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ABSTRACT
Nest placement presumably reflects selection for secure sites to minimize failure. Most tests of this hypothesis,
however, have failed to support it. We used artificial nests (ARTs) to experimentally evaluate nest-site-choice behavior
by an open-cup–nesting bird, the Eastern Kingbird (Tyrannus tyrannus). In 2010 and 2011, we placed ARTs in trees in
the riparian zone at Malheur National Wildlife Refuge, Oregon, USA, to test whether (1) characteristics describing the
physical location in trees of used and unused ARTs differed, (2) used ART sites more closely resembled naturally chosen
sites, (3) successful natural nests (NATs) and successful ARTs were similarly located along the major axis describing nest
placement, and (4) unused ARTs resembled failed NATs. Used and unused ART sites differed, but unused ART sites
were more similar to NAT sites. The latter unexpected result occurred because (1) unused ARTs were located at sites
between more heavily used higher and lower locations and (2) most kingbirds nesting at lower locations used ARTs
instead of building their own nest. In both ARTs and NATs, differences between successful and failed nests exhibited
the same pattern for most nest-site variables, and the major gradient describing nest location was the same; successful
nests tended to be placed on more vertically oriented branches that were placed closer to the top of the tree. Kingbird
nest placement was thus selective. However, extensive overlap in the locations in trees of failed NATs and both
successful and unused ARTs suggests that other factors, such as macrohabitat characteristics or prior experience of
individual birds with particular nest sites, may have influenced success and/or decisions to use or reject nests in
particular locations. Thus, consideration of phenomena beyond the nest site itself may be required to fully understand
the process of nest-site choice in birds.

Keywords: choice, Eastern Kingbird, experiment, nest placement, nest predation, nest success, Tyrannus tyrannus

Análisis experimental de selección de sitios de nidificación y su relación con el éxito del nido en un
paseriforme con nidos en forma de taza

RESUMEN
Se supone que la colocación de nidos refleja selección natural para sitios seguros que minimizan el fracaso
reproductivo. Sin embargo, la mayorı́a de las pruebas de esta hipótesis no la han apoyado. Usamos nidos artificiales
(ARTs) para evaluar experimentalmente el comportamiento de selección de sitios de nidificación en Tyrannus tyrannus,
un ave que utiliza nidos abiertos en forma de taza. En 2010 y 2011, colocamos ARTs en árboles de la zona ribereña en
Malheur National Wildlife Refuge, Oregon, USA, para probar si (1) caracterı́sticas de la ubicación fı́sica de los árboles
con ARTs usados y no usados fueron diferentes, (2) sitios de ARTs usados eran más similares a sitios elegidos
naturalmente, (3) nidos naturales (NATs) exitosos y ARTs exitosos se ubicaron en lugares parecidos sobre el eje mayor
que describe la colocación de nidos, y (4) ARTs no utilizados se parecı́an a NATs fracasados. Sitios de ARTs utilizados y
no utilizados fueron diferentes, pero sitios de ARTs no usados eran más similares a sitios de NATs. Este último resultado
inesperado ocurrió porque (1) ARTs no usados se ubicaron en sitios intermedios entre las localizaciones más usadas
altas y bajas, y (2) la mayorı́a de las aves anidando el lugares bajos usaron ARTs en vez de construir su propio nido. En
ARTs y NATs, diferencias entre nidos exitosos y fracasados mostraron el mismo patrón para la mayorı́a de las variables
describiendo sitios de nidificación, y el gradiente mayor que describe la ubicación de nidos fue igual; nidos exitosos
solieron estar ubicados en ramas más verticales hacia la copa del árbol. Por lo tanto, la colocación de nidos por T.
tyrannus fue selectiva. Sin embargo, el solapamiento extensivo de las ubicaciones en árboles de NATs fracasados, y
ARTs exitosos y no usados sugiere que otros factores como caracterı́sticas de macrohabitat o experiencia previa de
aves individuales con sitios de nidificación particulares pudo haber influı́do en el éxito y/o decisiones para usar o
rechazar nidos en lugares particulares. Entonces, consideración de fenómenos más allá del sitio de nidificación en sı́
podrı́a ser necesaria para entender completamente el proceso de selección de sitios de nidificación en la aves.

Palabras clave: colocación de nidos, éxito del nido, experimento, predación de nidos, selección, Tyrannus
tyrannus
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INTRODUCTION

Typically, .50% of nesting attempts by open-cup–nesting

passerine birds fail (e.g., Filliater et al. 1994, Murphy 2000),

and �80% of losses are attributable to nest predators

(Ricklefs 1969, Martin 1993). Concealing nests in dense

cover may reduce risks of nest predation (Götmark et al.

