lorentz field, rather than the Maxwell field or som e 
other electric field, is a consequence of the spherical 
cutoff in 8(12). 

Equation (9) can be formally inverted by introducing a 
short-range total correlation function ho(12) that is re­
lated to co(12) by the Ornstein-Zernike equation, i. e., 

(14) 

We then obtain 

lin(l) = f d(2)[n(1)n(2)ho(12) + n(1)1i(12) ]liy L(2). (15) 

Since co(12) is a short-ranged function, the same is true 
of ho(12). The integrals ove!= r2 in Eqs. (9) and (15) may 
therefore be extended over all space instead of just over 
the volume V, provided that rl is farther than the range 
of co(12) or ho(12) from the surface of V. The integral 
over r3 in Eq. (14) may similarly be extended over all 
space. 

Up to this point we have regarded n(l) and the various 
·correlation functions as functionals of yo(l). Because of 
Eq. (10), we can equally well regard these quantities as 
functionals of YL(l). Henceforth, we adopt this latter 
viewpoint. Equation (15) then shows that 

lin(l) 
liy L(2) = n(1)n(2)ho(12) + n(1)1i(12) , (16) 

where the functional differentiation is performed at con­
stant /-L, just as in Eqs. (3) and (5). Since ho(12) is a 
short-ranged function, it follows from Eq. (16) that at 
constant /-L, n(l) is appreciably influenced by YL(2), and 
hence by EL(r2), only when r 2 is near rl. [Here and be­
low the relative terms "near" and "far" are used with 
reference to the range of ho(12), which is a length of 
molecular magnitude.] At constant /-L, therefore, n(l) 
is a local functional of EL(r), by which is meant that it 
is essentially independent of the values that EL(r) takes 
on at points far from rl. However, according to Eq. 
(16), ho(12) may be obtained from n(l) by functional dif­
ferentiation, which is the continuous analog of partial 
differentiation and which clearly cannot introduce any 
new functional dependence that is not already present in 
n(l). [If fiXl, X2) is independent of x2, so that 8f/8x2 = 0, 
then the partial derivatives of f(xt. X2) are also indepen­
dent of X2.] Therefore, ho(12) is also a local functional 
of EL(r) at constant /-L; it is essentially independent of the 
values that EL(r) takes on far from rt and r2. 

The conclusion that ho(12) is a local functional of EL(r) 
at constant J.L is crucial to our development. It is there-

fore perhaps worthwhile to observe that this conclusion 
can be reached by alternate routes. Perhaps the sim­
plest is to notice that if the contrary were true., func­
tional integration of Eq. (15) would yield an n(l) that de­
pends on EL(r) at points far from rit which contradicts 
the already established fact that n(l) is a local functional 
of EL(r). A second alternate route involves considering 
the effect of a small change in E L (r3), where r3 is far 
from rl but is otherwise arbitrary. This change will not 
affect n(l), and it therefore will not affect the change in 
n(l) produced by a small change in E L(r2), where r2 is 
near rj. The latter change in n(l) is related to ho(12) 
at short range by Eq. (16); therefore, the change in 
EL(r3) does not affect ho(12) at short range. However, 
it does not affect ho(12) at long range either, since ho(12) 
is then essentially zero regardless of the value of EL (r3)' 
Therefore, the change in E L(r 3) does not affect ho(12) at 
all, so that ho(12) can depend only on EL(r) at points 
near rl. 

We have shown that both n(l) and ho(12) are local func­
tionals of E L (r) at constant /-L. A further reduction in 
their functional dependence on EL(r) results from the 
fact that the external field Eo(r) varies slowly with r in 
a molecular sense. Since the system is a fluid, it is 
clear that n(l) will vary slowly with rt in the same 
sense. This in turn implies, via Eqs. (11) and (13), that 
P(r) and EL(r) also vary slowly with r. The values that 
EL(r) takes on at points near rt therefore differ negligi­
bly from EL(rt), so that in effect n(l) and ho(12) depend 
on EL(r) only through the single value EL(rt). We may 
therefore consider n(l) and ho(12) to be simply functions 
of EL(rt) rather than functionals, which represents a 
major Simplification of the mathematical description. 
It is this simplification that makes it possible for the 
development to proceed. 

