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HIGH FREQUENCY OF EXTRA-PAIR PATERNITY IN EASTERN KINGBIRDS

DiaNE L. Rowg,** MicHAEL T. MURPHY,%5 ROBERT C. FLEISCHER® AND PauL G. WoLF
Department of Biology, Utah State University, Logan, UT 84322
?Department of Biology, P.O. Box 751, Portland Sate University, Portland, OR 97207
3Molecular Genetics Laboratory, National Zoological Park, Washington, DC 20008

Abstract. Genetic parentage in the socially monog-
amous and territorial Eastern Kingbird (Tyrannus tyr-
annus) was examined in a central New York popula-
tion by multilocus DNA fingerprinting. Extra-pair
young were identified in 60% (12 of 20) of nests. Of
the 64 nestlings profiled, 42% were sired by extra-pair
males, but no cases of conspecific brood parasitism
were detected. These results are markedly different
from a previous electrophoretic study of the same spe-
cies in a Michigan population, which reported 39% of
nestlings were unrelated to one (typicaly the mother,
quasiparasitism) or both (conspecific brood parasitism)
of the putative parents. In the New York population,
extra-pair paternity was most common among females
that returned to breed on a former territory. Among
females that were new to a breeding territory, extra-
pair paternity increased directly with breeding density.
Although the power of the tests was low, neither
breeding synchrony nor male experience with a breed-
ing territory appeared to be associated with the occur-
rence of extra-pair young.

Key words: DNA fingerprinting, Eastern Kingbird,
extra-pair fertilization, parentage, Tyrannus tyrannus.

Alta Frecuencia de Paternidad Extra-Pareja en
Tyrannus tyrannus

Resumen. Se examin® la paternidad genética de
Tyrannus tyrannus, especie socialmente monogama y
territorial, mediante la técnica de huellas dactilares ge-
néticas de multiples loci en una poblacion de Nueva
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York central. En el 60% (12 de 20) de los nidos se
identificaron juveniles con origen extra-pareja. De los
64 pichones investigados, el 42% fue engendrado por
machos fuera de la pargja, aunque no se detectaron
nidadas con parasitismo conespecifico. Estos resulta-
dos son considerablemente diferentes a los obtenidos
en un estudio previo para la misma especie en una
poblacion de Michigan, el cual reportd que el 39% de
los pichones no estaban relacionados con uno (tipica-
mente a la madre, cuasiparasitismo) o ambos (parasi-
tismo de nido conespecifico) padres putativos. En la
poblacion de Nueva York, la paternidad extra-pareja
fue mas comln entre hembras que retornaron a criar a
territorios que habian ocupado previamente. Entre las
hembras que ocuparon por primeravez un territorio de
crig, la paternidad extra-pareja aument6 directamente
con la densidad de individuos reproductivos. A pesar
que el poder del andlisis fue bajo, ni la sincronia re-
productiva, ni la experiencia de los machos en sus te-
rritorios de cria, parecen estar asociados ala ocurrencia
de juveniles extra-pareja.

Genetic monogamy is now accepted as the exception
rather than the rule among socially monogamous pas-
serines that breed outside of the tropics. Westneat and
Sherman (1997) showed, for instance, that extra-pair
young (EPY) were found in 86% of passerine species
for which data were available (n = 49 species), and
that on average, 18% of young were unrelated to one
of the parents, usually the male. Although a finding of
extra-pair paternity is no longer surprising, it is still
unclear why extra-pair fertilizations (EPFs) occur so
ubiquitously. Adaptive scenarios based on female con-
trol of EPFs include the possibility that females ac-
quire good genes, produce a more genetically diverse
brood, gain insurance against male infertility, or obtain
material benefits from extra-pair males.

