
Portland State University Portland State University 

PDXScholar PDXScholar 

Computer Science Faculty Publications and 
Presentations Computer Science 

1993 

A Study of Dynamic Optimization Techniques: A Study of Dynamic Optimization Techniques: 

Lessons and Directions in Kernel Design Lessons and Directions in Kernel Design 

Calton Pu 
Oregon Graduate Institute of Science & Technology 

Jonathan Walpole 
Oregon Graduate Institute of Science & Technology 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac 

 Part of the Computer and Systems Architecture Commons, and the Systems Architecture Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Pu, Calton and Walpole, Jonathan, "A Study of Dynamic Optimization Techniques: Lessons and Directions 
in Kernel Design" (1993). Computer Science Faculty Publications and Presentations. 78. 
https://pdxscholar.library.pdx.edu/compsci_fac/78 

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer 
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if 
we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/78
https://pdxscholar.library.pdx.edu/compsci_fac/78?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


A Study of Dynamic Optimization Techniques: 

Lessons and Directions in Kernel Design 


Calton Pu and Jonathan Walpole 

Department of Computer Science and Engineering 

Oregon Graduate Institute of Science & Technology 


P.O. Box 91000 

Portland, OR 97291-1000 


{calton.walpole}~cse.ogi.edu 

Technical Report No. OGI-CSE-93-007 

Abstract 

The Synthesis kernel [21,22,23,27,28] showed that dynamic code generation, software feedback, 
and fine-grain modular kernel organization are useful implementation techniques for improving the 
performance of operating system kernels. In addition, and perhaps more importantly, we discov­
ered that there are strong interactions between the techniques. Hence, a careful and systematic 
combination of the techniques can be very powerful even though each one by itself may have serious 
limitations. By identifying these interactions we illustrate the problems of applying each technique 
in isolation to existing kernels. We also highlight the important common under-pinnings of the 
Synthesis experience and present our ideas on future operating system design and implementation. 
Finally, we outline a more uniform approach to dynamic optimizations called incremental partial 
evaluation. 

http:calton.walpole}~cse.ogi.edu


1 Introduction 

Historically, measures of throughput have formed the primary basis for evaluating operating sys­
tem performance. As a direct consequence, many operating system implementation techniques 
are geared towards optimizing throughput. Unfortunately, traditional approaches to improving 
throughput also tend to increase latency. Examples include the use of large buffers for data 
transfer and coarse-grain scheduling quanta. This approach was appropriate for the batch pro­
cessing model of early computer systems. Today's interactive multimedia computing environments, 
however, introduce a different processing model that requires different performance metrics and 
implementation techniques. 

The new computing model is one in which data is transferred in real-time between I/O devices, 
along a pipeline of system and application-level computation steps. In this interactive environment, 
applications are primarily concerned with "end-to-end" performance, which is determined not only 
by operating system throughput, but also by the magnitude and variance of the latency intro­
duced at each step in the pipeline. Reducing and controlling end-to-end latency, while maintaining 
throughput, in this "pipelined" environment, is a key goal for next-generation operating systems. 

In contrast to the totally throughput-oriented implementation techniques of conventional op­
erating systems, the Synthesis kernel sought to investigate dynamic optimization techniques that 
would provide lower and more predictable latency as well as improving throughput. In particular, 
Synthesis incorporates dynamic code generation to reduce the latency of critical kernel functions, 
and software feedback to control the variance in latency introduced by the operating system's 
resource scheduling policies. 

Our experience with Synthesis showed these dynamic optimization techniques to be interesting 
and useful in their own right. However, the more important kernel design lessons we learned from 
the project relate to the interactions between the techniques used in Synthesis, and their relationship 
to more traditional kernel design approaches. By focusing on those lessons this paper makes the 
following contributions: (1) it discusses the interaction between fine grain modularity, dynamic 
code generation and software feedback, (2) it identifies the difficulties in applying each of these 
techniques in isolation to traditional operating systems, and (3) it explains the implementation­
related limitations of Synthesis and outlines how we plan to overcome them in our new research 
project. 

The paper is organized as follows. Section 2 motivates the need for dynamic optimization tech­
niques by outlining some key performance challenges for next generation operating systems. Two 
of these techniques, dynamic code generation and software feedback, are summarized in sections 3 
and 4 respectively, together with their advantages and problems. Section 5 discusses a more uniform 
methodology to address the problems in Synthesis. Section 6 outlines related work and Section 7 
concludes the paper. 

2 Performance Challenges 

The advent of interactive multimedia computing imposes strict new requirements on operating 
system performance. In particular, next-generation operating systems must support the processing 
of real-time data types, such as digital audio and video, with low end-to-end latency and high 
throughput. The emerging model of computation is one in which real-time data enters the system 
via an input device, passes through a number of kernel and application processing steps, and is 
finally presented, in real-time, at an output device. In this environment, system performance is 
determined in large-part by the throughput and total end-to-end latency of this pipeline. 

As multimedia applications and systems become more complex, the number of steps in the 
pipeline will increase. It is important that the addition of new steps in the pipeline does not cause 
significant increases in the end-to-end latency or decreases in throughput. This problem is a key 

1 




challenge for operating system designers. 
If operating systems implement data movement by buffering large amounts of data at each 

pipeline stage, and process it using correspondingly large CPU scheduling quanta, then adding 
pipeline elements will lead to undesirable increases in end-to-end latency. An alternative approach 
is to implement data movement and processing steps at a fine granularity, perhaps getting finer as 
the number of pipeline steps increases. This approach has traditionally not been taken because it 
does not allow operating system overhead, incurred during operations such as context switching, 
data transfer, system call invocation, and interrupt handling, to be amortized over large periods of 
useful work. Rather than focusing on amortizing these costs at the expense of end-to-end latency, 
we suggest that next generation operating systems must resolve the problem directly, by reducing 
the cost of these fundamental operating system operations. 

The need for new design approaches is exacerbated by the trend towards microkernel-based 
operating systems. Such systems implement operating system functionality as a collection of coarse­
grain server modules running above a minimal kernel. While this structuring approach has many 
well-publicized advantages, current implementations of it tend to lead to an increase in the cost of 
invoking operating system functions in addition to increasing the number of expensive steps in the 
pipeline. 