1995, Zanette et al. 2011) by active, visually searching

predators (Santisteban et al. 2002, Weidinger 2002), but

dense cover is often not a reliable safeguard (Holway 1991,

Howlett and Stutchbury 1996, Latif et al. 2012). Locating

nests in trees well above ground is likely a better defense

against ground-foraging and low-shrub-foraging predators,

such as many mammals and reptiles (Burhans et al. 2002,

Latif et al. 2012), as several studies have shown (Murphy

1983, Wilson and Cooper 1998, Burhans et al. 2002, Peluc

et al. 2008). Nests located toward the end of branches may

further reduce threats from arboreal predator species such

as sciurids and some snakes, but such nests are exposed to

high winds, rain, intense sunlight, and avian nest predators

(Burhans et al. 2002, Latif et al. 2012). Compromises over

nest location must be made, and, ultimately, it is the

interplay between predator species, parental behavior, and

nest location that influences site quality and probability of
nest success (Murphy et al. 1997, Latif et al. 2012). Indeed,

the influence of different predators on nest success likely

serves as a diversifying force to help shape avian

community structure through selection for use of different

nest sites (Martin 1993, 1996).

Eastern Kingbirds (Tyrannus tyrannus; hereafter ‘‘king-
birds’’) breed across North America in open, savanna-like

environments, in orchards, in riparian zones, and along

margins of lakes and ponds (Murphy 1996a). They are

socially monogamous, build their often conspicuous open-

cup nests in trees (MacKenzie and Sealy 1981, Murphy et

al. 1997), and have a relatively long nest cycle (Murphy

1996a) that increases the potential for detection by nest

predators. Previous studies showed that kingbirds nest

near the edge of the canopy at 60–70% (2–7 m) of tree

height (MacKenzie and Sealy 1981, Murphy 1983,

Blancher and Robertson 1985, Murphy et al. 1997).

Kingbirds are known for their vigorous attacks on

potential nest predators (Davis 1941, Blancher and

Robertson 1982, Siderius 1993, Redmond et al. 2009a),

and Murphy et al. (1997) proposed that use of nest sites

high in trees and close to the canopy edge provided air

space for kingbirds to initiate aerial attacks on potential

nest predators (cf. Ricklefs 1977).

Habitats at Malheur National Wildlife Refuge (MNWR),

where we conducted the present study, offer a different

environment from previous kingbird study sites because

nesting is limited almost entirely to riparian zones, and a

single species, the Black-billed Magpie (Pica hudsonia;

hereafter ‘‘magpies’’), appears to be the primary cause of

nest failure (M. T. Murphy personal observation). Most

riparian-zone trees are young willows (Salix spp.) that

provide few high-quality nest sites (Redmond et al. 2007).

As a result, ~10% of kingbird nests at MNWR are built in

preexisting conspecific or heterospecific nests from the

same or, more commonly, the previous breeding season

(Redmond et al. 2007, Cancellieri and Murphy 2013).

Kingbirds at MNWR also nest in artificial nests placed in

trees (Cancellieri and Murphy 2013). We used the latter

behavior to ask whether kingbird nest-site selection at

MNWR is adaptive (i.e. results in higher reproductive

success). To do so, we distributed artificial nests in trees in

the riparian zone to test the following hypotheses about 2

attributes: location of nest in tree and cover around nest. If

nest-site selection is nonrandom and adaptive, we

predicted that (1) the attributes of used and unused

artificial nests would differ, (2) the attributes of used

artificial nests would match those of natural nests, (3) the

attributes of successful and failed natural nests would

differ, (4) the attributes of failed natural nests would most

closely resemble those of unused artificial nests, and (5)

the pattern of difference in attributes of successful and

failed artificial nests would mirror that found for natural

nests. Finally, because magpies forage as family groups by

methodically moving through the willows (M. T. Murphy

personal observation), and the kingbird’s nesting strategy

appears to rely on aggressive aerial defense of relatively

conspicuous nests (see above), we predicted that (6) nest

success would be independent of vegetative cover around

the nest and would instead be greatest for nests located

either higher in the tree or closer to the canopy edge,

where the powerful and maneuverable flying ability of

kingbirds permit active nest defense (cf. Ricklefs 1977).

METHODS

Study Site
Malheur National Wildlife Refuge is located in southeast-

ern Oregon, USA, at the northern end of the Great Basin

Desert (428490N, 1188540W). The riparian and wetland

habitats created by the Donner und Blitzen River are

embedded in a desert landscape rarely used by kingbirds.

The refuge is ~60 km long and 3–10 km wide.

Demographic and behavioral research on the MNWR

kingbird population was conducted from 2002 to 2011.

Our experimental work was performed mainly near Buena

Vista, a site located 5 km north of the long-term main

research site located in the lower third of the refuge. In

2011, we conducted additional experiments at Bridge

Creek in the main research area (see map in Redmond and

Murphy 2012). The refuge’s gravel roads parallel the main

river and its tributaries from a distance of �5 m and

provided access to nesting habitat.
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Field Methods
We used methods from previous years to conduct censuses

of all nesting habitat and to document seasonal reproduc-

tive success for every kingbird pair that nested within our

study areas. Every year, 2 to 4 individuals drove the roads

(in 2 vehicles) and/or canoed the river over an 8- to 12-hr

day to locate nests at locations where kingbirds were seen.