Questions also remain as to why the frequency of
EPFs varies so widely among species. Two potentially
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important factors are breeding density (Westneat and
Sherman 1997) and breeding synchrony (Stutchbury
and Morton 1995). Frequent contact among individuas
breeding at high density may increase the potential for
EPFs (e.g., Reyer et a. 1997), and according to Stutch-
bury and Morton (1995), so should high breeding syn-
chrony if females control and seek extra-pair copula-
tions. In fact, Stutchbury and Morton (1995) proposed
that the degree of overlap in female fertile periods was
the primary contributor to interspecific differences in
EPF frequency. They hypothesized that synchronously
breeding species should have the highest EPF frequen-
cies because females can simultaneously compare
many males and better select extra-pair mates. Much
of the available data support their hypothesis (e.g.,
Stutchbury et al. 1998, Chuang et al. 1999), but more
data are needed to test the breeding synchrony hy-
pothesis, and to test for an impact of other factors such
as breeding density, parental age, and breeder experi-
ence on the occurrence of EPFs.

The Eastern Kingbird (Tyrannus tyrannus) is a so-
cially monogamous passerine that has been reported to
have a high frequency of extra-pair parentage. Curi-
oudly, females were usually excluded as the parent of
the nearly 40% of young that were identified as extra-
pair in a Michigan population (McKitrick 1990). As
part of a larger study investigating the evolution of
reproductive behavior in kingbirds, we used multilocus
DNA fingerprinting to determine parentage and mea-
sure the frequency of lost parentage among both males
and females in a New York population. We aso at-
tempted to determine if nest density, nesting synchro-
ny, or parental experience with a territory were asso-
ciated with extra-pair parentage.

METHODS

Fieldwork was conducted in Delaware (42°78'N,
74°53'W) and Otsego (42°28'N, 75°03'W) Countiesin
central New York, where a color-banded population of
Eastern Kingbirds has been under study since 1989
(Murphy 1996, 2000). Nests were located prior to egg
laying by censusing al potential and former territories.
We used adult behavior (territorial defense and feeding
of nestlings) to identify putative parents at individua
nests. Nearly half of the adults upon which our work
was based were banded in a previous year, and none
changed mates during the study. Mate replacement is
a very rare phenomenon in this population (only one
case in 11 years among marked birds); therefore we
feel confident that all of the birds that were unbanded
at the start of the study remained with their partners
through the entire nest cycle.

Adults were captured using mist nets when nestlings
were 11-14 days of age. Birds were weighed and mea-
sured, and blood samples (<100 L) taken viabrachial
venipuncture. Unmarked birds were banded with one
aluminum U.S. Fish and Wildlife Service band and a
unique combination of three color bands. Nestlings
were weighed, measured, banded, and bled (50-100
wL, brachial venipuncture) when 13 days of age. In all
cases blood samples were collected in heparinized cap-
illary tubes and immediately suspended in 1000 pL of
lysis buffer (Longmire et al. 1988). Blood samples col-
lected in 1994 (n = 20 families) were stored at room

temperature for several months, but unfortunately, the
DNA from nearly all the nestling samples was severely
degraded (adult DNA was fine; see also Conrad et d.
2000) and no usable samples resulted from the 1994
season. Thus, in 1995 and 1996 we kept blood on ice
while we were in the field, and after transport to the
|aboratory, we stored all samples at 4°C until the DNA
was isolated (2—3 days later). Usable fingerprint pro-
files were generated for 20 families, 41 adults, and 64
nestlings. The odd number of adults is attributed to a
nest at which three adults were captured (two males
and one female). All young hatched from clutches of
2(n=1),3(n=11), or 4 (n = 8) eggs, but three of
the nests having four young yielded samples for only
three nestlings because of either the loss of a nestling
to predators or insufficient DNA.

Total genomic DNA was isolated as in Fleischer et
a. (1994). Multilocus DNA fingerprinting was per-
formed using the Jeffreys' 33.15 probe (Jeffreys et a.
1985) and an M13 bacteriophage DNA probe for a
subset of seven families, four in which EPFs were and
three in which EPFs were not detected (Vassart et al.
1987). Standard fingerprinting methods were followed
(see Loew and Fleischer 1996 for protocols), with the
exception of |abeling M13 probe with [y*?P] dATP in-
stead of [y%2P] dCTPR, and then precipitating with salt,
ethanol, and yeast tRNA. The DNA fingerprints for
each family, arranged with nestlings flanked by their
putative parents, were manually scored on acetate
sheet overlays (Westneat 1990), and the number of
novel bands and bands shared with one or both parents
counted.