Substitution of Eq. (12) into Eq. (15) yields 

(17) 

Since ho(12) is short ranged and both n(2) and EL(ra) are 
slowly varying functions of r2, we may evaluate these 
functions at the point r2 =rt to obtain 

(18) 

where 

(19) 

As will become clear later, mt may be interpreted as 
an effective dipole moment of molecule 1. Unlike the 
permanent moment mt. the effective moment mr depends 
on EL(rt) and is therefore deformable or polarizable. 
Our conclusions about the functional dependence of n(l) 
and ho(12) imply that mt may be written as mt(l, EL(rt». 
Of course, mt also carries an implicit parametric de­
pendence on /-L. 

We now observe that for given values of rit wit and /-L, 
Eq. (18) is Simply an ordinary differential equation for 
n(l). [It is no longer a functional differential equation 
because it does not involve EL(r) at points other than r 
= r 1.] The solution of this equation is 
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n(1) =n-1po(/.L, T) exp~ ~BL(r1) mt'(1, E)· dE] , (20) 

where E is a dummy integration variable representing 
E L(rl), and we have imposed the boundary condition that 
n(1) = n-1po(/.L, T) when EL(r) = O. Here Po(/.L, T) is the 
uniform number density in the system when the chemical 
potential is /.L in the absence of the field, which is deter­
mined by the equation of state of the unperturbed fluid. 
The integration in Eq. (20) is of course carried out at 
constant /.L. Equation (20) again shows that at fixed /.L, 
n(1) is a purely local function of EL(rl)' 

Equation (20) has an appealing intuitive interpretation, 
which is due to the fact15,16 that the interaction energy of 
an isolated deformable dipole m with an external electric 
field E is just - f m • dE. Therefore, n(1) is given sim­
ply by a single-molecule Boltzmann factor in which the 
interaction energy that appears is just that of the de­
formable effective moment mj with the field EL(r1)' Us­
ing the language of field theory, we may say that mj is 
a renormalized dipole moment; it is the dipole moment 
of a deformable quasiparticle that effectively interacts 
only with the field EL(rl). 

Equation (20) expresses n(1) as a function of the inde­
pendent variables (/.L, V, T) and EL(r). The dependence 
of n(1) on /.L occurs through both Po(/.L, T) and mt'. Since 
we are concerned with a closed system, we wish to 
eliminate /.L in favor of N, so that we may evaluate n(1) 
for given (N, V, T) and EL(r). It is convenient to let 

8 (1, /.L) = exp~ ~BL Cr1) mj(1, E) • dE] , (21) 

whose dependence on /.L is now explicitly indicated by the 
notation. In terms of 8, we have that n(1) =n-1po(/.L, 
T)8(1, /.L). The number of molecules N in the system in 
the presence of the field is simply N = f d(1)n(1), i. e., 

which is the relation between Nand /.L. Equations (21) 
and (22) show that for given /.L, N is a nonlocal functional 
of EL(r). Conversely, for given N, /.L is clearly a non­
local functional of EL(r), which may be written as /.L(N, 
[EL(r)]). This functional is determined implicitly by Eq. 
(22). 

Combining Eqs. (20) and (22), we find that n(1) can 
be written as 

N8(1, /.L) 
n(1) = f d(1)8(1, /.L) , (23) 

which obviously has the correct normalization. In or­
der to express n(1) as a function of the independent vari­
ables (N j V, T) and EL(r), it is merely necessary to sub­
stitute the functional relation /.L(N, [EL(r)]) into Eq. (23). 
The resulting n(1) is clearly an inherently nonlocal func­
tional of EL(r). Even if mt [and hence 8(1, /.L) J were in­
dependent of /.L, n(l) would still be nonlocal because of 
the denominator in Eq. (23). 

One might at first wonder whether this nonlocal be­
havior is in some sense illusory, since it disappears 
when N is eliminated in favor of /.L. Upon reflection, 

however, it becomes clear that this behavior is real and 
physical. The point is that in a closed system, any 
variations in EL(r) must occur strictly at fixed N. Vari­
ations at fixed /.L are unphysical in such a system, since 
they are accompanied by a variation in N. (They are 
still useful mathematically, however, as our develop­
ment illustrates.) Variations at fixed N are most easily 
contemplated by eliminating /.L in favor of N. Equation 
(23) then shows clearly that even if EL(r) varies only at 
points far from r1, the value of n(1) will change, i. e., 
n(l) is affected by what happens to EL(r) at pOints far 
from rh which is just what is meant by nonlocal be­
havior. 

