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Abstract 
The modeling of complex biological systems presents a 
significant challenge.  Central to this challenge is striking 
a balance between the degree of abstraction required to 
facilitate analysis and understanding, and the degree of 
comprehensiveness required for fidelity of the model to 
its reference-system.  It is likely necessary to utilize 
multiple modeling methods in order to achieve this 
balance.  Our research created a hybrid simulation model 
by melding an agent-based model of acute local infection 
with a system dynamics model that reflects key systemic 
properties.  The agent based model was originally 
developed to simulate global inflammation in response to 
injury or infection, and has been used to simulate clinical 
drug trials.  The long term objective is to develop models 
than can be scaled up to represent organ and system level 
phenomena such as multiple organ failure associated with 
severe sepsis. The work described in this paper is an 
initial proof of concept of the ability to combine these two 
modeling methods into a hybrid model, the type of which 
will almost certainly be needed to accomplish the ultimate 
objective of comprehensive in silico research platforms.   
 
1. INTRODUCTION 
 
1.1. Problem statement and significance 
 An important new research frontier is the use of agent 
based simulation (ABS) models and system dynamic (SD) 
or differential equation (DE) models to study complex 
biomedical phenomena such as the acute inflammatory 
response (AIR) and its disordered states of systemic 
inflammatory response syndrome (SIRS), multiple organ 
failure (MOF) and sepsis [Neugebauer 2001 and 
Vodovotz et al 2004]. 
 SIRS/MOF is an important problem domain in 
biomedical research [Buchman 1997, 2001].  It is 
considered one of the most significant and prevalent 
clinical problems in critical care medicine. SIRS/MOF is 
a disease process that is a byproduct of the success of 
initial therapies for infection and injury.  It represents a 

behavioral region beyond the evolutionary “design 
parameters” of the inflammatory response, as patients 
previously suffering such a degree of initial insult would 
have died prior to manifesting SIRS/MOF. It is 
characterized by a systemic response to infection where, 
even though the original infection may be eradicated by 
the immune system and therapy, the collateral tissue 
damage results in system failure. The phenomenon 
involves interactions and feedback at multiple system 
levels (molecular, cellular, tissue, and organ) such that the 
complex interactions between components precludes the 
attribution of the systemic response, and therefore its 
control, to any single mediator or cell type. Since the 
inflammatory response is ubiquitous the manifestation of 
SIRS/MOF is distributed throughout the body’s tissues 
and organs (hence Multiple organ failure), though the 
prevalent organs involved are the lungs, gut, kidneys and 
liver.  While much has been learned in recent years, the 
translation of basic science knowledge to effective 
mechanism-based therapies for SIRS/MOF remains a 
largely unsolved problem. 
 While both ABS and SD/DE methods are considered 
to be complementary and appropriate for studying 
problems such as SIRS/MOF, very little has been 
published regarding hybrid approaches that integrate these 
two important methods into a single model that retains 
key advantages of each method and overcomes their 
individual drawbacks.  For instance, ABS can be 
computationally expensive and much less efficient than 
SD/DE, whereas SD/DE requires the assumption of a 
well-mixed system and may not handle spatial 
heterogeneity as well as ABS.  This paper presents an 
initial effort towards the development of an interface 
between ABS and SD/DE components within a single 
hybrid model. 
 
1.2. Background and brief review of the literature 
 Wakeland et al [2004] used SD and ABS to study 
cellular receptor dynamics and compared the results from 
each method.  This research indicated that the two 
paradigms are different and possess unique strengths and 
weaknesses.  Guidelines were provided for assessing 
which of the two methods might be preferred in a given 