Approximately 90% of nests were found before or during

egg laying. Nests were followed closely to document dates

of first-laid eggs (i.e. breeding date), clutch size, and

hatching and fledging success (i.e. numbers of eggs to

hatch and young to fledge, respectively). Nests were

checked every other day during incubation and the

nestling period. To minimize disturbance, we observed

nests from a distance of 5–10 m to establish whether an

adult was tending to the nest; if one was, we assumed that

the nest was active and did not check nest contents. If

parents were not present, we visually checked nest

contents, often using a mirror attached to an extensible

pole. The breeding date for nests found after egg laying was

determined by hatching date or by aging young using size

(Murphy 1981) and assuming a 15-day incubation period

(Cancellieri and Murphy 2013). Nests were assumed to

have been depredated when contents were lost completely
between successive visits prior to the age when young

could have possibly fledged (minimum of 14 days; Murphy

1996a). We attributed losses to weather if nests or nest

contents disappeared between successive visits and the

area had experienced severe weather (i.e. high winds) since

the last nest check.

Artificial Nests: Construction and Deployment
Kingbirds are known to reuse nests of 4 passerines at

MNWR (Redmond et al. 2007). Old nests of American

Robins (Turdus migratorius; hereafter ‘‘robins’’) are reused
most frequently (even more often than old kingbird nests),

probably because the robin’s mud nests provide a firm base

for a new nest in this nest-site-limited environment

(Cancellieri and Murphy 2013). We chose to model

artificial nests (hereafter ‘‘ARTs’’) after robin nests because

kingbirds recognize them as a resource and because we

could more easily standardize construction of ARTs to

resemble robin nests than those of any other species. To

build nests, we used a plastic Rubbermaid food-storage

container (12.5 cm in diameter and 8 cm deep) as a mold

to form a wire frame to which a mud–grass mix was added.

Twine was tied to the frame to attach ARTs to branches of

trees. See Cancellieri and Murphy (2013) for a more

complete description of methods and a photograph of a

used ART.

Kingbirds normally arrive at MNWR by mid-May, but in

2010 we saw few before June because of unseasonably cool

and wet weather. On June 2 and 3, we deployed 30 ARTs

by canoe at 100-m intervals in trees at the south end of the

river at Buena Vista near the Diamond Lane bridge. Ten

days later, 20 more ARTs were deployed over the next 2

km of riparian habitat. Thus, 50 ARTs were available for

kingbird use at intervals of 100 m along 5 km of river in

2010.

In 2011, we deployed 65 ARTs at 100-m intervals along

6.5 km of the Donner und Blitzen River at Buena Vista on

May 10 and 11. This included the 5 km used in 2010 and

the next 1.5 km of river. We also added 25 ARTs at 100-m

intervals at Bridge Creek of the main study area on May 13

and 14 to bolster sample size. Most ARTs overhung the

river at heights of 0.5 to 2.0 m above water level. Our

placement of nests was constrained by the availability of

usable limbs and the need to install ARTs from a canoe in a

flooding river. To expand the range of sites supporting

ARTs, we climbed 6 trees whose trunks were not

submerged and placed 1 nest in each tree at heights

ranging from 2.5 to 4.2 m above water. We also placed 10

nests near the tops (4–5 m) of trees rooted on the

riverbank so that they were on the landward side of the

tree.

Nest-site Characteristics
We measured nest-site characteristics (all by S.C.) only

after a nest either failed or fledged young to minimize

disturbance to the nesting pair and the possibility of

attracting predators to nests. Six nest-placement variables

were measured at natural nests (hereafter ‘‘NATs’’) and

ARTs: (1) height of nest above ground, (2) vertical distance

of nest to top (highest point) of tree, (3) horizontal

distance of nest to center of tree and (4) to edge of canopy,

(5) angle of main branch supporting nest, and (6) cover

around nest. We intended to measure height of nest above

water, but this proved impossible because of changing

water levels associated with flooding in both years. Trees
were rooted either on or just below the riverbank, and

therefore we measured nest height as the height of the nest

above the riverbank adjacent to the spot where the tree

was rooted. Measurements of distance of nest to center of

tree and edge of canopy were made without reference to

nest branch length and instead reflected the nest’s distance

from the tree’s geometric center and edge at that height.

We used a rigid tape measure to take all linear

measurements to the nearest 0.1 m, and we measured

angle of the branch at the nest location using a protractor

attached to a level. Angles of 08 and 908 corresponded to

horizontal and vertical branches, respectively. Branches

that dipped below the horizontal plane yielded negative

angles. We estimated nest cover in the immediate area

around the nest by recording the number of times

vegetation contacted 1-cm marks of a 10-cm dowel held

above and along the 4 cardinal directions around the nest.

Thus, maximum potential cover was 50. Including nest

dimensions (Murphy 1996a), the area over which cover
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was estimated is represented by a roughly 30 3 20 cm

ellipse. A 3-m ladder was used to measure nest traits at

nests that could not be reached from the canoe or

riverbank.

Statistical Analysis
We included all nests in our comparison of nest success

between years but restricted our analysis of success in

relation to placement of nests within the riparian zone

(�15 m from river). We defined ‘‘nest success’’ as a binary
variable whereby nests either failed (i.e. no young fledged)

or produced �1 young. ‘‘Fledging success’’ was defined as

the number of young that fledged (0–4). Average inter-

nest distance of kingbirds at MNWR is ~200 m (Redmond

et al. 2009b) and, thus, any ART .200 m from a kingbird

nest (used ART or NAT) was considered outside of a

kingbird territory and was not included in the analyses. By

contrast, we considered all ARTs as rejected nest sites if

they were within 200 m of a NAT or used ART. Rejected

ARTs were included in analyses as unused ARTs.