Finally, the necessary process of emulating existing monolithic operating systems above micro­
kernel-based operating systems makes the problem even worse. Current approaches to implement­
ing emulation, such as redirecting system calls to user-level emulation libraries before invoking 
operating system function, introduce additional latency for kernel calls [16]. This in turn leads to 
unwanted increases in end-to-end latency for interactive real-time applications. Again, there are 
many important and well-accepted reasons for supporting emulation, e.g., utility and application 
software compatibility. What is needed are new implementation techniques to support it more 
efficiently. 

In summary, next-generation operating systems, which are likely to be more modular and have 
multiple emulated interfaces, must provide support for very low-overhead data movement over long 
pipelines and control-flow transfer through many layers of software. This requirement has a major 
impact on the implementation of key operating system functions such as buffer management, inter­
rupt handling, context switching, and system call invocation. They must also provide predictable 
real-time resource scheduling to support multimedia applications. Each of these areas has been 
well explored within the bounds of traditional kernel implementation approaches. The Synthesis 
kernel, however, departs from traditional approaches by making extensive use of the following two 
dynamic optimization techniques: 

• dynamic code generation - to reduce the latency of common kernel functions, and 

• software feedback for adaptive resource scheduling with predictable variance in latency. 

Each of these techniques has been described in detail in our earlier papers [22, 23, 28}. Therefore, 
with a brief introduction of the ideas, the following sections focus on the key lessons we learned 
from their application in Synthesis. 

3 Dynamic Code Generation 

3.1 The Techniques and Uses 

Dynamic code generation is the process of creating executable code, during program execution, for 
use later during the same execution. The primary advantage of creating code dynamically, rather 
than at compile time, is that more information about the ultimate execution context is available to 
the code generation and optimization process. Consequently, more efficient code can be obtained. 

2 




The primary concern is that dynamic code generation is an on-line process carried out during 
run-time, in contrast to off-line compile-time code generation. Hence, only carefully selected low 
overhead optimization techniques can be applied, since the cost of run-time code generation may 
outweight its benefits. The code generation techniques used in Synthesis are divided into three 
groups: factoring invariants, collapsing layers, and executable data structures. 

Factoring invariants is a special case of partial evaluation, that applies optimization techniques 
analogous to constant folding and constant propagation. The main difference is that Synthesis 
bypasses costly run-time data structure traversals in addition to constant folding. For a more 
efficient implementation of factoring invariants, pre-compiled templates that have already been 
optimized are used whenever possible. A good example of factoring invariants is the file system 
open call, which returns a critical path of a few dozen machine instructions that are used later by 
the calling thread to read/write that specific file [28]. In this case, the invariants are the thread 
requesting access, the file descriptor, and the file usage parameters. 

Collapsing layers addresses the performance problem introduced by the increasingly popular 
abstract layered interfaces for systems software. Normal implementations fall into a difficult trade­
off: either they implement each level separately for efficiency (resulting in untenable development 
and maintenance costs) or they compose lower layers to implement a high level (with heavy overhead 
at high levels). Collapsing layers is analogous to a combination of in-line macro expansion with 
constant folding. When a high-level function calls a lower level procedure, the code is expanded 
in-line. This inUning eliminates unnecessary barriers (the source of most data copying), allowing 
controlled and efficient data sharing by all the layers. An example of collapsing layers is the 
networking protocol stack [24]. A virtual circuit can allocate message buffer space at the top level 
and share it with the lower levels without additional copying. The Unix emulator in Synthesis also 
uses collapsing layers to reduce kernel call emulation cost [21]. 

Executable data structures are data structures (usually with fixed traversal order) optimized 
with embedded code to reduce interpretation overhead. Although this technique only saves a few 
instructions at a time, the savings are significant when the total number of instructions executed 
during each traversal step is small. This technique is especially useful when the work done on each 
data element is also small compared to the traversal cost. The Synthesis run queue, composed 
of thread table elements, is an example of an executable data structure [20]. At thread creation 
time, each element is optimized to reduce context switch cost. The pointer to the next thread, for 
example, serves as the destination of a jump instruction to eliminate address load overhead. 

3.2 Performance Benefits 

Many of the performance measurements on Synthesis were made on an experimental machine (called 
the Quamachine). Although the measured numbers on the Quamachine represent the compounded 
effects of custom software (the Synthesis kernel) and hardware, an effort was made to compare 
Synthesis performance fairly with that of an existing operating system kernel. We summarize here 
a comparison reported earlier [21]. 

The Quamachine was fitted with a Motorola 68020 CPU running at 16 MHz and memory speed 
comparable to a SUN-3/160, which has a 68020 processor at 16.67 MHz. Test programs were 
compiled under SUNOS 3.5 and the same executable run on both the SUN and the Quamachine 
with a partial Unix emulator on Synthesis. A validation program establishes that the two machines 
have comparable hardware (note that the test environment actually favors SUNOS performance). 
Figure 1 illustrates the performance improvements for pipe and file access obtained using Synthesis 
when running the same executable on equivalent hardware. 1 Reading and writing a pipe, 1 byte 
at a time, shows very high SUNOS overhead relative to Synthesis (56 times). Note, however that 
Synthesis also improves on SUNOS performance when reading and writing a pipe 4 kilobytes at a 

extracted from Table 1 of [21]. 

3 




------------- ------- ---------- ------

Test Program SUN Synthesis Speed Synthesis Loops 
Description runtime Emulator Ratio throughput in prog 

Validation 20.3 21.42 0.95 500000 
R/W pipe 1 Byte 10.0 0.18 56. 100KB/sec 10000 
R/W pipe 4 KB 37.9 9.64 3.9 8MB/sec 10000 
R/W RAM file 20.6 2.91 7.1 6MB/sec 10000 

Execution time for complete programs, measured in seconds. Each program 
repeatedly executes the specified system calls (the left column). The validation 
program contains only user level memory location references. 

Figure 1: Comparison of Synthesis and SUNOS I/O Performance 

time (almost 4 times). 
A more recent experiment [20] illustrates the relative I/O latency for Synthesis and two widely 

used commercial operating systems. The Synthesis window system on the Sony 1860 NEWS work­
station can finish cat /etc/termcap in 2.9 seconds, while X Windows (BSD Unix) takes 23 seconds 
and NextStep (a derivative of Mach) with similar hardware takes 55 seconds. Since dynamic op­
timization breaks down barriers between the kernel and server, this is not intended to be a direct 
comparison between systems. Nevertheless, while such high-level benchmarks do not isolate the 
specific benefits of each individual optimization (for example, the window system uses both dynamic 
code generation and software feedback, explained in Section 4.1), they do demonstrate the potential 
power of the combination of techniques used in Synthesis. Furthermore, sections 3.3 and 4.2 show 
not only that the various optimization techniques used in Synthesis are inter-dependent, but also 
that the interactions among them are very important. Hence, it is not appropriate, or particularly 
informative, to measure them in isolation. 