STATISTICAL ANALY SES

We calculated band-sharing coefficients (S of Lynch
1990) between nestlings and putative parents to re-
solve parentage. S was calculated as twice the number
of shared bands divided by the total number of bands
for both individuals. The expected level of Sfor first-
order relatives was estimated by assuming that an adult
was the unambiguous parent of a nestling if there were
no novel bandsin the nestling's fingerprint (0.55; Table
1). The expected S for first-order relatives (R = 0.50)
was calculated from the background level of S and
equation 22 of Lynch (1990) as 0.56, very close to the
mean values of Sfor females and for unexcluded males
with offspring (Table 1). To determine the lower limit
of S below which first-order relatives would not be
expected, we calculated the 95% and 99% confidence
intervals surrounding the average S for first-order rel-
atives (0.55). These resulted in conservative lower lim-
its of 0.38 and 0.32, respectively (Burke and Bruford
1987).

We did not know the ages of the adults because none
were banded as nestlings. Instead, we categorized
adults as either “‘experienced” or ‘‘inexperienced”
based on prior use of a specific territory. An experi-
enced bird was a banded adult that bred on a territory
in one year and returned to breed on that same territory
in the next year. The designation of a bird as inexpe-
rienced meant that it was unbanded and new to a ter-
ritory. These latter birds were known to be new to a
territory because they replaced a banded bird that had
bred on the territory in the previous season. An inex-
perienced bird may have bred elsewhere in the past,
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Band-sharing coefficients (S) for presumptive father-offspring, presumptive mother-offspring, and

unrelated adults (mated pairs) compared by the number of novel fragments. Results from the Jeffreys 33.15
probe and M13 probe are summarized in (A) and (B), respectively. Values are mean S = SD (n), and ranges.

Number of novel fragments

Relationship 0 0-2 =3

(A) Jeffreys 33.15

Presumptive father-offspring 0.55 *= 0.09 (24) 0.54 += 0.09 (37) 0.12 *= 0.08 (27)
Range 0.35-0.70 0.35-0.78 0.00-0.29

Presumptive mother-offspring 0.54 = 0.10 (24) 0.54 = 0.10 (37) 0.56 = 0.10 (27)
Range 0.37-0.69 0.33-0.76 0.40-0.70

Male-female pair — — 0.12 = 0.09 (26)
Range 0.00-0.30

(B) M13 0-1 =2

Presumptive father-offspring 0.48 + 0.14 (13) 0.16 + 0.12 (7)
Range 0.33-0.70 0.00-0.30

Presumptive mother-offspring 0.61 + 0.14 (13) 0.45 + 0.15 (7)
Range 0.36-0.86 0.24-0.64

Male-female pair — 0.11 + 0.12 (9)
Range 0.00-0.33

but we suspect that most inexperienced birds were
probably first-time breeders because most kingbirds
show high site fidelity between years (Murphy 1996).

We also evaluated the potential impact of breeding
synchrony on extra-pair paternity (EPP) by calculating
Kempenaers (1993) breeding synchrony index for all
females in the population. The index was calculated as
the percentage of other femaes in the population
whose fertile period overlapped that of the focal fe-
male, where the fertile period was assumed to extend
from five days before the laying of the first egg until
the laying of the penultimate egg of the clutch. We
also calculated the local breeding synchrony index for
al females for which we had fingerprints. The latter
index was based on the fertile periods of the four fe-
males breeding closest to the focal female. We used
the average distance to neighboring pairs as an index
of breeding density, by measuring the shortest distance
from a focal nest to nests of the same four pairs that
were used to calculate local breeding synchrony. All
nest |ocations were mapped on U.S. Geological Survey
topographic maps (1:24 000) for another study before
the fingerprinting results were obtained. We used SAS
(SAS |nstitute 1990) and STATISTIX (Analytica Soft-
ware 1994) to test for relationships between the pres-
ence of EPY and breeding experience, nesting syn-
chrony, and density. Results are presented as means =
SD. Tests are described in the Results, and unless oth-
erwise stated, we assumed significance when P = 0.05.