All variables except nest cover were approximately

normally distributed. No transformation was able to

correct the non-normal distribution of cover, but because

it was not a major component of variation in nest

placement (see below), we used untransformed values of

cover. We used principal component analysis (PCA) of the

6 nest-placement variables for NATs and ARTs to produce

a multivariate description of nest position in the tree and

to compare successful and failed nests. We used one-way

analysis of variance (ANOVA) to compare mean values of

nest-placement variables and PCA axes with eigenvalues

.1.0. Comparisons were made (1) among NATs and used

and unused ARTs and (2) among the 4 groups defined by

nest type and nest fate. Direct comparisons of placement

between failed and successful NATs and failed and

successful ARTs were also made using two-sample t-tests.

Given that nests were (1) found for all pairs, (2) found

prior to incubation for nearly all, and (3) were checked

every other day, there was no need to account for

differences in exposure period among nests.

To explore the relationship between fledging success

and nest placement in greater detail, we examined fledging

success of all used nests in relation to year, nest type, and

all nest-placement variables using best-subsets regression

analysis in an information-theoretic framework. The top 3

models for all combinations of 1 through 8 variables were

examined. Akaike’s Information Criterion, adjusted for

small sample size (AICc), was used to evaluate model fit,

with all models within 2 AICc units of the top model

(DAICc ¼ 0) considered candidate models of potential

explanatory value. Uninformative models (sensu Arnold

2010) were eliminated from consideration. We then

calculated model weights (wi) and judged the importance

of different parameters by calculating their relative

importance (Burnham and Anderson 2002) and by

examining whether parameter estimates differed from

zero (i.e. 85% confidence interval did not include zero;

Arnold 2010). We then restricted the analyses to successful

nests and tested for a relationship between number of

young to fledge (1–4) and the same predictor variables

used in the previous analysis. We used Statistix version 9.0

(Analytical Software, Tallahassee, Florida, USA) for all

analyses and assumed P � 0.05 and 0.05 , P , 0.10,

respectively, to indicate significant and marginally signif-

icant results. Statistics are reported as means 6 SE.

RESULTS

Nest-site Characteristics

NATs were placed at 37% of tree height (i.e. 63% from the

top) and at 62% of the distance from the tree center to the

canopy edge (Table 1). Distance of NATs from the top of

the tree (~2 m) was twice the distance to the canopy edge

(~1 m). Most NATs were placed on an upward-arching

branch (Table 1), but nest branch angle varied widely (�708

to 908). NATs were exposed in the immediate area around

the nest because the average cover was only 4% of the

maximum possible (1.89/50¼ 0.038; range¼ 0 to 10 out of

a possible score of 50).

TABLE 1. Nest-placement statistics for Eastern Kingbirds at Malheur National Wildlife Refuge, Oregon, USA (2010–2011). Females
either built natural nests (NAT; n¼ 54) or used artificial nests (ART) that were provided. Statistics for unused ARTs located �200 m
from a nest used by Eastern Kingbirds and presumably rejected are also provided. Results of comparison of means (SE in
parentheses) by analysis of variance are reported as F (P). Categories of nests that share a letter do not differ significantly. Sample
sizes of used and unused ARTs were 35 and 67, respectively.

Variable NAT Used ART Unused ART F (P)

Angle of branch (8) 33.4 (5.41)A 15.5 (4.64)B 25.8 (4.06)AB 2.89 (0.059)
Nest height (m) 1.47 (0.204)A 0.47 (0.101)B 0.68 (0.116)B 11.24 (0.000)
Distance to top (m) 2.04 (0.166)A 2.91 (0.186)B 2.31 (0.117)A 6.94 (0.001)
Distance to canopy (m) 1.00 (0.066) 1.18 (0.063) 1.05 (0.057) 1.72 (0.183)
Distance to center (m) 1.60 (0.137)AB 2.12 (0.209)B 1.55 (0.106)A 3.97 (0.021)
Nest cover (%) 1.89 (0.308)A 0.77 (0.243)B 1.82 (0.286)A 3.46 (0.034)
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The 10 ARTs placed on the landward side of trees in the

riparian zone were within kingbird territories, but none

were used and, thus, we did not consider them for further

analysis. NATs were placed higher in trees than both used

and unused ARTs, but height of used and unused ARTs did

not differ (Table 1). By contrast, NATs and unused ARTs

had similar distances to the top of the tree, which was less

than that of used ARTs. Branches supporting NATs were

marginally (P¼ 0.059) steeper than those supporting used

ARTs. Overall, natural nests and unused and used ARTs

were well separated with respect to distance of the nest to

the top of the tree and nest branch angle (Figure 1). The

position of NATs and ARTs on the horizontal plane

differed little (Table 1), but used ARTs were farther from

the center of the tree than unused ARTs. Nest cover of

NATS and unused ARTs were nearly identical, and

significantly higher than that of used ARTs (Table 1).