situation.  Both modeling paradigms were useful in 
communicating two- and three- state equilibrium 
(biochemical receptor) concepts.  They are also useful in 
forcing the researcher to ask questions regarding the rules 
governing the system’s dynamics.  The ABS model 
allowed the researcher to question the rules at agent level 
but was not as convenient for modeling a system with a 
very large number of actors/agents when compared to the 
SD model.  Neither modeling tool however was superior 
for obtaining new insights into receptor dynamics at the 
level of complexity for which the specific system was 
explored. The development of hybrid models was not 
addressed in this paper. 
 One of the first studies to report the use of ABS to 
model SIRS/MOF was An [2001].  This paper 
synthesized a wide variety of basic science results into an 
overall model that illustrated the complex dynamics seen 
in the clinical environment.  The underlying processes 
(rules) were discussed in some detail, but the actual code 
was not provided in this initial paper.  In addition to 
parametric variation, the degree of randomness could also 
be easily varied. Many graphical results were presented, 
some of which showed the behavior over time for 
different cases, while others compared the results of 
multiple runs with parameters being varied over a wide 
range, or with parameters fixed but with many different 
randomly generated cases.  The paper was organized as a 
biomedical basic science research paper to illustrate how 
an in silico model could be used in the much the same 
fashion as a traditional laboratory model. 
 A recent issue Critical Care Medicine included two 
relevant papers on this topic [An 2004, Clermont et al 
2004] as well as a short editorial article [Marshall 2004] 
contrasting in silico modeling with in vivo and in vitro 
research.  The editorial is both encouraging and 
cautionary, warning that the potential benefits of these 
new approaches rest heavily upon the correctness of 
model algorithms and model data.  It asserts that ABS 
models have yet to prove themselves by predicting effects 
that were not previously known. 
 An [2004] extends his earlier work, using the ABS 
model of SIRS to conduct in silico experiments that 
generally replicate the [disappointing] results of several 
large-scale clinical trials of cytokine-directed anti-
mediator agents.  The author also evaluated several 
hypothetical clinical trials, and found that they too would 
be likely to not achieve statistically significant results.  He 
also showed how ABS models could be used to help 
design more effective clinical trials.  In addition to the 
graphical and tabular results, extensive model details were 
provided, including a link to a website containing the 
actual model used to conduct the experiments. 
 Clermont et al [2004] developed a DE-based model 
to study immunomodulatory strategies for treating cases 

of severe sepsis.  Their focus was to assess the feasibility 
of using DE models to improve the design of clinical 
trials.  The model was used to simulate 1000 patients that 
were subjected to various simulated treatments.  The 
results were presented in much the same fashion as results 
would be presented from an actual clinical trial.  This 
research replicates in silico the general findings from 
actual clinical trials--that it is very difficult to design a 
treatment strategy that is effective over a broad range of 
sepsis patients.  The authors provide an appendix that 
gives the model equations and parameters. 
 Other recent publications of interest include 
Vodovotz et al [2004], which reviewed mathematical 
models of the acute inflammatory response.  This paper 
emphasized the need for non-reductionist approaches, and 
featured results from both An [2004] and Clermont et al 
[2004].  The paper also looked closely at the validation 
strategies used to assure the correctness of the model 
logic and model data.  Further, Vodovotz et al [2006] 
outlined the process of model development as integrated 
into general biomedical research.  This paper was directed 
primarily at the traditional “wet lab” research community, 
but also outlined the process of integrated, iterative model 
development for both ABS and SD/DE models in 
conjunction with ongoing standard laboratory research. 
 
2. RESEARCH METHODOLOGY 
 Our research was carried out in three phases.  Phase I 
consisted of reproducing An’s ABS model, and then 
reducing it to facilitate parameter testing and improve 
computation efficiency.  Phase II attempted a similar 
process with the Clermont et al ODE model.  Phase III 
involved developing a new SD/DE model using the same 
modeling tool used by An to implement his ABS model 
(Netlogo 2005), and a means of linking these two 
submodels together.  Inherent in Phase III was the 
determination of the “interface edge” between the ABS 
submodel and the SD submodel.  The determination of 
this “edge” has consequences with respect to the aspects 
of model logic that are translated into the SD component, 
as well as further implications for further development of 
the resulting hybrid model. 
 
2.1 Phase I   
     We used the Netlogo implementation of An’s 2004 
SIRS model as a starting point.  This model simulates 
inflammation with interactions between endothelial cells 
and circulating inflammatory cells at the blood/blood 
vessel-lining interface.  It is a 2-d grid torus ABS with the 
grid populated with static endothelial cell agents, over 
which move inflammatory cell agents. Injury or infection 
is simulated as a spatially discrete pattern of endothelial 
cell damage that can be varied by size.  Therefore, at 
initial perturbation there is  portion of the ABS that is 