Our conclusion that n(1) in a closed system is inher­
ently nonlocal in EL(r) is in conspicuous disagreement 
with the result of Nienhuis and Deutch, 11 who obtained 
a formal expression for n(l) that is purely local in EL (r1) 

for slowly varying fields [their Eq. (4.30) J. It seems 
likely that this disagreement is due to the fact12 that NO 
neglect the finite-volume correction terms that appear 
in the correlation functions of a finite system in the 
canonical ensemble. 11 As we have shown elsewhere, 13 
these terms profoundly alter the usual functional-deriva­
tive relations, and their omission will in general lead to 
serious error. The finite-volume correction to h(12) 
has the effect of replacing oYo(1) by oYo(1) + (30/.L in Eq. 
(2), with O/.L = (alaN) f d(1)n(1)ocpo(1). It is through the 
nonlocal quantity O/.L that nonlocal behavior manifests 
itself in the canonical ensemble. In the linear approxi­
mation, however, the finite-volume correction terms 
have no effect, because n(1) is then replaced by pin in 
the expression for O/.L, and o/.L then vanishes by virtue 
of Eq. (1) (since f dw1m1 = 0). Consequently, n(1) is a 
local function of E L(r1) in the linear approximation but 
not in higher order, as we now proceed to show directly. 

In the linear apprOXimation, 8(1, IJ.) becomes 

(24) 

where mt(1, 0) still depends implicitly on IJ.. In zero 
field, however, it is reasonable to assume that the 
short-ranged function ho(12) depends only on the relative 
positions and orientations of molecules 1 and 2. This 
implies that mi(1, 0) is a vector rigidly affixed to mole­
cule 1, so that f dW1mj(1, 0) =0 and f d(1)8(1, IJ.) = vn. 
Equation (22) then reduces to N= VPo(ll, T), which no 
longer involves E L (r) . In the linear approximation, 
therefore, Il is no longer a functional of EL(r); indeed, 
it is just the chemical potential Ilo of the unperturbed N­
molecule system. Equation (23) for n(1) now becomes 

(25) 

where mi(1, 0) is to be evaluated at Il = Ilo. Equation 
(25) shows that n(1) is a purely local function of E L (r1) 
in the linear approximation. It is clear, however, that 
this ~imple local behavior no longer obtains in quadratic 
and higher order. 

It is of interest to examine the local number density 
p(rl) = J dWln(1), which according to Eq. (23) is given by 

N f dw18(1, Il) (26) 
p(r1) = J d(1)8(1, Il) 
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Equation (24) shows that in the linear approximation, p(r) 
is uniform with the value p. In higher order, however, 
it is clear that p(r) is a nonlocal functional of EL(r) and 
is no longer uniform. The fact that p(r) becomes non­
uniform in a strong electric field has also been observed 
by H~ye and Stell. 9 The physical reason for this be­
havior is straightforward. The primary effect of the 
electric field is to preferentially align the dipolar mole­
cules. Once they are aligned, they will experience a 
nonzero net force due to the field gradient. This force 
will then redistribute the dipoles spatially, so that in 
equilibrium a nonuniform p(r) will result. This physi­
cal picture makes it intuitively clear why p(r) - p is of 
second order in the field. 

Equation (26) allows n(l) to be written in the alterna­
tive form 

(1) _ p(rt)8(1, j.I.) 

n - f dwt8(1, j.I.) • 
(27) 

If mi were independent of j.I., then 8(1, j.I.) would also be 
independent of j.I. and hence would be a purely local func­
tion of EL(rt). [According to Eq. (22), however, j.I. it­
self would remain a nonlocal functional of EL(r).j Equa­
tion (27) shows that in this case, n(l) is the product of 
p(rt) and a purely local function of EL(rt), so that the 
nonlocal behavior of n(l) is entirely contained in p(rt). 
Moreover, the nonlocal behavior of p(r) then becomes 
much simpler in character, since the j.I. dependence dis­
appears from Eq. (26). Of course, this simple situa­
tion will never rigorously obtain, but it may obtain to a 
useful degree of approximation under some circum­
stances. 

