Portland State University PDXScholar

PSU Transportation Seminars

Transportation Research and Education Center (TREC)

1-10-2014

Benefit-Cost Evaluation Method for Transit Stop Removal

Zef Wagner Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Commons, and the Urban Studies and Planning Commons Let us know how access to this document benefits you.

Recommended Citation

Wagner, Zef, "Benefit-Cost Evaluation Method for Transit Stop Removal" (2014). *PSU Transportation Seminars*. 78. https://pdxscholar.library.pdx.edu/trec_seminar/78

This Book is brought to you for free and open access. It has been accepted for inclusion in PSU Transportation Seminars by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

A Benefit-Cost Evaluation Method for Transit Stop Removal

Zef Wagner Robert L. Bertini Portland State University

Presented at the OTREC Transportation Seminar Portland, OR January 10, 2014

Overview

- Introduction
- Research
- Methodology
- Application
- Next Steps

Introduction

Introduction

Portland State

Close Spacing = Duplicate Coverage

Wide Spacing = Coverage Gaps

Stop Spacing Standards = $\sim 1/4$ -mile

Stop Spacing in Practice = $\sim 1/8$ -mile (or less!)

Research

- Portland State
- Existing research focused on *line-level* analysis to determine optimal *average* stop spacing

 Needed: a *stop-level* analysis method to determine which *specific* stops to remove

Methodology

- Calculate Benefit-Cost Ratio (B/C) for removing each stop
- B/C > 1 = candidate
 for stop removal

 B = (# of through riders on vehicle) x (time saved by not serving stop)

Portland

- C = (# of riders using stop) x (additional time to access nearest remaining stop)
- Passenger-minutes saved vs. passengerminutes lost

Average load and stop-level ridership

Portland

- Distances between stops
- Value of time ratio
- Average walking speed
- Average time lost per stop (not including dwells)

Assumptions

- Bus serves all stops on every trip
- All passengers migrate to nearest stop
- Perfect street grid with small blocks

IMAGES AND MAPPING COURTESY OF URBAN DESIGN 4 HEALTH

Application

- TriMet Line 6
 - 20 stops
 - Outbound
 - PM Peak
 - Fall 2011

•Why chosen?

- High ridership
- Close spacing
- Grid streets
- Many stops

Results

- 5 stops have B/
 C>1
- 3 adjacent stops
 Remove outer stops first
- Remove stops, then re-evaluate after one year

Cross Street	B/C		
Holland	1.6		
Morgan	3.7		
Bryant	1.6		
Dekum	0.7		
Rosa Parks	0.6		
Ainsworth	0.2		
Jarrett	0.7		
Killingsworth	0.2		
Sumner	1.0		
Alberta	0.3		
Wygant	1.0		
Prescott	1.0		
Mason	0.9		
Failing	0.7		
Beech	2.2		
Fremont	1.0		
Fargo	2.7		
Morris	0.7		
Knott	0.5		
Brazee	0.9		

Sensitivity Analysis

- V_a = Value of Time
 T_r = Time Lost/ Stop
- B/C = Benefit/Cost
- A range of values still support the same conclusion

Va	<u>T</u> ,	B/C	
		Rosa Parks	Beech
2.5	10	0.3	1.2
	15	0.5	1.7
	20	0.6	2.3
2	10	0.4	1.5
	15	0.6	2.2
	20	0.8	2.9
1.5	10	0.5	1.9
	15	0.7	2.9
	20	1.0	3.9

Next Steps

Stop Probability

Network Analysis

Operational Benefits

IMAGES AND MAPPING COURTESY OF URBAN DESIGN 4 HEALTH

Thank You

Zef Wagner zef.wagner@gmail.com

Robert L. Bertini bertini@pdx.edu

Special Thanks:

Human Transit

students in transportation engineering and planning