Nest Success and Nest Placement

On the basis of all nests found in both years, fewer nests

fledged young in 2010 (32%, n¼ 69) than in 2011 (55%, n¼
69; 2 3 2 table, v2 ¼ 6.42, P ¼ 0.01). The NATs (41%, n ¼
88) and ARTs (46%, n ¼ 33) were equally likely to fledge

young (2 3 2 table, v2 ¼ 0.20, P ¼ 0.65). Predation

accounted for 94% and 96% of all failures in 2010 and

2011, respectively. Predators were responsible for all

failures of ARTs in both years and for nearly all failures

of NATs in 2010 (91.9%, n¼ 37) and 2011 (93.3%, n¼ 15).

Remaining losses were attributable to severe weather (n¼
2), human activity (n ¼ 1), and abandonment (n ¼ 1).

Differences in nest-site characteristics between failed

and successful NATs were similar to those between failed

and successful ARTs (Table 2). The angle of the nest

branch of successful NATs and successful ARTs was

~2.353 steeper than that of failed nests within respective

nest types, but the difference between successful and failed

nests was significant only for NATs (Table 2). Height of

successful NATs exceeded that of failed ARTs, and,

although not significant, successful nests of both types

tended to be higher than their failed counterparts (Table

2). A direct comparison between successful and failed

ARTs showed, however, that successful ARTs were located

marginally higher in the nest tree (t ¼ 1.83, P ¼ 0.08). It

follows, therefore, that successful NATs and failed ARTs

were closest and farthest from the top of the tree,

respectively (Table 2). On the horizontal plane, all nests

were located ~1 m from the canopy edge, but ANOVA

indicated that successful NATs were placed closer to the

center of the tree than failed ARTs (Table 2). Restricting

the comparison to ARTs, successful ARTs were also

marginally closer to the center of the tree than failed

ARTs (t¼ 1.87, P¼ 0.07). Successful NATs and ARTs thus

FIGURE 1. Average distance to the top of the tree and average
angle of the branch on which the nest was located (6 SE) for
natural Eastern Kingbird nests and unused and used artificial
nests at Malheur National Wildlife Refuge, Oregon, USA (2010–
2011).

TABLE 2. Nest-placement statistics for failed and successful Eastern Kingbird breeding attempts that were made in either natural or
artificial nests at Malheur National Wildlife Refuge, Oregon, USA (2010–2011). Means (with SE in parentheses) are compared using
analysis of variance, F (P). Categories of nest type and nest success that share a letter do not differ significantly. Numbers in
parentheses at column headings are sample sizes.

Natural nests Artificial nests

Variable Failed (n ¼ 33) Successful (n ¼ 19) Failed (n ¼ 20) Successful (n ¼ 13) F (P)

Angle of branch (8) 21.8 (6.76)B 51.2 (8.21)A 10.4 (5.40)B 24.8 (9.02)AB 4.97 (0.003)
Nest height (m) 1.17 (0.221)A 1.64 (0.296)A 0.34 (0.11)B 0.72 (0.196)AB 5.41 (0.002)
Distance to top (m) 2.30 (0.24)AB 1.58 (0.19)B 3.05 (0.27)A 2.74 (0.27)A 5.55 (0.002)
Distance to canopy (m) 1.02 (0.08) 0.98 (0.12) 1.12 (0.10) 1.16 (0.12) 0.72 (0.544)
Distance to center (m) 1.71 (0.19)AB 1.44 (0.21)B 2.44 (0.32)A 1.71 (0.23)AB 3.04 (0.034)
Nest cover 1.76 (0.38)AB 2.16 (0.56)A 1.20 (0.45)AB 0.15 (0.56)B 2.96 (0.037)
PC1 0.14 (0.27)AB 1.15 (0.34)A �1.05 (0.25)C �0.42 (0.32)BC 8.54 (0.000)
PC2 �0.15 (0.19) 0.02 (0.26) �0.12 (0.23) 0.53 (0.19) 1.45 (0.235)
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tended to be on more vertically oriented branches, placed

higher and closer to the top of the tree and closer to the

center of the tree than their respective failed counterparts.

By contrast, successful NATs and successful ARTs had the

highest and lowest cover scores, respectively (Table 2). In

general, locations of unused ARTs (Table 1) resembled

those of failed NATs and successful ARTs and were least

like successful NATs and failed ARTs (Table 2). On the

basis of comparisons of nest branch angle and distance to

the top of the tree, unused ARTs and failed NATs

overlapped extensively (Figure 2A), but a plot of nest

branch angle against nest height showed equally strong

overlap between unused and successful ARTs (Figure 2B).

The PCA of nest variables yielded 2 useful axes. The first

principal component (PC1) described vertical aspects of

nest location (Table 3). Positive scores corresponded to

nests located high in the tree and close to the top, on a

vertically oriented branch that was close to the center of

the tree. PC1 scores of successful NATs exceeded those of

both categories of ARTs, but PC1 scores of failed NATs

and successful ARTs were similar (Table 2). Successful

NATs had higher scores on PC1 than failed NATs (t¼2.28,

P ¼ 0.03), and the same pattern was evident in ARTs (t ¼
1.58, P¼ 0.12; Table 2). PC2 was a descriptor of variation

in horizontal placement. Nests with high positive scores

were located far from the canopy and close to the center of

the tree and had little vegetative cover. No differences

existed among failed and successful ARTs and NATs along

PC2 on the basis of the ANOVA; but within ARTs, direct

comparison by t-test showed that successful ARTs had

higher scores than failed ARTs (t¼ 2.02, P ¼ 0.05).