RESULTS
DNA FINGERPRINTING RESULTS

The number of scorable bands in the 2—-24 kbp range
averaged 14.0 = 3.0 (range 8-21) for the Jeffreys
33.15 probe. The proportion of nestlings with different
numbers of novel bands was bimodal (24, 12, 1, 5, 4,
8,8, and 2with 0, 1, 2, 3, 4, 5, 6, and 7 novel bands,
respectively), and the frequency of zero, one, or two
novel fragments fit the Poisson distribution (x?, = 1.0,
P > 0.5). Based on the fit to the Poisson distribution,

we estimated mutation rate per individual (m) to be
0.36 (Westneat 1990). The probability of a nestling
having three bands due to mutation was thus 4.7 X
102 (0.36% = 3 of 64 young), which suggested that
three novel bands could be used as a cutoff to identify
EPY. Thus, our fina criteria for using the Jeffreys
33.15 probe to identify EPY were that nestlings have
three or more novel fragments and an S below 0.32
with one or both parents. The M 13 probe revealed few-
er fragments than the Jeffreys' 33.15, with an average
of 9.7 = 2.3 bands scored per individual. The mutation
rate, m, was 0.23, so we used a cutoff of two novel
bands to identify EPY.

Based on Jeffreys’ 33.15, EPY were detected in 12
of 20 nests (60%), and involved 27 of 64 nestlings
(42%; Fig. 1). The mean S between presumptive fe-
male parents and nestlings did not vary with the num-
ber of novel bands (Table 1), and averaged 0.55 =+ 0.10
(n = 64). Conspecific brood parasitism was thus never
detected, and the probability of including a nonrelative
as the female parent was 9.9 X 10-> (Burke et a.
1989). On the other hand, mean S between the pre-
sumptive father and young varied with the number of
novel bands, owing to the very low S of young with
three or more novel bands (Table 1). The average S of
the latter group of young with the presumptive father
was identical to that of unrelated adults in the popu-
lation (Table 1). The probability of inclusion of a non-
father was 2.1 X 104 (Burke et a. 1989). EPP was
thus common and accounted for al cases of lost par-
entage.

The probability of undetected instances of extra-pair
fertilizations was relatively low for this sample of 64
nestlings (1.3 X 10-?). There was, however, one case
of ambiguous paternity. We captured two adult males
and a female at a nest with three offspring in 1995.
The two males were determined to be first-order rela-
tives (possibly brothers) based on a high S(0.64). Nei-
ther male could therefore be excluded as the true par-
ent of the young. The primary male (netted closer to
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FIGURE 1. Examination of the occurrence of extra-

pair young in Eastern Kingbird nests in New York.
Number of novel fragments and band-sharing coeffi-
cients (S of young with the presumptive mother (up-
per frame) and presumptive father (lower frame) for
the Jeffreys 33.15 probe data only. The dashed lines
indicate cutoff points for extra-pair young (=3 novel
bands and S < 0.32). Points in the lower right quadrant
represent extra-pair young.

the nest and having dlightly higher S with the off-
spring) was assumed to be the true father and no nes-
tlings were considered EPY (S = 0.52, 0.54, and 0.64).
The female parent and the apparent male parent from
1995 returned to breed on the same territory in 1996
(the only pair to contribute more than one fingerprint)
and we again sampled the family unit. Surprisingly, in
this pair's second year, the male did not father any of
the young (S = 0.08, 0.09, and 0.15).

Seven broods, four of which had EPF young ac-

cording to the 33.15 probe, were reanalyzed with M13.
The probability of assigning an unrelated male as fa-
ther was 5.2 X 105 Background band-sharing was
aso low (S = 0.11 = 0.12), and we calculated the
lower limit of the 95% and 99% confidence intervals
for male-offspring relatives as 0.29 and 0.22, respec-
tively. Exclusions were clearly supported for 7 nes-
tlings excluded by the Jeffreys’ 33.15 data (=3 novel
bands, S < 0.29; Table 1). For three nestlings, each
with only a single novel M13 fragment, two had S of
0.46 and 0.40, while one had an S of 0.15. This third
individual was not excluded based on the Jeffreys
33.15 probe (1 novel fragment, S = 0.46). The 10 re-
maining nestlings were not excluded based on M13
data (as we aso concluded using the Jeffreys 33.15
probe). Thus, results from the two probes differed
slightly for only 1 of 20 nestlings, and we are confident
of the exclusions made using the 33.15 data alone.