“damaged” and a portion that is still “normal.”  The 
relative sizes of these areas changes as the system either 
“heals” or progresses to “death.” Even though the ABS is 
extremely abstract compared to reality, is still quite 
complex, requiring 14 pages of procedures.  There are 14 
different “breeds” of agents representing different cell 
types, each of which has unique logic.  First, minor 
differences between the logic documented in the paper 
and the model provided on the web were rectified, and 
then a variety of experiments were run in order to confirm 
the prior results, and ascertain the feasibility and potential 
value of creating a hybrid version of the model.  
Observing the graphical display during several short 
model runs indicated that most of the simulated tissue was 
either healthy or severely “damaged,” with a “sharp” 
boundary between the two regions.  This suggested that 
the model could probably be scaled down without loss of 
utility.  The area of the modeled region was scaled down 
factor of 4.  Also, the number of “cases” per experiment 
was reduced from 100 to 10, and the time per run reduced 
from 28 to 7 simulated days.  Other minor changes were 
also made, including modifying the logic so that the 
iteration number would not be incorrectly reset to zero, 
and to force the initial infection to be automatically 
invoked for the first iteration instead of requiring the user 
to remember to push a particular button at the start of the 
run. 
 Sufficient experiments were run to reproduce the 
results reported in Figure 1 of An [2004].  These were run 
on multiple computers to reduce the total elapsed time.  
The total elapsed computer time was nearly 30 hours.  
The computers used included three laptops with processor 
speeds varying from .4 to 1.2 GHz.  The results clearly 
showed the Initial Injury Number (IIN) values that 
demark the lower and upper boundaries of the “region of 
interest” (ROI) described by An [2004]. 
 The next set of experiments required many more runs 
than the first set, so it was necessary to further optimize 
the model logic.  The primary changes were: 1) reducing 
small values of biochemical agents to zero in order to 
lessen the number of calculations required in the diffusion 
process, 2) moving the “divide OXY by 100” from inside 
the SUM operation to outside the SUM, and 3) calculating 
the SQRT function used in the injure-sterile and injure-
infection procedures one time instead of calculating this 
function IIN times for each iteration.  These changes 
speeded up model execution by a more than a factor of 
two, dropping the computer time required to run the new 
experiments from 70 to 30 hours. 
 Procedures were also added to facilitate experiments 
that incrementally removed the effect of individual model 
components and combinations of components.  These 
experiments test the impact of removing T-cells and T-
cell germinators from the model.  First, the five initial 

values associated with T-cells were set to zero, one at a 
time. Next, selected combinations of two or three initial 
values were set to zero simultaneously.  Finally, all five 
initial values were set to zero.  For each parameter set, 10 
cases were simulated, for each of two different values of 
IIN.  The IIN values were chosen to reflect the lower and 
upper bound of the ROI where the uncertainty in outcome 
is the highest. 
 The data collection procedures provided within An’s 
original model were not enhanced, leading to a degree of 
experimental inefficiency. This was rectified later, as 
described below. 
 
2.2 Phase II  
     In preparation for adding SD/DE logic to the ABS 
model, the DE model published by Clermont et al [2004] 
was reviewed. This mechanistic model of an acute 
inflammatory process was a systematic series of 
differential equations one for each inflammatory 
component chosen for simulation.  Each equation 
describes the state level or concentration of components 
and, based on the principle of mass-action, the 
interactions of these components.  Components were 
selected for their accepted correlation to clinical 
outcomes.  Rate constants were extracted from the 
pertinent literature or empirically determined to simulate 
reported data. 
 An attempt was made to independently reproduce 
their results by implementing the equations and 
parameters provided in the appendix of the paper. We 
entered the 18 differential equations and more than 80 
constants into Matlab [2005].  A few minor typographical 
errors in the published paper were corrected as seemed 
most reasonable, and assumptions were made regarding 
omitted values.  We attempted to perform experiments 
with this model by specifying values for the 11 floating 
parameters and using Matlab’s DE solver to solve the 
differential equations.  However, despite interaction with 
Clermont and his team we were never able to reproduce 
the fundamental results.  Since this was not the primary 
thrust of our research we did not persist in this endeavor, 
however, a significant benefit of this activity was 
increasing our understanding about representing the target 
system’s interactions in equation form. 
 
2.3 Phase III 
     A hybrid model was created using the System 
Dynamics tool within Netlogo.  We use the term “edge” 
for the interface and boundary between the ABS and SD 
submodels. The determination of the “edge” can be made 
on a series of system characteristics: structural, 
behavioral, hierarchical, etc. To determine the “edge” in 
this case we focused on those aspects of the biological 



system that fell into either a local process or a systemic 
process. Since the base ABS focused on the expansion of 
an initial localized infection towards systemic effects, the 
area of initial insult and subsequent interactions at this 
point were left to the ABS.  However, certain aspects of 
the biological response, primarily related to the 
production and life-cycle of circulating inflammatory 
cells, occur “off-screen” from the ABS, and it was felt 
that these dynamics could be better modeled using a 
SD/DE methodology.  Accordingly, we implemented a 
simple DE submodel that focused on systemic 
polymorphoneutrophils (PMN) production, maturation, 
sequestration, and release.  This submodel had three state 
variables: PMNs_mature_marrow, PMNs_circ, and 
PMNs_sequestered.  Many of the flows between these 
compartments were modeled strictly within the SD 
submodel, but others were influenced by the conditions 