Fledging and Nest Success

Best-subsets regression (n ¼ 85 nests) of fledging success

yielded 3 informative models. The top model (DAICc¼0.0)

of angle of the nest branch and year was 1.683more likely

than the next-best model, which included angle of the nest

branch, nest type (NAT vs. ART), and distance to the top

of the tree (DAICc ¼ 1.034). The top model was 2.393

more likely than the third-best model of angle of the nest

branch and nest type (DAICc ¼ 1.743). Angle of the nest

branch had the highest importance weight (1.0), followed

by nest type (0.504), year (0.496), and distance to the top

(0.296). Model-averaged parameter estimates (6 SE)

indicated that fledging success increased with nest branch

angle (b¼ 0.012 6 0.005), was higher in 2011 (b¼ 0.358 6

0.239) and in ARTs (b¼ 0.354 6 0.245), but declined with

increasing distance from the top of the tree (b¼�0.071 6

0.065). Confidence intervals (CI) for nest type (�0.005 to

0.714) and distance to the top (�0.178 to 0.036) included

zero, but those of angle of the nest branch (0.005 to 0.018)

and year (0.008 to 0.708) did not. Hence, differences

between years and in the angle of the nest branch

contributed most to variation in fledging success.

FIGURE 2. Average (6 SE) angle of the branch on which the nest
was placed in relation to (A) average distance to the top of the
tree and (B) average nest height of successful (NaSu) and failed
(NaFa) natural Eastern Kingbird nests and of unused (ArUn),
successful (ArSu), and failed (ArFa) artificial nests at Malheur
National Wildlife Refuge, Oregon, USA (2010–2011).

TABLE 3. Factor loadings, eigenvalues, and proportion of the
variance explained by the first 3 axes from the principal
component analysis of nest placement variables for natural
and used artificial nests of Eastern Kingbirds breeding at
Malheur National Wildlife Refuge, Oregon, USA (2010–2011).

Variable PC1 PC2 PC3

Nest angle (8) 0.466 0.381 0.058
Nest height (m) 0.466 �0.002 0.254
Distance of nest to top (m) �0.510 0.113 0.006
Distance to canopy edge (m) �0.272 0.661 �0.491
Distance to center of tree (m) �0.450 �0.343 0.318
Nest cover (%) 0.173 �0.536 �0.767
Eigenvalue 2.498 1.104 0.929
Explained variance (%) 41.6 18.4 15.5
R Explained variance (%) 41.6 60.0 75.5
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The importance of nest branch angle to fledging success

(variation in which was due almost solely to nest

predation) was not immediately apparent, because nest

branch angle would seem more likely to affect nest stability

and the likelihood of the nest falling or being blown from

the tree by wind rather than it being discovered by a

predator. Nest branch angle was an important contributor

to PC1 (Table 3), and therefore we examined success in

relation to position on PC1 by binning nests into 10 equal-

sized bins and regressing nest success (proportion of nests

in a bin to fledge �1 young) against mean PC1 score for

nests included in each bin. We performed the same

analysis for nest branch angle. Because of small sample

sizes for bins at the low and high end, regression of

proportion of successful nests against both mean PC1

score and mean nest branch angle of each bin were

weighted by the bin’s sample size. Proportion of successful

nests increased with both mean PC1 score (r2 of least-

squares weighted regression [LSWR] ¼ 0.593, P ¼ 0.009;

Figure 3) and mean nest branch angle (r2 of LSWR¼0.492,

P ¼ 0.024), but mean PC1 accounted for 20.5% more

(0.593/0.492 3 100%) of the variation in proportion of

nests to fledge young than mean nest branch angle.

Analysis of variation in fledging success of successful

nests yielded 2 models. The top model included nest cover,

year, and nest type (DAICc ¼ 0.0) and was 1.373 more

likely than the next-best model of nest cover and year

(DAICc ¼ 0.631). However, model-averaged parameter

estimates indicated that the CI for nest type included zero

(b ¼ 0.396 6 0.277, CI: �0.009 to 0.801). By contrast,

confidence intervals for nest cover (b¼ 0.237 6 0.090, CI:

0.105 to 0.368) and year did not include zero (b¼ 1.090 6

0.385, CI: 0.526 to 1.654). Fledging success increased

equally with nest cover in both years (equality of slopes:

F1, 27 ¼ 0.65, P ¼ 0.423), but at any given level of cover,

success was higher in 2011 (equality of elevation: F1, 28 ¼
11.01, P ¼ 0.002).