3.3 Interaction With Other Ideas 

Although dynamic code generation is intuitively appealing, it is not naively applicable in any 
operating system kernel. Several conditions must be met for dynamic code generation to have a 
high payoff. The first necessary condition is an encapsulated kernel, Le., an abstract kernel interface 
that hides implementation details. Dynamic code generation wins when pieces of the kernel can be 
replaced with more specialized versions. The scope for this type of dynamic replacement is severely 
restricted when kernel data structures are visible at the user level, since computations are often 
specialized by replacing data structures. The core Unix file system kernel calls such as read and 
write are good examples of an abstract interface, but nlist, which examines the name list in an 
executable directly, is not. This is the first important lesson from Synthesis. 

Lesson 1 An abstract kernel interface is essential for any substantial performance optimization 
based on dynamic code generation. 

This requirement is in contrast to conventional operating system kernel design approaches in 
which direct access to kernel data structures is viewed as a short cut and a low overhead way 
to obtain system information. The prevalence of this approach in monolithic operating system 
kernels makes an extensive application of dynamic code generation very difficult. For example, 
Unix /dev/klnem and MVS Control Vector Table make it impossible to optimize context switch 
without breaking a large number of system utilities. 

4 



The second necessary condition is a fine-grain modular organization of the kernel. Typically, 
dynamic code generation manipulates encapsulated objects and small independent code fragments 
with specific function. Note that this level of modularity is orthogonal to the modularity intro­
duced by most microkernels where modularity is defined by microkernel and server boundaries. 
Individually, microkernels and their servers are significantly smaller than a monolithic operating 
system, however these modules are still too large and complex for the purposes of dynamic code 
generation. In particular, when data structures are shared among many functions within a server it 
becomes difficult to specialize individual functions, independently of the other functions. In other 
words, the shared data structure creates a dependency between the implementations of the func­
tions that share it. Consequently, dynamic code generation gains effectiveness and applicability as 
the granularity of kernel modules is refined. This is the second important lesson from Synthesis. 

Lesson 2 Fine-grain modularity within the kernel significantly increases the scope for performance 
optimization. 

This approach to kernel structure takes the evolution from monolithic systems to microkernels 
one step further. It also explains the difficulty in applying dynamic code generation extensively 
to microkernels modularized solely at server and kernel boundaries. The internal dependencies in 
such coarse-grain modules limit the potential benefits of applying dynamic code generation. 

Lessons one and two led to the "objectification" of the Synthesis kernel [27, 20J. In the current 
version of Synthesis, the kernel is composed of small encapsulated modules called quajects. For 
example, queues, buffers, threads and windows are considered basic quajects since they support 
some kernel calls by themselves. Composite quajects provide high level kernel services such as a 
file system. The implementation of quajects in Synthesis does not rely on language support such as 
type checking or inheritance. Nevertheless, particular attention was paid to the interface between 
quajects as well as the kernel interface, which is completely encapsulated and operational. This 
allows several specialized kernel routines to run under the same kernel call interface. Although the 
Synthesis implementation is minimally sufficient for the degree of fine-grain modularity required for 
dynamic code generation, Section 5.2 discusses the kind of language support needed for a fine-grain 
modularization of kernels. 

3.4 Important Questions 

The Synthesis kernel has shown that dynamic code generation can produce significant performance 
improvements [21, 23, 20J. In this sense, the Synthesis project was useful as a proof of concept for 
the application of dynamic code generation in operating systems. However, the focus on dynamic 
code generation required hand-coded optimizations written in macro-assembler. The important 
issues of high level programming language support for dynamic code generation and the definition 
of a clear programming methodology were left out of Synthesis. This section discusses some of 
the difficulties associated with this ad hoc implementation of dynamic code generation. Section 5 
discusses more recent research that focuses on incorporating dynamic code generation into a more 
integrated and well defined systems programming approach. 

The lack of high level programming language support for dynamic code generation and interface 
description introduces a number of difficulties which impact issues such as portability, debuggability, 
and correctness. For example, since the current approach does not allow invariants to be described 
explicitly, it becomes difficult to reason about the validity of an optimized piece of code which has 
been generated dynamically by factoring invariants. A key problem is that the code generator must 
ensure that the invariants used for optimization hold for the duration of code execution. If any 
invariant is violated, the situation must be corrected by re-synthesizing code. Without support for 
explicit descriptions of invariants, such consistency checks become implicit in the code and make 
program maintenance, porting, and debugging more difficult. A similar problem arises when opti­
mization parameters and goals are not described explicitly. The general difficulties outlined above 

5 




appear in different concrete situations in Synthesis. For instance, Synthesis pays careful attention 
to cache management, particularly instruction and data cache consistency when generating code 
dynamically. However, cache-related invariants and optimization parameters remain completely 
implicit in the kernel code. 

While we believe that systems based on dynamic code generation can be portable, it is clear 
that Synthesis' current implementation of dynamic code generation makes it difficult to preserve 
performance optimizations when porting. On the one hand, the extensive use of macro-assembler 
has allowed the kernel to be ported to a family of machines (Synthesis has been ported from an early 
68010 to 68020 and then Sony's workstation with 68030). On the other hand, however, machine 
specific optimizations remain implicit in the kernel code. This is an insidious problem because the 
performance gains due to these optimizations are easily lost when porting to different machines. 
Note that this is a problem in the current implementation, not an inherent limitation of dynamic 
code generation. In section 5 we discuss how this problem can be addressed in future systems. 

Finally, debugging dynamically generated code is a well recognized problem. However, there 
is an important distinction between our approach to dynamic code generation and traditional 
self-modifying code. In Synthesis, once generated, an execution path remains unchanged, Le., 
code is not updated in place. Technically, when a fragment of code is generated or updated, it 
is not immediately put in the execution path. In addition to programming/debugging, this is a 
precaution taken to avoid performance penalties due to instruction cache invalidation. From this 
perspective, debugging dynamically generated code is similar to debugging object-oriented systems 
where objects may be created at run-time. Other projects in the operating system domain, such 
as the x-kernel, have similar characteristics. 