INDIVIDUAL AND ECOLOGICAL CORRELATES OF
EPP

The distribution of EPY among nests appeared bimod-
a. Eight broods contained no EPY, two broods (brood
size = 3 and 4) contained one EPY each, but 10 broods
had at least half of the young fathered by a male other
than the presumptive father (7 broods of 3 and 3
broods of 4). Three males in fact failed to father any
of the young in their nest (all broods of three). Assum-
ing all young had a probability of 0.42 of being EPY,
we calculated the number of broods that would be ex-
pected to have EPY following methods described in
Lifjeld et al. (1993). The predicted number of broods
with EPY was 16.4 (out of 20), which differed mar-
ginaly from the observed value of 12 (x4, = 3.282, P
= 0.07; cell totals corrected for small sample size). In
an attempt to explain this pattern, we tested four po-
tential ecological correlates of extra-pair paternity
(EPP): male and female breeding experience, breeding
synchrony, and breeding density.

All six females that had experience on their territory
in the past year had EPY, compared to only 6 of 14
inexperienced females (2 X 2 contingency table, Fis-
her's exact test, P = 0.04). In contrast, there was no
association of EPP with male experience (Fisher’s ex-
act test, P = 0.64). In addition, we compared the num-
ber of nests with EPY between pairs that were above
versus below the median breeding synchrony index.
On both a population and local level, the occurrence
of EPP was independent of breeding synchrony (Fis-
her’s exact test, P = 0.65 for both tests), but there was
a tendency for the number of EPY to vary inversely
with average nearest neighbor distance (calculated as
the average distance to the four nearest neighbors).
Eight of 10 nests below the median nearest neighbor
distance held EPY compared to 4 of 10 above the me-
dian nearest neighbor distance (Fisher's exact test, P
= 0.17). A natural break in EPY freguency occurred
at a nearest neighbor distance of 1 km: 10 of 13 pairs
with an average nearest neighbor distance <0.9 km
yielded EPY compared to 2 of 7 nests with an average
nearest neighbor distance greater than 1 km (Fisher's
exact test, P = 0.06).

As afinal test, we performed a Poisson regression
to simultaneously examine the influence of female and
male experience, breeding synchrony, and nearest



neighbor distance on the number of EPY in anest. All
four variables were entered, but then removed in a
backward stepwise procedure until we were left with
only those that significantly reduced the model’s de-
viance. The model retained female experience (P =
0.02) and average nearest neighbor distance (P =
0.02). Separate comparisons of the number of EPY to
nearest neighbor distance for experienced and inex-
perienced females showed that nests of experienced
females held EPY regardless of density (b = —0.001,
P = 0.76), whereas EPY were less likely to be found
in the nests of inexperienced females as the average
distance to neighborsincreased (b = —0.10, P = 0.01).
L east-squares linear regression indicated that 32% (P
= 0.04, n = 14) of the variation in the number of EPY
could be accounted for by nearest neighbor distance
among the inexperienced females.

DISCUSSION

Our results provide evidence of avery high frequency
of extra-pair paternity (60% of nests and 42% of off-
spring) in an Eastern Kingbird population from central
New York. Our recorded rate of EPP ranks among the
highest yet reported for a socially monogamous pas-
serine (Fleischer 1996, Westneat and Sherman 1997).
As noted above, mate replacement is a very unlikely
explanation for our results since over an 11-year period
we have only once found that a banded male was re-
placed during the nesting cycle. Furthermore, we did
not increase the frequency of EPP through our capture
efforts because adults were not handled until nearly
the end of the nestling period. We are thus confident
that the adults identified as the putative parents were
together from the start of nesting and that they behaved
normally. In addition, stored sperm from copulations
that might have occurred prior to pair formation is a
very unlikely explanation for the high rate of EPP be-
cause egg laying generally occurs two, and often three,
weeks after pairs form (but see Oring et al. 1992).
Given the importance of last-sperm precedence (Birk-
head and Mgller 1992), copulation prior to pairing is
probably of little consequence to kingbirds. We thus
believe that the EPP that we documented is the result
of normal extra-pair fertilizations.