DISCUSSION

Frequent use of artificial nests by kingbirds at our study

site (Cancellieri and Murphy 2013) made it possible for us

to take a novel approach to evaluate whether kingbirds

actively choose nest sites and to assess the value of their

choices. However, our data are limited because flooding in

both years prevented us from distributing ARTs over the

full range of potential nest sites and from measuring nest

height from the true base of the tree. Both have the
potential to influence the interpretation of our results. For

instance, the low nest height at MNWR compared with

other locations (see above) was partly an artifact of

measuring height from the river bank. However, it also

reflects the penchant that kingbirds have for nesting on

lower, more horizontal branches in riparian and lacustrine

habitats (Davis 1941, Blancher and Robertson 1985). An

additional concern is the relatively small area over which

nest cover was measured. We chose an area on the basis of

our experience searching for nests and prior descriptions

of nest conspicuousness that focused on this small area.

Our measurements confirmed that little cover existed in

the immediate area around the nest. However, vegetative

cover 1–2 m above the nest might be important for

obscuring the nest from avian predators searching

overhead. Our failure to measure overhead cover leaves

open the possibility that cover may still be important for

nest success (but see below).

Assuming that nest-site selection is nonrandom, we

expected the features of used and unused ART nest

locations to differ. Active choice was indicated by the

failure to use all 10 nests located over land. Among all

remaining nests, we found that used ARTs were located

farther from the top and center of the nest tree than

unused ARTs, again suggesting active choice. Kingbird use

of the other 4 variables did not differ, perhaps because of

our inability to distribute nests across the full range of

potential nest sites.

We also predicted that nest-site characteristics of used

ARTs would be more similar to NATs than were unused

ARTs, but we instead found that unused ARTs were in

locations that tended to more closely match sites where

NATs were located (Figure 1). We suggest that this

paradoxical finding exists for 2 reasons. First, kingbirds

appear to prefer sites either well up in trees on vertically

FIGURE 3. Proportion of nests to fledge young (‘‘nest success’’)
in relation to mean score on the first principal component (PC1)
for natural and artificial nests that were binned into 10 evenly
spaced bins at Malheur National Wildlife Refuge, Oregon, USA
(2010–2011). Numbers above points represent sample sizes. The
coefficient of determination (r2) from the regression of nest
success in relation to mean PC1 score was weighted by sample
size, such that less weight was given to extreme low and high
mean PC1 scores that had low sample sizes.
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oriented branches (MacKenzie and Sealy 1981, Murphy

1983) or much lower, on relatively horizontal branches,

especially when they nest over water (Davis 1941, Blancher

and Robertson 1985). We positioned few ARTs at the

highest points in trees and instead placed most ARTs in

intermediate to lower positions that we could reach. If

kingbirds indeed prefer extreme vertical or horizontal

locations, then ARTs placed in intermediate positions

would go unused but more closely resemble locations of

NATs than would used ARTs. However, this argument is

only tenable if few NATs were located lower on relatively

horizontal limbs, and this leads to the second explanation.

Many ARTs were located lower in the trees and over water,

and these were heavily represented in the used ART

category. Most females with ARTs in their territory used

them (76%; Cancellieri and Murphy 2013). Thus, the

difference in height and vertical orientation of NATs and

used ARTs is exaggerated because most females that would

have built nests at lower heights used ARTs instead of

constructing their own nests. Females gained no apparent

advantage from using the ARTs (Cancellieri and Murphy

2013), so presumably they used them because they

provided a good substrate in a frequently used nesting

location.

Breeding Success and Nest Location
As in most open-cup–nesting birds (Ricklefs 1969, Martin

1993), nest success averaged ,50% over the 2 yr and nest

predation accounted for nearly all (.90%) nest losses in
both years. Some have argued that adaptive nest-site

choice is impossible when such intense predator pressure

reduces the probability of success to little more than a

stochastic event (Filliater et al. 1994). Indeed, most

published studies fail to show that the most commonly

used sites are more likely to produce young (reviewed by

Chalfoun and Schmidt 2012). However, prior work on

kingbirds (Murphy 1983) and other species (Martin and

Roper 1988, Wilson and Cooper 1998, Siepielski et al.

2001, Peluc et al. 2008) provide counterexamples. More-

over, some species modify nest placement in response to

negative past experiences (Marzluff 1988, Forstmeier and

Weiss 2004) or perceived predation risk (Peluc et al. 2008,

Zanette et al. 2011, Latif et al. 2012). This strongly

supports the view that nest-site choice is flexible and

adaptive.

For NATs, successful nests were placed on more

upwardly angled branches that were closer to the top of

the tree than failed nests. Successful NATs also had higher

PC1 scores, which follows from this axis’s association with

nest branch angle and vertical aspects of nest placement

(Table 3). Direct comparisons of successful and failed

ARTs (by t-tests) suggested strong tendencies for success-

ful ARTs to be placed higher and closer to the center of the

nest tree than failed ARTs. The same pattern, albeit

nonsignificant, existed among NATs. As in NATs, nest

branch angle of successful ARTs was more than twofold

steeper than that of failed ARTs. Thus, parallel associations

existed between placement and success in both nest types.

Successful NATs and ARTs were located higher in the tree

and closer to the tree’s center on more upwardly angled

branches, which is fully consistent with the increase in the

proportion of nests to fledge young along PC1 (Figure 3).

The stronger association of mean nesting success with PC1

than with nest branch angle suggests that nest branch

angle is not, in and of itself, the factor influencing success.