Within the limitations of a kernel written in macro-assembler, Synthesis offers significant de­
bugging aids. The Synthesis kernel contains a symbol table as part of its dynamic linking module, 
which is used to allow symbolic references to memory addresses. The kernel also contains a powerful 
monitor that supports breakpoints, instruction tracing, a disassembler, and an on-line compiler for 
a subset of C. Although the Synthesis kernel was not production quality software, several talented 
project students were able to understand it, modify it, and extend it using the kernel monitor [24]. 
Nevertheless, from a software engineering point of view, the problem of debugging executable code 
for which no source code exists remains a challenge. 

4 Software Feedback 

4.1 The Technique, Uses, and Benefits 

Feedback mechanisms are well known in control systems. For example, phase-locked loops imple­
mented in hardware are used in many applications including FM radio receivers. The intuitive idea 
of feedback systems is to remember the recent history and predict the immediate future based on 
the history. If the input stream is well behaved and the feedback memory sophisticated enough to 
capture the fluctuations in the input, then the feedback system can "track" the input signals within 
specified limits of stability (maximum error between predicted and actual input) and responsiveness 
(maximum elapsed time before error is reduced during a fluctuation). 

Most control systems work in a well-understood environment. For example, the frequency 
modulation in FM radio transmission is very regular. In fact, a truly random input stream cannot 
be tracked by any feedback system. For a specified degree of stability and responsiveness, the 
complexity of a feedback system depends on the complexity of the input stream. The more regular 
an input stream is, the less information the feedback mechanism needs to remember. 

Software implementations of feedback mechanisms are used in Synthesis to solve two problems: 
fine-grain scheduling [22] and scheduling for real-time I/O processing. 

A serious problem in the SUNOS adaptive scheduling algorithm [3] is the assumption that 

6 




all processes are independent of each other. In a pipeline of processes, this assumption is false 
and the resulting schedule may not be good. Fine-grain scheduling was introduced in Synthesis 
to solve this problem. In Synthesis, a producer thread is connected to a consumer thread by a 
queue. Each queue has a small feedback mechanism that watches the queue's content. If the queue 
becomes empty, the producer thread is too slow and the consumer thread is too fast. If the queue 
becomes full, the producer is too fast and the consumer too slow. A small scheduler (specific to the 
queue) then adjusts the time slice of the producer and consumer threads accordingly. A counter 
that is incremented when queue full and decremented when queue empty shows the accumulated 
difference between producer and consumer. Large positive or negative values in the counter suggest 
large adjustments are necessary. The goal of the feedback-based scheduler is to keep the counter at 
zero (its initial value). Since context switches carry low overhead in Synthesis, frequent adjustments 
can adapt to the varying CPU demands of different threads. 

Another important application of software feedback is to guarantee the I/O rate in a pipeline 
of threads that process high-rate real-time data streams, as in next-generation operating systems 
supporting multimedia (section 2). A Synthesis program [20] that plays a compact disc simply reads 
from I dey I cd and writes to I deyI speaker. Specialized schedulers monitor the data flow through 
both queues. A high input rate from CD will drive up the CPU slice of the player thread and allow 
it to move data to its output buffer. The result is a simple read/write program and the kernel takes 
care of CPU and memory allocation to keep the music flowing at the 44.1 KHz CD sampling rate, 
regardless of the other jobs in the system. Because of the adaptiveness of software feedback, the 
same program works for a wide range of sampling rates without change to the schedulers. 

In addition to scheduling, another example of software feedback application is in the Synthesis 
window system mentioned in Section 3.2. It samples the virtual screen 60 times a second, the 
number of times the monitor hardware draws the screen. The window system only draws the parts 
of the screen that have changed since the last hardware update. If the data is arriving faster than 
the screen can scroll it, then the window bypasses the lines that "have scrolled off the top". This 
helped reduce the cat letc/termcap run-time from a 3.4 seconds calculated cost (multiplying the 
text length by unit cost) to the actually measured 2.9 seconds. 

4.2 Interaction With Other Ideas 

One of the fundamental problems with feedback mechanisms in general is that their complexity 
and cost increases with the complexity in the input signal stream. For this reason, it is generally 
not a good idea to provide a single implementation of a general-purpose feedback algorithm with 
a wide range of applicability, because it will be too expensive for the majority of input cases that 
are relatively simple. Furthermore, in the few cases where the input stream is even more complex 
than anticipated, the algorithm breaks down anyway. 

Synthesis uses dynamic code generation to synthesize a simple and efficient software feedback 
mechanism that is specialized for each use. In addition, dynamic code generation is not limited 
to the simplification of the feedback mechanism. It also dynamically links the feedback into the 
system. For example, when monitoring the relative progress of processes in a pipeline, a counter­
based mechanism can be used to monitor queue length. However, the fine-grain scheduler still needs 
to adjust the time slices of neighboring threads based on this information. Dynamic code generation 
links the local scheduler directly to the producer and consumer thread table entries, avoiding the 
thread table traversal overhead when adjustments are desired. This is the third important lesson 
from Synthesis. 

Lesson 3 Software feedback requires dynamic code generation to be practical. 

Given the difficulties with applying dynamic code generation (lessons 1 and 2 in section 3.3), it 
is easy to see that it would be difficult to apply software feedback extensively in existing systems. 

7 




The success of software feedback in Synthesis also depends heavily on the fine-grain modular 
structure of the kernel. Each of the kernel's fine-grain modules (quajects) has a relatively simple 
input domain. This simplicity allows the feedback mechanism to be small and efficient. For example, 
one software feedback mechanism is used for each queue in a pipeline to manage two directly related 
threads, instead of using a global scheduler to control many threads. Software feedback is much 
more difficult to apply to relatively coarse-grain modules, such as microkernels and their servers, 
because the input stream for each coarse-grain module is considerably more complex than those of 
Synthesis quajects. This is the fourth important lesson from Synthesis. 

Lesson 4 Fine-grain modularity enables the application of simple software feedback mechanisms. 

4.3 Important Questions 

Although software feedback mechanisms have been used successfully in Synthesis, many important 
research questions remain unanswered. First, our approach was entirely experimental. Unlike in 
control theory where feedback mechanisms are well understood and their behavior characterized 
in detail, the theoretical foundations of software feedback have yet to be established. The reason 
for postponing the theoretical work is that the applicability of classical analysis is restricted to 
relatively simple domains, such as linear systems. In systems software, small embedded systems 
may be amenable to such analysis. General operating system environments, in contrast, are subject 
to unpredictable input fluctuations and thus classical analysis (or theoretical work with similar 
constraints) is of limited value. 

