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Comments on the Mechanism of Aging of Antimony Doped Tin Oxide Based
Electrochromic Devices

Joo C. Chan, Nicole A. Hannah, Shankar B. Rananavare† , Laura Yeager1, Liviu Dinescu1, Ashok

Saraswat1, Pradeep Iyer1 and James P. Coleman2

Department of Chemistry, Portland State University, Portland, Oregon 97207, U.S.A.

1Avery Research Center, Avery Dennison, Pasadena, California 91107, U.S.A.

2Albion LLC, Maryland Heights, Missouri 63043, U.S.A.

Electrochromic effects of antimony doped tin oxide (ATO) nanoparticles are investigated to

probe device yellowing (degradation). Voltage vs contrast ratio curves exhibit hysteresis, i.e.,

image-sticking phenomena due to irreversible charge insertion. X-ray, impedance and optical b*

studies suggest that the yellowing/charge trapping is nanoparticle size-dependent with 4 nm size

particles exhibiting the least yellowing. Yellowing results in increased impedances of electrode-

electrolyte interface and electrode corrosion. Plausible sources of discoloration are formation of

insulating complex alkali oxide film, carrier inversion (n-to-p type) through electrochemical Li

doping, redeposition of the corroded electrode material and perhaps residual concentration of

charge-transfer species.

KEYWORDS: antimony doped tin oxide (ATO), nanoparticles, electrochromism (EC), charge

trapping, X-ray diffraction, electrochemical impedance, EC device degradation

† E-mail address: ranavas@pdx.edu
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Non-stoichiometric SnOx is a rare transparent semiconductor exhibiting a large band-gap

(3.6 eV) and high carrier density (1019-1021 cm-3)1. Thin films of SnOx have been used in

applications ranging from electrodes in liquid crystal display devices, solar cells to sensors2.

Unlike the widely studied WO3 based electrochromic materials3 , the intrinsic electrochromic

properties of SnOx are weak but can be improved by antimony doping. Coleman et al. have

established an optimum electrochromic performance in antimony doped tin oxide [ATO] when

the mole ratio of Sb is 0.42 (= [Sb]/([Sb]+[Sn])) during sol-gel synthesis4,5. Nanocrystalline

(casserite lattice) ATO particles (4-9 nm) are readily synthesized by this technique and upon

calcination at 600°C the yellow powder transforms to a bluish color due to the presence of free

electron carriers at room temperature. The conductivity exhibits a maximum at a doping level of

about 5-10 atomic percent6, which has been attributed to various mechanisms7-9. The Sb doping

leads to n-type conductivity by creating delocalized donor atom states near the conduction band

of SnOx. Materials and device optimization for flexible and inexpensive displays exploiting

novel in-plane anode-cathode configurations have been elucidated in a series of papers4,5 . The

electrochromic (EC) devices exhibit remarkable (1) memory effect (refresh times~2-24 h), (2)

low-power consumption (needing only 10-100 μA/cm2@ 1-1.2 operational voltage) and (3)

reasonable contrast ratios (2-4).

The EC devices were constructed on flexible plastic substrates. Screen-printing, anodic

and cathodic areas separated by plastic insulation, was achieved by successive deposition of

silver paint, carbon ink (to prevent corrosion of Ag), TiO2 (conductive and reflective particles)

followed by an electrochromic layer of ATO nanoparticles (dispersed in Viton, a

fluoroelastomer), total electro-active layer thickness ≈50 m. The electrolyte contained 30%

LiCl solution in a polymeric gel (see Fig. 1). Upon application of DC voltage, the anodic area
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becomes transparent due to carrier depletion and appears white due to light reflection from the

underlying TiO2 layer. In the cathodic region, injection of electrons and migration of Li ions in

the electrochromic layer increases its optical absorption and it appears black7-9.

This paper examines factors affecting the device lifetime/aging, specifically the origins of

distinct yellowish discoloration observed in the cathodic region during operation. Discoloration

increases with the operation time and the magnitude of DC voltage. Bipolar pulse driving

scheme (switching electrode polarities) reduces the extent of yellowing (1/frequency). Given

the mixed valence nature of both Sn+4/+2 and Sb+5/+3 oxides, the development of their colored

charge transfer complexes was probed using Sn Mössbauer10 and Sb X-ray absorption near edge

structure (XANES) spectroscopies11. Sn Mössbauer spectra [Fig. 2(a)] from yellowed regions do

not show presence of peak(s) at 4-6 mm/sec, characteristic of Sn+2, neither do the antimony L1

edge in XANE spectra reveal Sb+3 ions [Fig. 2(b)]. X-ray photoelectron spectroscopy studies

showed no difference in elemental composition eliminating potential source due to

electrolyte/polymer degradation. Treatment with oxidizing (NaOCl) or reducing (SnCl2)

solutions does not alter the discoloration.