within the ABS submodel.  Figure 1 shows the flow 
diagram for the SD submodel. Additional integration 
between the SD and ABS submodels included 
modifications to the logic in the ABS submodel regarding 
the creation of PMNs.  In the purely ABS version of the 
model, the logic was to randomly generate PMNs at a rate 
the corresponded to the need.  In the hybrid model, the 
“availability” of PMNs (modeled in the DE submodel) 
was used to modulate the PMN creation rate with the 
ABS submodel.  In the SD submodel, the maturation of 
PMNs was influenced by total granulocyte colony 
stimulating factor (GCSF) from the ABS model.  The 
primary role of the SD model was to manifest a delay 
between the elevation of the cytokines and the increase in 
PMNs. The experiments described previously were then 
rerun using the hybrid model. Further details of this 
model may be found in Wakeland et al [2006].  

 

A 

 B

 
Figure 1: Flow diagram of the system dynamics submodel, showing the compartments and their interconnections.  Inflammatory responsive 
cells, in this case polymorphic neutrophils (PMNs), are produced and mature in the bone marrow (PMNs_mature_marrow). These are 
released into general circulation (PMNs_circ) at a basal rate, which is responsive to chemical signals produced elsewhere in the body. 
Circle A highlights the location of feedback from the inflammatory process represented by the agent-based model.  PMNs are sequestered 
(PMNs_sequestered) from circulation by local chemical signals and attractants produced locally by the inflammatory process. Circle B 
highlights the location of feedback (the transition of circulating PMNs into inflammatory tissue) to the agent-based model. Emigration of 
PMNs is the “normal” homeostatic loss of PMNs to other tissues.  

 
3.  RESULTS 
 
3.1 Phase I Results 
     Figure 2 shows the initial experimental results using 
the ABS model.  The x-axis indicates the initial injury 
number IIN, from 0 to 1000.  For each value of IIN two 
points are shown, the end infection (EIN) and the end 
oxygen deficit (EOD), where end refers to the end of the 
simulation run (considered to be one week after the initial 
injury/infection in our case vs. four weeks used by An).  
Each point represents the result from one of the 10 

simulated cases.  The mean values for each of these 10 
cases is also shown, in a larger font, with line segments 
connecting these points.  When IIN is small, both the 
mean EOD and mean EIN are also small, indicating a 
favorable prognosis.  When IIN is very large, both EOD 
and EIN are large, indicating an almost certain 
unfavorable outcome.  An [2004] describes the center 
region of Figure 2 as the “region of interest,” where EIN 
is small, but EOD remains large.  In this region, the 
inflammatory response has ameliorated the initial 
infection, but the “collateral damage” to otherwise normal 
tissue prevents recovery. 

 



 
Figure 2: Reproduction of the “Region of Interest” (An 04). The left hand curve shows the mean value of end oxygen deficit for each given 
value of Initial Injury (IIN).  Each mean value is calculated from 10 cases (runs) for each particular value of IIN.  The individual values for 
each case are also shown as a scatter-plot.  The right hand curve is similar, but shows the end injury number (EIN) for the corresponding 
IIN values. The region of interest is between the two curves. 
 
 

 
Figure 3. Graph A shows the end oxygen deficit (EOD) and graph B shows the end injury number (EIN) for each of 14 different sets of 
parameter values.  10 simulated cases are shown for each parameter set and for each of the two values for initial injury (IIN). 
 
 
 Figure 3 shows the results of the second set of 
experiments focusing on the effects of the T-cell 
components.  Parameters associated with T-cells were 
varied significantly, essentially “turning off” their pro-
inflammatory and/or anti-inflammatory effects.  Ten cases 
were run for each set of parameter values.  Figure 3A 
shows EOD when IIN = 150, near the left hand boundary 
of the region of interest (see Figure 2). 
 Figure 3B shows EIN when IIN = 700, which is near 
the right hand boundary of the region of interest.  One 
might expect that the pattern of outcomes in terms of 

EOD and EIN would be correlated to some degree with 
which set of parameters was used.  However, as can be 
seen in Figure 3 the overall impact of these particular 
processes is essentially “lost in the noise,” since the 
variation in the results for a given set of parameter values 
is much larger than the variation between different sets of 
parameter values.  When IIN = 150, EIN is near the 
minimum in all cases, and when IIN = 700, EOD is at the 
maximum in all cases; hence graphical results for these 
experiments are not shown. 