On the experimental side, the scope of our contribution is restricted, so far, to the specific 
software feedback mechanisms developed in Synthesis. These mechanisms have been developed 
and optimized manually. Consequently, the design and implementation of new software feedback 
mechanisms for a different application is not an easy task. In addition, the software feedback 
mechanisms used in Synthesis have been tuned, and their parameters chosen, experimentally. There 
is no explicit testing of feedback stability or responsiveness for the cases input signal fluctuations 
exceed the specifications. For this reason, Synthesis feedback mechanisms tend to be conservative, 
having high stability even if this implies a somewhat slower response rate. 

Another area of research that remained unexplored in Synthesis is the combination of software 
feedback with other approaches to guaranteeing levels of service and managing overload. For 
example, in systems where quality of service guarantees are important, resource reservation and 
admission controls have been proposed and used. During periods of fluctuating, medium to high, 
system load such approaches can become too conservative, resulting in excessive reservation of 
resources and unnecessary admission test failures. Software feedback, on the other hand, is a 
means for implementing adaptive resource management strategies that are very efficient during 
periods when resources are not saturated. In areas such as multimedia computing and networking 
where high data rates and strict latency requirements stress resources to the limits, efficiency and 
real-time service guarantees become critical. 

5 A More Uniform Approach 

5.1 A Next Generation Operating System Kernel 

Synthesis showed that dynamic optimization techniques can be usefully added to the kernel devel­
oper's toolkit. Although dynamic code generation and software feedback borrow techniques devel­
oped in completely different areas, the former from compilers and the latter from control systems, 
they solve similar problems in an operating system kernel. Both gather information at runtime, 
one on state invariants and the other on program performance, to lower the execution overhead of 
the kernel. Both give the Synthesis kernel the ability to adapt to environmental changes: dynamic 

8 




code generation provides coarse grain adaptation since invariants do not change often, and software 
feedback supports fine grain adaptation since it monitors changes continually. Both techniques are 
desirable in an operating system kernel, however, the problems enumerated in sections 3.4 and 4.3 
remain to be solved. 

Despite the apparent commonality in the underlying principles, the implementation and devel­
opment of Synthesis fell short of defining a new kernel development methodology that applies these 
techniques in a uniform way. At the Oregon Graduate Institute, in collaboration with Charles Con­
sel, we are developing a uniform programming methodology for next-generation operating system 
kernels, based on theoretical foundations in partial evaluation [12}. The approach, called incremen­
tal partial evaluation [13}, applies partial evaluation repeatedly, whenever information useful for 
optimization becomes available in the system. Dynamic code generation in Synthesis can be seen 
as a concrete illustration of this general approach. Section 5.2 presents an overview of incremental 
partial evaluation. 

To improve system adaptiveness we will make extensive use of software feedback for resource 
management. Instead of custom building each feedback mechanism, as was the case in Synthesis, we 
will construct a toolkit from which many software feedback mechanisms can be derived. Section 5.3 
outlines the components of such a toolkit. 

The commonality between each of these techniques, and their interaction with modular kernel 
design, is discussed in section 5.4. As mentioned in lessons 1 through 4, the ideas used in Syn­
thesis are not easily applied to conventional kernel designs, especially not in isolation. Therefore, 
section 5.5 discusses the potential of our new approach to integrate techniques and hence, aid in 
their application to existing systems. 

5.2 Incremental Partial Evaluation 

Incremental partial evaluation can be divided into three parts: explicit invariant definition, incre­
mental code generation, and dynamic linking. Kernel functions are defined in an abstract interface. 
At the top level of design, each function is implemented by a general algorithm, similar to tradi­
tional operating system kernels. The difference is that incremental partial evaluation hierarchically 
subdivides the input domain of the function by identifying and making explicit the invariants that 
lead to code optimization. For example, the creation of a thread and the opening of a file generate 
important invariants for the file read function when applied to that file in that thread. As these 
invariants become true at runtime, incremental partial evaluation uses them to incrementally opti­
mize and generate code, a process called specialization. When the specialization process ends, the 
pieces are dynamically linked together and the execution path is ready for invocation. 

Concretely, an operating system kernel using incremental partial evaluation is a hierarchical or­
ganization of multiple implementations for each function. At the top level we have the most general 
implementation for the entire input domain. At each level down the hierarchy, the implementations 
are for a sub domain of the input space and hence contain a simpler, faster execution algorithm. 
In order to achieve better performance on a specific architecture, the specialization at the lower 
levels can become increasingly architecture-dependent. This approach does not reduce portability, 
however, because the algorithms at the high level remain abstract and portable, i.e., the approach 
preserves the portability of operating system kernel code while allowing architecture-specific opti­
mizations. Also, specializations that depend on particular architectures are clearly identified and 
isolated at the low levels of this implementation hierarchy. 

Another important goal in incremental partial evaluation research is the application of auto­
mated specialization techniques, particularly on-line partial evaluation, to implement the hierarchy 
of multiple implementations. Automated specialization is usually abstract enough to be portable 
across different architectures. However, we do not rule out hand-written specialized implementa­
tions for two reasons. First, some critical paths in an operating system kernel may require hand 
tuning by the best programmer available. Second, new architectures may contain new instructions, 

9 




memory mappings, and other facilities that existing automated procedures do not know about. For 
example, a simple but important function is data movement, commonly known as bcopy, which has 
several possible implementations, each with peculiar performance results for different situations. 
Therefore, we anticipate the usefulness of hand specialization for the foreseeable future. 

A third goal in the incremental partial evaluation approach is to make synchronization primitives 
efficient and portable. Since we are building an operating system kernel for parallel and distributed 
systems, efficient synchronization is fundamental. In Synthesis, lock-free synchronization [20] was 
adopted and implemented with the compare-and-swap instruction. Since the compare-and-swap 
instruction is not available on all processor architectures, the portability of the synchronization 
mechanism is a serious question. We plan to adopt an abstract lock-free synchronization mecha­
nism, such as transactional memory [17], and then use incremental partial evaluation to select an 
appropriate implementation of it using the facilities available on the target hardware platform. 

We are in the process of defining high-level programming language support for incremental 
partial evaluation. To the kernel programmer, it will help by supporting modularity, strong typing, 
and well-defined semantics for automatic incremental partial evaluation, plus a systematic way to 
develop and maintain the hierarchy of multiple implementations. The necessary support includes 
the explicit definition of invariants, automated generation of guard statements to detect the breaking 
of an invariant, and support for the composition of specialized modules for dynamic linking. 