Evolution of contrast ratio (CRinjected charge), as the device is slowly (time ≈3 h)

cycled between positive and negative voltages, exhibits distinct hysteresis [Fig. 3(a)] with non-

zero CR at V=0, after voltage cycling. It suggests an impeded movement of ions from

nanoparticulate laden electrodes, i.e., irreversibility of Sb(V)2O5+4e-+4Li+ ↔ Li4Sb(III)2O5

reaction at cathode, similar to trapping of electrons in Si nanoparticles12,13 embedded in transistor

gates. To quantify yellowing, we measured b* (CIE 1976 color coordinate) using an Ocean

OpticsTM reflection spectrometer, 15 min after shorting anode and cathode together. For fresh

and yellowed samples b* values are about 2 and >4, respectively. Figure 3(b) shows
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development of b* as a function of device operation (at 1.2 V) time. b* exhibits a logarithmic

growth, [b*~ log(t)0.5]. While experiments involving fixed charging time and variable discharge

times yielded a smaller slope of –0.3. Thus, the electrochromic process appears to be only

partially reversible, controlled by very slow kinetics of charge movement.

We employed impedance spectroscopy (from 5 Hz-14 MHz, HP4192 LCR meter

interfaced to a PC) to study charge transport processes between the electrolyte-electrode

interface. The Nyquist plots (Fig. 4) were analyzed using14,15 Randle’s equivalent circuit (Zsimp

Version 3.2, from Princeton applied research); see Table I. Here Rs, Rp, and C are the high

frequency solution resistance, the polarization resistance, and the net capacitance (due electrode-

electrolyte double layer and a series capacitance due to depletion layer in the semiconductor)

respectively; W is the Warburg impedance. Rp increased (Table I) with the applied potential

consistent with Volmer-Butler mechanism14,15. The corresponding decrease in C indicated

increased depletion layer thickness9 . The mildly yellowed samples also showed an increase in

Rp, W, and Rs. For deeply yellowed samples, observed (Table I) precipitous rise in Rp and W and

drastic decrease in C implied electrode restructuring due to growth of an insulating barrier and

electrochemical corrosion.

X-ray diffraction studies of fresh and degraded devices, Fig. 5, indicated that upon

electrochromic operation, particle (grain) size decreases, especially the larger size particles. For

two devices made from different nanoparticle size-distributions, we note that particles of 4 nm

size undergo no further reduction in size (Table II). These devices exhibit lesser extent of

yellowing (but with lower CR). This can be understood in terms of their higher columbic

charging energy (~1/size) for smaller particles. Atomic absorption spectroscopy of the electrolyte

from yellowed devices revealed significant amounts of Sb, Table II.
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We consider yellowing mechanisms consistent with our experimental results. Although

we were unable to detect charge-transfer complexes of Sn or Sb within the sensitivities of the

analytical techniques employed, it is plausible that low concentrations of spatially isolated (i.e.,

not reversibly oxidized/reduced by chemical or electrical means) could cause yellowing. The

observed decrease in the ATO-electrode particle size and the Atomic absorption detection of

Sb/Sn in electrolyte implicates electrode corrosion. Migration and redeposition of electrolyte-

borne corrosion products on the electrode surface could also lead to insulating colored films of

complex oxides. A plausible example is cathodic formation of amorphous and sparingly-soluble

LiSb(V)O3
16 during grounding, through Li4Sb(III)2O5+1/2O2→ 4e-+2Li+4+2LiSbO3 reaction,

involving dissolved oxygen from electrolyte or from the SnOx lattice. Also, if an electrochemical

p-doping of the n-type ATO through insertion of Li ions by displacing Sb/Sn ions were to take

place then resulting carrier-depleted p-n junctions could form a colored film. Reported synthesis

of p-type SnOx with LiCl by high temperature pyrolytic method17 supports this possibility. Thus,

limiting the extent of Li ion insertion with uniform small-size electrochromic ATO particles (<5

nm) emerges as a new strategy for improving device-longevity.