III. CONCLUDING REMARKS 

We have obtained a new formal expression for the 
single-molecule distribution function n(1) in a finite di­
polar fluid system. The usefulness of this expression 
depends upon one's ability to devise a satisfactory ap­
prOXimation to the effective moment mt". Since mt' has 
an appealing physical interpretation as the dipole mo­
ment of a deformable quasiparticle, it is perhaps not un­
reasonable to hope that Simple physically motivated ap­
proximations to its behavior may be useful. 

Our result shows that n(l) is an inherently nonlocal 
functional of EL(r) except in the linear approximation. 
To our knowledge, this nonlocal behavior has not pre­
viously been discussed, and it may at first appear some­
what surprising, since we have grown accustomed to 
local behavior from the linear regime. However, the 
necessity for nonlocal behavior is already clear in the 
case of an ideal gas. Our result may be specialized to 
this case by setting m; =mt. and noting that EL(r) now 
differs negligibly from Eo(r). Equations (21) and (23) 
then immediately reduce to the correct n(l) for an ideal 
gas, which is still inherently nonlocal in character. 

The appearance in our theory of the Lorentz field 
EL(r) rather than the Maxwell field E(r) is simply a con­
sequence of our use of the tensor Tft(r) to define 8(12). 
If we had instead defined 8(12) using the tensor6 T ND(r), 
the development would have proceeded in formally iden­
tical fashion, but with E(r) replacing EL(r). Of course, 

if this were done, then co(12), ho(12), and mt' would be 
different from the quantities that appear in the present 
development. One would then find that n(l) is an in­
herently nonlocal functional of E(r). This is also clear 
in the present development, since E(r) = EL(r) - (417/ 
3)P(r), and P(rt) depends locally on n(l). 

The implications of the present results for the polar­
ization P(r) and higher angular moments of n(l) will be 
explored in a subsequent article. However, it is already 
obvious by inspection of Eqs. (11) and (23) that P(r) is 
in general an inherently nonlocal functional of EL(r) or 
E(r) [although it becomes local in the linear regime be­
cause of Eq. (25) J. The statement to the contrary by 
Nienhuis and Deutch, 11 embodied in their Eqs. (4.32) 
and (4.34), is therefore erroneous. [This statement 
and these equations were based on their Eq. (4.30), 
which is incorrect for the reasons already given. J How­
ever, when mt' is independent of j.I. the nonlocal behavior 
of P(r) becomes much simpler in character. In this case 
P(r), like n(l) itself, depends nonlocally on EL(r) only 
through p(r), and one finds that the ratio P(r)/p(r) (which 
is just the mean dipole moment per molecule at the point 
r) is a purely local function of EL(r). Even in the gen­
eral case, the quantity P(r)/ p(r) should be Simpler and 
more fundamental than P(r) itself whenever p(r) is non­
uniform. 

Finally, it is of interest to observe that the nonlocal 
behavior discussed in this article is of a very general 
type that is not intrinsically connected with the long­
range nature of the dipolar force. Consequently, it dif­
fers in character from the more familiar nonlocal ef­
fects in dielectric theory, such as the nonlocal relation 
between P(r) and Eo(r) in the linear regime. t It is in­
structive to contemplate how the development of Sec. II 
would be altered in the case of purely short-ranged inter­
molecular interactions. There is then no separation of 
c(12) into short- and long-ranged parts; this separation 
may be negated by setting 8(12) = 0, so that co(12) = c(12), 
ho(12) =h(12), and EL(r) =Eo(r). The entire derivation 
remains valid under these conditions, although many of 
the steps in it become trivally unnecessary. Conse­
quently, one finds that n(l) is a purely local function of 
Eo(rt) at constant j.I., but that nonlocal behavior appears 
just as before when j.I. is eliminated in favor of N. It is 
clear that this type of nonlocal behavior will be a gen­
eral feature of strongly perturbed systems, regardless 
of the range of the intermolecular forces. It may there­
for e be of inter est in other contexts. 
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