A natural interface to specialized code in incremental partial evaluation would distinguish be­
tween abstract types and concrete types (as in Emerald [4]). Multiple implementations can be seen 
as the concrete types supporting the same abstract type. The invariants distinguish the concrete 
types and describe their relationship to each other in the implementation hierarchy. From this 
point of view, the hierarchy of multiple implementations is the symmetric reverse of inheritance. 
In a traditional object-oriented class hierarchy, subclasses inherit and generalize from a superclass 
by expanding its input domain. In dynamic optimization, each lower level in the implementation 
hierarchy specializes the implementation above it by restricting its input domain through some 
invariant. 

5.3 Software Feedback Toolkit 

Section 4.3 discussed the limitations of the Synthesis implementation of software feedback. To 
address these problems, we are developing a toolkit. This approach is analogous to the composi­
tion of elementary components, such as low pass, high pass, integrator, and derivative filters, in 
linear control systems. By composing these elements, the resulting feedback system can achieve a 
predictable degree of stability and responsiveness. 

The software feedback toolkit is divided into three parts. First, interesting filters will be imple­
mented in software. For example, low pass and band pass filters can be used in stabilizing feedback 
against "spikes" in the signal stream. Other filters can help in the scheduling of real-time tasks by 
incorporating the notion of priority, or value. Fine-grain schedulers can use a composition of these 
filters to achieve the desired stability and responsiveness given a well- behaved input stream. 

To support this mode of construction, the toolkit provides a program that composes elementary 
filters to generate an efficient software implementation of a feedback mechanism, given a specifi­
cation of the input stream. This program should run both off-line, to apply the full range of 
optimization techniques, as well as on-line, to support the regeneration of feedback mechanisms 
when the original specifications are exceeded. Note that this on-line version will utilize the same 
dynamic code generation techniques described earlier. 

Finally, the toolkit will contain a set of test modules that observe the input stream and the 
feedback mechanism itself. When the input stream exceeds the specifications, or when the feedback 
is deemed unstable, a new feedback mechanism is generated dynamically to replace the "failed" 
one. Because a rigorous theoretical foundation for the application of software feedback does not 
exist yet, these tests are essential for protecting the overall stability of the system. Note that even 

10 



Software Feedback (section 5.3) I Emulation (section 5.5) 

I Incremental Partial Evaluation (section 5.2) I 

Fine-Grain Modularity/Abstract Kernel Interface (section 5.4) 

Figure 2: Techniques and Their Interaction 

in control theory, composition, without testing, is guaranteed to work only for linear systems. In 
an open environment, such as a general-purpose operating system, there is no guarantee that the 
system behavior will remain linear, or bounded in any way. Therefore, even with a good theoretical 
understanding of the feedback mechanism, some form of test is necessary. 

This toolkit should dramatically improve the ease with which software feedback mechanisms 
can be constructed and deployed in an operating system kernel. In this sense, the toolkit serves 
a similar role to the programming language support for incremental partial evaluation described 
above: both are tools that provide structured support for dynamic optimization. 

5.4 Commonality Among Techniques 

There are some striking similarities between the organization and use of the support mechanisms for 
software feedback and incremental partial evaluation. Both techniques achieve dynamic optimiza­
tion by making assumptions about invariants. The test modules in the software feedback toolkit 
have an identical function to the invariant guards in incremental partial evaluation: both recognize 
when invariant-related assumptions are no longer valid. The effect of triggering both mechanisms 
is also similar: they both result in regeneration of new code. In the software feedback case a new 
feedback mechanism is generated to handle the new range of input stream values (which can be 
viewed as a new invariant). In the case of incremental partial evaluation a new code template is 
instantiated using new invariant-related information. 

Despite these similarities, however, the two techniques are applicable in different circumstances. 
Where very fast response is needed, or where parameters change quickly, frequent code regeneration 
becomes too expensive. In these cases, a software feedback mechanism must be used that can adapt 
dynamically within the anticipated range of input stream values. Adaptation, via feedback, within 
this range is dramatically cheaper than adaptation, via code generation, outside the range. For 
this reason, software feedback is appropriate for highly volatile situations in which a small number 
of parameters change frequently but over a small range. In the less frequent cases where the 
input range is exceeded dynamic code generation is used to regenerate a new specialized feedback 
mechanism. 

For other kernel modules involving infrequent parameter changes, dynamic code generation is 
more appropriate. Finally, if parameters are fixed or known prior to runtime, automatic or hand­
coded off-line optimization techniques can be used. This wide range of optimization techniques 
has a common conceptual basis: the ability to identify invariants and localize the effects of imple­
mentation changes. Consequently, the requirements for an abstract kernel interface and fine-grain 
modular kernel structure are at the foundation of this approach. These dependencies are illustrated 
in Figure 2. 

Note that the interdependence between layers in Figure 2 is mutual. Not only are the optimiza­
tion techniques dependent on modularity, they also offer the key to implementing highly modular 

11 



- -Monolithic 

Kernels 


(e.g., UNIX) 


888 
.-----------------~ 

0 0 0 0 0 0 0 0 0 
Microkernels 

i Fine-Grain Modules (e.g., Mach) 
10°0°0°0°0 

1970's 1980's 1990's 

Figure 3: Evolution of Operating System Kernels 

kernels efficiently. Without dynamic optimization, the overhead of a layered system design increases 
with the number of layers. The performance degradation of this approach tends to be worse than 
linear because layers tend to encapsulate functionality, hiding optimization-related information that 
could be utilized by higher layers. 

Furthermore, a key tenet of systems design, "optimize for the most common case," breaks down 
since the growing complexity of the system at the top eventually defeats such optimizations imple­
mented at the bottom. Note that dynamic optimization techniques allow an important extension 
of this principle. Rather than optimizing for a single case, dynamic optimization techniques allow 
a number of potentially common cases to be anticipated and the choice of a specialized implemen­
tation to be delayed until runtime, at which point it is possible to recognize the "actual case." If 
the actual case turns out to be one of the anticipated cases an optimized implementation is used. 
Otherwise, invariant guards or test modules cause a more general algorithm to be employed. A 
generalized tenet, therefore, is "optimize for many common cases." This tenet suggests multiple 
implementations, each for its own "common case." A corollary of the generalized tenet is "delay 
committing to a specific implementation as long as possible." This delay narrows down the number 
of possible cases, allowing the most appropriate implementation to be selected. 