Rather, it is no doubt one of a set of correlated traits

represented by PC1 that strongly influences the probability

of success. The positive association of kingbird nest

success with the major gradient describing nest placement

(PC1), and the consistency in the patterns shown by NATs

and ARTs, supports our prediction that kingbird nest

success is site dependent and would depend on locating

the nest in defensible sites higher in trees, and that nest

cover would little influence the probability that a nest

would fledge young (also see Weidinger [2002] for

European thrushes).

However, greater nest cover was associated with higher

fledging success when analyses were restricted to success-

ful nests. As noted by others (see comments in Bent 1942)

and quantified by us (Table 2), kingbird nests are often

exposed and visually conspicuous (for similar comments

on a congener, see Ricklefs 1977). Under these circum-

stances, nest cover likely has little effect on whether a

predator locates a nest. Thus, nest cover’s apparent

irrelevance to the success of entire nests—yet contribution

to the productivity of successful nests—is probably

because nest predation is an all-or-nothing event in most

species. Work at MNWR over the 8 yr prior to our study

implicated magpies as primary nest predators, and

although a kingbird pair can defend their nest against a

single magpie (M. T. Murphy personal observation), they

are hard pressed to drive family groups of 4–7 magpies

from the vicinity of the nest once it has been discovered.

Our failure to measure overhead cover for nests, although

of concern for some predators (e.g., Common Ravens

[Corvus corax] and Accipter spp.), would not likely

influence the probability of nest discovery by magpies

because of the methodical searches made by family groups

of magpies that move through foliage rather than fly above

it (M. T. Murphy personal observation). Cover for nests

that escaped predation may be important because of its

potential to affect microclimate and physical stresses

experienced by young. Kingbird nests are often exposed

to sunlight, and the high temperatures and high insolation

of midsummer may force females of nests with low nest

cover to stay at the nest to shade young rather than forage

for food. Thus, the principal value of nest cover is likely to
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be found in its capacity to affect microclimate (e.g., Lloyd

and Martin 2004).

We have shown that the likelihood of kingbird success,

whether they used natural or experimentally supplied

nests, varied along the primary axis describing nest

placement. Nest-site choice and parental behaviors are

inextricably linked (Ricklefs 1977), and many of the sites

used by kingbirds would be unlikely to suit most species

unless they possessed the kingbird’s well-established nest-

vigilance (Woodard and Murphy 1999) and nest-defense

behaviors (Blancher and Robertson 1982, Siderius 1993,

Redmond et al. 2009a). We suspect that our ability to

detect a positive relationship between success and nest-site

choice, which is often not the case (see review by Chalfoun

and Schmidt 2012), is explained by the relatively

depauperate predator community faced by kingbirds at

MNWR. By nesting well above ground, and generally over

water, kingbirds at MNWR greatly reduce threats of

predation by many potential nest predators. Avian

predators are the exception, and despite complementary

nest-site choice and defense behavior, the en masse

foraging of magpies takes a toll on kingbirds. Nonetheless,

the reduction of the potential set of nest predators to

mainly one species facilitates an adaptive response to
threats of nest predation and enabled its quantification by

us.

The result most difficult to reconcile with a model of

adaptive nest-site selection is the overlap in locations of
failed NATs and unused and successful ARTs (Figure 2).

Similarity in placement of failed NATs and unused ARTs

was predicted, but overlap of both with successful ARTs,

especially failed NATs and successful ARTs, is inconsistent

with an adaptive choice model. Overlap may be attribut-

able to a lack of consideration of appropriate temporal and

spatial scales in our analyses. For instance, nest-site use

may be dependent on age (Pinkowski 1979) or contingent

on past experience with particular nest locations in a tree

(Marzluff 1988, Hauber 2001) or previous nest failure by

an individual at a particular territory (Murphy 1996b,

Hoover 2003). Moreover, knowledge of conspecific repro-

ductive success substantially influences habitat use in some

species (Ward 2005, Redmond et al. 2009b). All may cause

otherwise high-quality nest sites to go unused or lead to

use of less-than-ideal sites. Variation in nest success is also

often best understood from a hierarchical multiscale

perspective that includes nest sites, habitat surrounding

the nest, and the larger landscape (Hatchwell et al. 1996,

Clark and Shutler 1999, Misenhelter and Rotenberry 2000,

Citta and Lindberg 2007). The pairs that we studied all

nested within the same landscape, but the proportion of

the riverbank covered by willows in the 40 m surrounding

each NAT and ART varied nearly tenfold (12–100%; M. T.

Murphy personal observation). The extent to which

characteristics of the ‘‘habitat patch’’ affected use of a

particular ART or influenced nest success of both nest

types is unknown but may help explain overlap in

placement of failed NATs and unused or successful ARTs.

Thus, while our experimental approach added a new

element to attempts to understand nest-site selection by

birds, overlap in the sites of failed NATs and unused and

successful ARTs highlights the difficulty of accounting for

all contingencies. Future work, in this and other systems,

should strive to account for individual histories of birds

and utilize designs that incorporate a larger spatial context

to ensure continued progress in our attempts to under-

stand avian nest-site choice.
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