McKitrick (1990) aso found, using protein electro-
phoresis, a very high rate of extra-pair parentage in a
Michigan population of kingbirds (39%), but oddly,
the female was usually excluded as the probable par-
ent. Her data suggested that the social mother lost par-
entage as a result of both quasiparasitism (an unrelated
female breeds with the mate of a female and then lays
in the latter’'s nest; Wrege and Emlen 1987) and con-
specific brood parasitism. Quasiparasitism has only
rarely been documented in other birds (Wrege and Em-
len 1987, Birkhead et al. 1990, Alves and Bryant
1998), and conspecific brood parasitism (Rohwer and
Freeman 1989) has repeatedly been shown to be much
less common than EPR Thus, our fallure to exclude
the social mother as the genetic mother of even a sin-
gle nestling in the Charlotte Valley kingbird population
leaves us with the difficult task of interpreting the con-
tradictory results of McKitrick's (1990) study. One
possibility is misidentification of the actual parentsin
the Michigan population. As described above, we have
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found that a third bird occasiondly attaches itself to a
pair, generaly late in the nest cycle. Although not
common, it has occurred at least once in roughly every
other year of our 12-year study. We assume that these
birds failed in a nesting attempt elsewhere and redi-
rected their parental care (Bragg 1968). McKitrick
(1990) did not follow pairs throughout the nest cycle,
and it is possible that some of the presumptive mothers
that she collected were actually unpaired birds that as-
sociated with the nesting pair. Some of the difference
might also be attributed to problems inherent to elec-
trophoretic techniques of assessing parentage. For in-
stance, differential gene expression between nestlings
and adults may confound the assignment of parentage
(Smyth et a. 1993), or the inherent low resolution of
electrophoresis may make it difficult to discern wheth-
er observed mismatches are due to conspecific brood
parasitism or EPFs (Romagnano et a. 1989, Smyth et
al. 1993). It is also possible that the difference between
the New York and Michigan populations is real, and
although we regard it as unlikely, the possibility of
such a major intraspecific difference warrants further
study.

CORRELATES OF EPP

Although many studies have shown that EPP is com-
mon among passerines, the individual and ecological
predictors of EPP remain enigmatic. High nesting den-
sity, because it presumably increases the frequency of
interactions between extra-pair individuals, has been
argued to be an important contributor to the occurrence
of EPP, but Westneat and Sherman’s (1997) interspe-
cific comparisons provide little support. Within spe-
cies, high nesting density tends to be associated with
frequent loss of paternity (Reyer et al. 1997, Westneat
and Sherman 1997; but see Chuang et al. 1999). In our
study, the number of EPY was negatively correlated
with nearest neighbor distance among inexperienced
females, suggesting an important influence of nesting
density on the occurrence of extra-pair copulations. On
the other hand, all experienced females obtained EPFs
regardless of nearest neighbor distance.

The high frequency of EPP in kingbirdsis consistent
with Stutchbury and Morton’s (1995) hypothesis that
synchronously breeding species should exhibit the
highest frequency of EPP. The synchrony indices for
1995 (0.55) and 1996 (0.54) rank among the highest
recorded for temperate-zone breeding species (see Ta-
ble 1 of Stutchbury and Morton 1995), and as their
hypothesis predicts, the frequency of EPP in kingbirds
is aso high. On the other hand, we have no evidence
that breeding synchrony affected the within-population
probability of EPY, but we offer this only as atentative
conclusion because of the low power of our tests due
to small sample size.

The strongest influence on the frequency of EPP ap-
peared to be female experience: al of the females in
our sample that returned to breed on a territory that
they had used in the previous year obtained EPFs, re-
gardless of their proximity to neighbors. Conversely,
less than half of the inexperienced females had EPY
in their broods. Most surprising was the fact that ex-
perienced males that were paired with a former mate
(i.e., both partners bred on the same territory and with
each other) frequently lost paternity, even of entire
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broods. It is our view that experienced females, be-
cause they knew the locations of males in the sur-
rounding landscape from the previous year, were able
to obtain EPCs with little difficulty. The alternative
interpretation of our data, that experienced females
were more likely to suffer unwanted EPCs than inex-
perienced females, seems most unlikely. We therefore
propose that experienced female kingbirds sought and
obtained copulations from extra-pair males.
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