5.5 Integration Into Existing Systems 

Figure 3 illustrates an evolution in operating system kernel structure from monolithic kernels, 
through coarse-grain modular kernels (including microkernels), to fine-grain modular kernels. The 
significance of this evolution is that it becomes progressively easier to apply Synthesis-style dynamic 
optimization techniques. 

Moving from the left to the center of Figure 3 represents the introduction of encapsulated 
kernel and server interfaces in systems such as Mach [5], for example. This is the first requirement 
for applying dynamic optimization techniques. Moving from the center to the right of Figure 3 
represents the introduction of fine-grain modularity within the kernel code at the level of objects or 
abstract data types. The most well known systems in this category are Choices [14J and Chorus [2J, 
which use object oriented programming languages and techniques. Other systems in this category 
are discussed in [7, 6J. 

Even in the presence of fine-grain modularity, considerable work must be done to incorpo­
rate dynamic optimization techniques into a kernel. Selected modules must be rewritten using 
incremental partial evaluation and/or software feedback before being reintroduced in the original 
system. This approach can be extended to replace complete coarse-grain modules with new opti­

12 




mized implementations. Full encapsulation is essential to facilitate the reintroduction of these new 
implementations, as is the integration of the toolkit and partial evaluators that must participate 
at runtime. 

This approach of evolving existing systems by systematically replacing encapsulated components 
opens the possibility for performance comparisons using the same underlying hardware and the 
same overlaying application software. In addition, the dynamically optimized modules can be used 
immediately by existing systems. 

6 Related Work 

Many of the individual optimization techniques and kernel structuring ideas discussed in this pa­
per have been studied in other contexts. Coarse-grain modularity has been studied in the context 
of microkernel-based operating systems such as Mach [1], Chorus [33] and V [9]. Mach, for ex­
ample, offers an encapsulated kernel, in which kernel resources and services are hidden behind a 
port/message-based interface [5]. The facilities that allow dynamic linking and loading of servers 
into the address space of a running Chorus kernel are also related to our research in that they allow 
a choice between different implementations of the kernel interface to made dynamically [16]. 

The use of object-oriented programming languages and design approaches has allowed operating 
systems such as Choices [8], Chorus [30], and Apertos [31] to utilize finer-grain modularity within 
their kernel code. The x-kernel [25] also offers relatively fine-grain modularity through its concept of 
micro-protocols. Its use of dynamic linking to compose micro-protocol modules is a good example of 
a dynamic optimization technique, Le., the approach of dynamically constructing a protocol stack 
to better match the required execution context is closely related to the principles that underlie 
Synthesis. 

Dynamic code generation has been used in a number of other research efforts. The Blit terminal 
from Bell Labs, for example, used dynamically optimized bitblt operations to improve display 
update speed [26]. Feedback systems have been discussed extensively in the context of control 
theory. Their application to system software has been focused in two areas: network protocols and 
resource management. In network protocols, feedback has been applied in the design of protocols 
for congestion avoidance [29]. In resource management, feedback has been used in goal-oriented 
CPU scheduling [15]. The principal distinction between Synthesis and these other research efforts 
is that Synthesis has applied these techniques extensively, and in careful combination, in the design 
of an operating system kernel. 

As we start to emphasize a formal approach to dynamic optimization, existing partial evaluation 
work becomes more relevant. Dynamic optimization can benefit from off-line algorithms such as 
binding-time analysis [10] in practical systems [11]. Another related area of research on dynamic 
optimization is on reflection and meta-object protocols [32]. While most of the programming 
languages supporting meta-object protocols are interpreted, there are significant efforts focused on 
building an open compiler with customizable components [18]. An experiment to add reflection to 
C++ [19] resulted in a recommendation to not modify C++ to support reflection. However, much 
of this research could be useful in the support of the dynamic optimization techniques we envision. 

7 Conclusion 

The Synthesis project investigated the use of several interesting structuring and dynamic optimiza­
tion techniques in the implementation of an operating system. Kernel structure was modular at a 
very fine granularity. Runtime optimization was based on two techniques, dynamic code generation 
and software feedback. Both of these dynamic optimization techniques depend heavily on the abil­
ity to encapsulate functionality at a fine granularity. Conversely, dynamic code generation is the 

13 




key to building efficient implementations of highly modular operating systems, since it facilitates 
the collapsing of inter-module boundaries at execution time. Similar synergistic effects exist be­
tween software feedback and dynamic code generation: to be efficient and hence widely applicable, 
software feedback requires dynamic code generation. 

By hand-coding these techniques in a prototype operating system kernel, Synthesis has shown 
that, when used in combination, they can be very powerful. However, the strong interactions and 
inter-dependencies between the techniques have inhibited the direct application of these positive 
results in other systems. An important research challenge, therefore, is to show how the techniques 
demonstrated in Synthesis can be incorporated into production quality operating system kernels. 

This paper represents a concrete step in addressing this challenge. The interactions among the 
techniques are explained, their relationship to other kernel design approaches is discussed, and a 
potential migration path from existing encapsulated kernels is outlined. We also describe new tech­
nology that will facilitate the migration of dynamic optimization techniques into existing systems, 
specifically, a more uniform programming methodology based on incremental partial evaluation and 
a software feedback toolbox. 

Our current research is focused on applying this new programming methodology, in an evo­
lutionary way, to existing operating system kernels. We suggest that a new kernel programming 
approach, such as this, is key to meeting the stringent demands on kernel efficiency that arise in 
modern multimedia computing environments. 

References 

[1] 	 M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A new 
kernel foundation for Unix development. In Proceedings of the 1986 Usenix Conference, pages 93-112. 
Usenix Association, 1986. 

[2] 	 P. Amaral, R. Lea, and C. Jacquemot. A model for persistent shared memory addressing in distributed 
systems. In Proceedings of the Second International Workshop on Object Orientation in Operating 
Systems, pages 2-12, Dourdan, France, September 1992. 

[3] 	 Anonymous et al. SUNOS release 3.5 source code. SUN Microsystems Source License, 1988. 

[4] 	 A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstract types in Emerald. 
IEEE Transactions on Software Engineering, SE-12(12):65-76, January 1987. 

[5] 	 D.L. Black, D.B. Golub, D.P. Julin, R.F. Rashid, R.P. Draves, R.W. Dean, A. Forin, J. Barrera, 
H. Tokuda, G. Malan, and D. Bohman. Microkernel operating system architecture and mach. In 
Proceedings of the Workshop on Micro-Kernels and Other Kernel Architectures, pages 11-30, Seattle, 
April 1992. 