 Statistical tests of the data shown in Figure 3 
indicated that the hypothesis that these samples were all 
drawn from the same population cannot be rejected 
(p<.05).  Therefore, the removal of the T-cell effects did 
not appear to have a statistically significant effect. 
 A subjective result from Phase I was the sense that 
the ABS model may be unnecessarily complex.  The fact 
that it takes many hours or even days to run a full set of 
experiments limits the practical utility of such a model, an 
acknowledged drawback of ABS.  The high degree of 
complexity also makes it difficult to assure that the logic 
matches the modeler’s intent, much less reality.  
However, a major strength of the ABS model is its 
transparency—it shows exactly how the researcher 
believes that the various mechanisms actually work. We 
will address the implications of the balance between these 
two issues in the discussion. 
 
3.2 Phase II Results 
 No objective results were produced in Phase II.  
However, the experience demonstrated the difficulty in 
utilizing prior published papers and models, particularly 
in systems with very complex dynamics.  The complexity 
of the resulting models represents a significant barrier for 
other researchers to overcome in order to replicate, and, 
ideally, extend published results. 
 
3.3  Phase III Results   

 Testing the hybrid model prompted a sequence of 
modifications in the hybrid logic, and revealed problems 
with the model scaling that was done in Phase I.  This was 
corrected, and the experiments were rerun.  Figure 4 
shows a recreation of Figure 2 using the hybrid model 
results. The mean values from the ABS model (Figure 2) 
are also shown for comparison.  The results are very 
similar, except that slope of the EOD graph is steeper for 
the hybrid model.  
 The hybrid model was then used to rerun the 14 
parameter set experiment from Phase I.  The results are 
shown in Figure 5.  Only one graph is shown, EIN with 
IIN=700, for comparison to Graph B from Figure 3.  In 
Figure 5, most of the points are located at the extreme 
values for EIN, whereas in Figure 3, Graph B, this is not 
the case.  The results for EOD are not shown in Figure 5 
because they do not differ appreciably from Figure 3, 
Graph A. 
 
4.  DISCUSSION 
 This study demonstrated that the use of agent based 
simulation modeling, system dynamics modeling, and 
differential equation-based modeling is not only 
complementary, as had been suggested by others, but can 
in fact be unified into a single hybrid model, with the 
benefit of able to optimize the balance between the 
strengths and weaknesses of each method. 
 

 
Figure 4. Comparison of hybrid model results (Region of Interest) with ABS model results from Phase I.  The solid line with hollow 
squares indicates the mean ending oxygen deficit (EOD) vs. initial injury number (IIN).  The smaller hollow squares show the results from 
each of ten runs from which the mean was computed.  The solid line with diamonds shows the mean ending injury number (EIN) vs. IIN, 
with the smaller diamonds showing the results for individual runs.  The dashed lines show the mean values from the ABS model runs for 
comparison (taken directly from Figure 2). 
 
.



 
Figure 5. Results of running the 14 parameter sets experiment 
using the hybrid model. The results are shown only for EIN with 
IIN=700 because they differ appreciably from Figure 3, whereas 
the results using the hybrid model for EOD with IIN=150 look 
exactly the same. 
 
 Phase I results indicate that some aspects of the 
original ABS model may not impact the primary 
behavioral responses to the degree seen clinically.  
Specifically, the lack of effect of completely removing T-
cells suggests that further work is needed to verify that the 
logic correctly captures the phenomena to an appropriate 
degree of approximation. 
 Phase II results underscore how difficult it is for 
biomedical researchers to replicate and on the work of 
others, even with full disclosure of all aspects of the prior 
research and full cooperation of the original research 
team. 
 Phase III results show that differential equations, 
specified using system dynamics (SD) notation, can be 
easily added to an ABS model implemented in Netlogo, 
and that the resulting submodel can be integrated easily 
into the ABS logic and vice versa.   The behavior of the 
AIR model with a simple SD submodel replacing some of 
the agent-based logic was nearly identical to the behavior 
of the pure ABS model.  The region of interest (Figure 2) 
was modified only slightly (Figure 4) in that the slope of 
the EOD as a function of the initial injury becomes 
steeper.  One possible explanation for this result is that 
since the SD submodel is deterministic, and it replaced a 
portion of the ABS model that was stochastic, the overall 
uncertainty of the response became smaller, and thus the 
transition from recovery to non-recovery as a function of 
initial injury occurred more rapidly. 
 Challenges in the present study included the high 
degree of complexity in both the ABS model and the 
published DE model.  This complexity made it very 
difficult to achieve a high degree of confidence that the 
model logic/equations/parameters were correctly 
implemented.  The ABS and DE models provided by the 
original researchers both contained errors or other types 
of discrepancies, from missing parentheses to equations 