Acknowledgements: We wish to thank Dr. Wolfgang A. Caliebe of Brookhaven National

Laboratories for collecting Sb XANE spectra on samples.
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Table I. Electrochemical impedance analysis. For data collection 5 mV rms voltage was used.
Sample 1 and Sample 2 contained different particle size distributions (see Table II).

Sample
description RS (Ω) C (F) RP (Ω) W (Ω/sec0.5) 2

Sample 1
Fresh 13.5(1) 9(6) 0.5(1) 65(1) 8.7x10-5

Yellowed 16.4(2) 7(2) 1.9(2) 200(4) 2.8x10-4

Yellowed (2 yr.) 300(100) 0.00005(2) 700(100) 20000(2400) 1.3x10-2

Sample 2
Fresh 24(1) 0.3(2) 8(1) 100(20) 4.9x10-3

Yellowed 27(2) 0.13(6) 12(2) 400(50) 6.6x10-3
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Table II. Summary of experimental results for Powder X-Ray Diffraction (SnO2) and Atomic
Absorption measurements for Samples 1 and 2. Common antimony oxides, i.e., Sb2O3

(Senamontite), SB2O4 (-Cervantite, -Clinocervantite, -Cervantite), and Sb2O5, exhibit
reflections at 27.7o, (25.8o, 27.7o, 27.5o) and 27.3o, respectively; hence the additional peak (at
26.6o) may originate from a distorted Casserite structure.a

Condition
Peak

position (3)
Crystal

sizee (nm)
Etched material

(g/cm2 Cathode )
1 2 1 2 Sn Sb

Untreated 26.52(1) 26.66(1) 41(4) 8.7(3)
Chem.

Oxidizedb 26.54(1) 26.69(1) 38(3) 8.4(3)

Oxidizedc (e) 26.56(1) 26.59(1) 24(1) 4.58(5)Sa
m

pl
e

1

Reducedd (e) 26.55(1) 26.53(1) 27(2) 4.5(3)

12 [4] 50 [8]

Untreated 26.57(1) 26.66(1) 32(5) 3.9(1)
Chem.

Oxidized
26.55(1) 26.59(1) 30(4) 4.0(1)

Oxidized (e) 26.62(2) 26.63(1) 19(3) 3.9(1)Sa
m

pl
e

2

Reduced (e) 26.55(1) 26.62(1) 28(4) 4.1(1)

0.8 [0.7] 36 [7]

a Numbers in parenthesis give standard deviations for the last quoted digit.
b Chemical oxidation was accomplished by coating the devices with ordinary household bleach.
c,d Electrochemical (e) oxidation and reduction was carried out by charging the devices in a LiCl
bath for a period of 72 h at 1.5 V.
e The crystal size (t) was evaluated using the Debye-Scherrer equation.
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Figure captions

Figure 1. Schematic Diagram illustrating the ‘side-by-side’ design of a printed electrochromic
display18. (Color Printing)

Figure 2. (a) Sn Mössbauer spectra from control (bottom) sample 1 and aged (top) sample 3
electrodes: The peaks are only observed at 0.00 mm/s corresponding to Sn(IV). [Tin isomer shift
(IS) values (peak position) of about 2.6 mm/s, 2.6-4.6 mm/s and –0.3-1.9 mm/s for Sn(0), Sn(II)
and Sn(IV), respectively]. (b) First derivative Sb XANE spectra from fresh and aged devices,
along with spectra from model compounds, Sb2O3 and Sb2O4 (a mixture of Sb2O3 and Sb2O5).
The fresh and aged samples only shows the presence of Sb(V).

Figure 3. (a) Plots of contrast ratios vs Voltage depicting hysteresis. The “coercive” voltage Vc

is approximately 0.2 V (see text). (b) Development of b* during charging, where the slope of b*
vs ln(t) is 0.53±0.04 for both curves.

Figure 4. Impedance spectra from ATO EC fresh (left) and yellowed (right) cells. Lines indicate
best fit obtained from Zsimp. [The data was fitted to the Randle’s equivalent circuit model (inset)
from Zsimp].

Figure 5. NLSFIT of three Gaussians for reflections in the 24-29 (̊2θ) region from the EC 
devices. Vertical lines indicate peak positions. The dotted and dashed lines show the
deconvoluted peaks arising from large size (dotted) and smaller size (dashed) nanoparticles. The
thick shaded curve corresponds to TiO2 reflection, which provided an internal calibration
standard for 2θ scale.
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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