[6] 	 L-F. Cabrera and E. Jul, editors. Proceedings of the Second International Workshop on Object Orien­
tation in Operating Systems, Dourdan, France, September 1992. IEEE Computer Society Press. 

[7] 	 L-F. Cabrera, V. Russo, and M. Shapiro, editors. Proceedings of the International Workshop on Object 
Orientation in Operating Systems, Palo Alto, California, October 1991. IEEE Computer Society Press. 

[8] 	 R.H. Campbell, N. Islam, and P. Madany. Choices, frameworks, and refinement. Computing Systems, 
5(3), Summer 1992. 

[9] 	 D. Cheriton. The V distributed system. Communications of ACM, 31(3):314-333, March 1988. 

[10] 	 C. Conse!. Binding time analysis for higher order untyped functional languages. In ACM Conference 
on Lisp and Functional Programming, pages 264-272, 1990. 

[11] 	 C. Consel. Report on Schism'92. Research report, Pacific Software Research Center, Oregon Graduate 
Institute of Science and Technology, Beaverton, Oregon, USA, 1992. 

14 




[12] C. Consel and O. Danvy. Thtorial notes on partial evaluation. In A CM Symposium on Principles of 
Programming Languages, pages 493-501,1993. 

[13] 	 C. Consel, C. Pu, and J. Walpole. Incremental partial evaluation: The key to high performance, modu­
larity and portability in operating systems. In ACM Symposium on Partial Evaluation and Semantics­
Based Program Manipulation, Copenhagen, 1993. To appear. 

[14] 	 A. Dave, M. Sefika, and R.H. Campbell. Proxies, application interfaces, and distributed systems. In 
Proceedings of the Second International Workshop on Object Orientation in Operating Systems, pages 
212-220, Dourdan, France, September 1992. 

[15] 	 L. Georgiadis and C. Nikolaou. Adaptive scheduling algorithms that satisfy average response time 
objectives. Technical Report TR-RC-14851, IBM Research, August 1989. 

[16] 	 M. Guillemont, J. Lipkis, D. Orr, and M. Rozier. A second-generation micro-kernel based unix: Lessons 
in performance and compatibility. In Proceedings of the Winter Technical USENIX Conference '91, 
Dallas, 1991. 

[17] 	 M. Herlihy and E.B. Moss. Transactional memory: Architectural support for lock-free data structures. 
In Proceedings of the International Symposium on Computer Architecture, San Diego, May 1993. Full 
paper as DEC/CRL TR number CRL-92/07. 

[18] 	 J. Lamping, G. Kiczales, L. Rodriguez, and E. Ruf. An architecture for an open compiler. In Proceedings 
of the International Workshop on New Models for Software l-trchitecture '92, pages 95-106, Tokyo, 
Japan, November 1992. 

[19] 	 P. Madany, P. Kougiouris, N. Islam, and R.H. Campbell. Practical examples ofreificationand reflection 
in c++. In Proceedings of the International Workshop on New Models for Software Architecture '92, 
pages 76-81, Tokyo, Japan, November 1992. RISE, IPA, ACM SIGPLAN. 

[20] 	 H. Massalin. Efficient Implementation of Fundamental Operating System Services. PhD thesis, Depart­
ment of Computer Science, Columbia University, April 1992. 

[21] 	 H. Massalin and C. Pu. Threads and input/output in the Synthesis kernel. In Proceedings of the Twelfth 
Symposium on Operating Systems Principles, pages 191-201, Arizona, December 1989. 

[22] 	 H. Massalin and C. Pu. Fine-grain adaptive scheduling using feedback. Computing Systems, 3(1):139­
173, Winter 1990. Special Issue on selected papers from the Workshop on Experiences in Building 
Distributed Systems, Florida, October 1989. 

[23] 	 H. Massalin and C. Pu. Reimplementing the Synthesis kernel. In Proceedings of Workshop on Micro­
kernels and Other Kernel Architecturs, Seattle, April 1992. Usenix Association. 

[24] 	 Thomas Matthews. Implementation of tcp/ip for the Synthesis kernel. Master's thesis, Columbia 
University, Department of Computer Science, New York City, 1991. 

[25] 	 S. O'Malley and L. Peterson. A dynamic network architecture. ACM Transactions on Computer 
Systems, 10(2):110-143, May 1992. 

[26] 	 R. Pike, B. Locanthi, and J. Reiser. Hardware/software trade-offs for bitmap graphics on the blit. 
Software-Practice and Experience, 15(2):131-151, February 1985. 

[27] 	 C. Pu and H. Massalin. Quaject composition in the Synthesis kernel. In Proceedings of International 
Workshop on Object Orientation in Operating Systems, Palo Alto, October 1991. IEEE/Computer 
Society. 

[28] 	 C. Pu, H. Massalin, and J. Ioannidis. The Synthesis kernel. Computing Systems, 1(1):11-32, Winter 
1988. 

[29] 	 K. K. Ramakrishnan and Raj Jain. A binary feedback scheme for congestion avoidance in computer 
networks. ACM Transaction on Computer Systems, 8(2), May 1990. 

15 




[30] 	 M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrman, C. Kaiser, 
S. Langlois, P. Leonard, and W. Neuhauser. Overview of the chorus distributed operating system. In 
Proceedings of the Workshop on Micro-Kernels and Other Kernel Architectures, pages 39-69, Seattle, 
April 1992. 

[31] 	 Y. Yokote, F. Teraoka, and M. Tokoro. A reflective architecture for an object-oriented distributed 
operating system. In Proceedings of the 189 European Conference on Object-Oriented Programming, 
pages 89-108, Nottingham, UK, July 1989. Cambridge Unversity Press. 

[32] 	 A. Yonezawa and B.C. Smith, editors. Proceedings of the International Workshop on New Models for 
Software Architecture '92, Tokyo, Japan, November 1992. RISE, IPA, ACM SIGPLAN. 

[33] 	 H. Zimmermann, J-S. Banino, A. Caristan, M. Guillemont, and G. Morisset. Basic concepts for the 
support of distributed systems: the Chorus approach. In Proceedings of 2nd International Conference 
on Distributed Computing Systems, July 1981. 

16 



	A Study of Dynamic Optimization Techniques: Lessons and Directions in Kernel Design
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1392072712.pdf.iR6YJ