with entirely different terms. It was necessary to correct 
these inconsistencies before the primary research 
activities could commence.  The high degree of 
complexity also dramatically increased the time required 
to run experiments with the ABS model and the hybrid 
model. 
 One conclusion we reached is that researchers should 
strive to find ways to reduce the complexity of their 
models to the irreducible minimum.  The present research 
suggests that both the ABS model and the hybrid model 
contain non-essential components.  The problem with this 
is not simply that the models contain logic or variables 
that are superfluous and can be ignored. Rather, these 
additional components may actually be a liability because 
they obscure important relationships and make it much 
more difficult for other researchers to confirm and/or 
extend the research.   
 There is, however, also recognition of the potential 
pitfalls in the selection of modeling ontologies if 
“efficiency” and “simplicity” are the overarching 
modeling goals, particularly in systems as complex as the 
inflammatory response.  One of the benefits of using 
models to study the AIR is the ability of 
mathematical/simulation models to function as tools for 
knowledge representation and integration.  A major 
difficulty in current attempts to characterize the AIR is 
the sheer volume of mechanistic data present; it is 
virtually impossible to determine which aspects of the 
system are “critical” and which areas are not.  In fact, it is 
most likely that it is combinations and clusters of cells 
and mediators that are the true determinants of system 
behavior, rather than individual mediators or cell types.  
Therefore, at least initially models of the AIR need to be 
quite inclusive and comprehensive, even at the initial 
expense of efficiency and simplicity.  However, through 
reductive processes as demonstrated in this paper, some 
degree of determination of “criticality” may be 
accomplished by manipulation of the in silico mirror of 
the reference system, thus leading to insights with respect 
to the reference system that may have implications for 
more traditional laboratory research by identifying 
potential targets for manipulation. 
 Our results suggest that caution should be exercised 
in the interpretation of the behavior of these models with 
respect to clinical practice.  The parameter changes tested 
using the ABS model could have easily represented the 
potential impact of a pharmacological intervention.  
However, the research also demonstrated that the impact 
of other variations appear to almost entirely mask the 
potential impact of this type of targeted intervention.  
While the idea of in silico clinical trials is very intriguing, 
much more research is called for.  Parameter testing of the 
type we have shown should be a necessary component in 
the analysis of these models, not only to delineate the 



“true” effect of an intervention, but to also facilitate the 
criticality determination of the system’s components as 
described above.  Given these cautions, it should be 
emphasized that the use of these mathematical modeling 
techniques are not intended as replacements for standard 
methods of biomedical research, but rather are intended to 
be adjuncts to the general research process. 
 The present study was exploratory in nature, and 
focused on a single ABS model and its extension to a 
hybrid version.  Consequently, these findings are only 
suggestive in nature; further examination of multiple 
examples from multiple modeling disciplines is 
warranted.  The concept of “articulated” models involving 
multiple, interchangeable components has been raised by 
Ropella et al [2005] as a means of advancing model 
design and use.  In this manuscript we use the term 
“edge” to refer to this articulating interface, “edge” as 
opposed to “point” insomuch the interface is multi-
dimensional, “edge” as opposed to “surface” as “edge” 
connotes, simultaneously, both a boundary and a 
transition.  We believe that the general application of 
modeling to biomedical research will be greatly enhanced 
by the development of hybrid models that will utilize the 
respective advantages of different modeling methods. 
 Specific opportunities for further research suggested 
by the present research include: 1) creating a simplified 
version of the model that retains its behavioral richness, 
2) the combination of different ABS submodels 
representing specific organs linked together within an SD 
“wrapper” to simulate organ-organ crosstalk and total 
body behaviors, 3) the identification and investigation of 
different “edges” of ABS and SD/DE interfaces that 
would best utilize the respective strengths of each 
method, and 4) the development of a means of 
dynamically “shifting” the edge between the ABS and the 
SD/DE submodels with the intent of improving 
computational efficiency in large scale models. 
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