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How students use mathematical resources in an electrostatics context
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We present evidence that although students’ mathematical skills in introductory calculus-based
physics classes may not be readily applied in physics contexts, these students have strong
mathematical resources on which to build effective instruction. Our evidence is based on clinical
interviews of problem solving in electrostatics, which are analyzed using the framework of Sherin’s
symbolic forms. We find that students use notions of “dependence” and “parts-of-a-whole” to
successfully guide their work, even in novel situations. We also present evidence that students’ naive
conceptions of the limit may prevent them from viewing integrals as sums. © 2008 American Association
of Physics Teachers.
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I. INTRODUCTION

Mathematics is essential for most physics courses. As
physics teachers, we would like to assume that our students
have the prerequisite mathematical skills necessary for suc-
cess in our courses, yet too often it seems they do not. Stu-
dents forget how to appropriately apply mathematical tools
or work out the details incorrectly. Perhaps students are still
struggling with difficult concepts from their earlier math-
ematics courses. Addressing mathematics competency cre-
ates a tension when we believe we must spend time on a
review of mathematics at the expense of physics content.

We give evidence, building on the work of other physics
educators, that students do have useful mathematical re-
sources on which we can build effective and efficient instruc-
tion. We base our work on the resource perspective which
argues that students have small-grained resources on which
they can build and further their knowledge.1–3 These re-
sources are neither right nor wrong in themselves, but can be
correctly or incorrectly applied. For example, the resource
that “closer means stronger” correctly explains why we sit
close to a fire on a cold night, but is incorrectly applied when
used to explain the seasons on Earth.1

Starting from this resource perspective, we investigate
how students know when to integrate in an electrostatic con-
text by examining the questions: What resources cue students
to integrate in a given context? Are these resources common
among students? Are some resources more useful than others
in applying integration to novel physics situations? Are any
resources commonly misapplied?

In Secs. II and III we give an overview of the related
literature on resource theory, specifically Sherin’s theoretical
work on mathematical resources.4 We then outline in Sec. IV
the methodology used to gather and interpret data, and in
Sec. V give details of the four electrostatics questions asked
of the ten student sample. The core of this paper follows in
Sec. VI, in which we present how students use mathematical
resources to cue integration in electrostatics and extend our
work to a larger student population. We speculate in Sec. VII
on the developmental nesting of resources in this context.
Section VIII outlines some implications for instruction.

II. RELATED LITERATURE

A. The integral and related concepts

Previous investigations into students’ understanding of
calculus concepts have shown that students can carry out
methods of differentiation and integration, but many lack the
conceptual underpinnings necessary to explain procedures,
use multiple strategies, and connect concepts, even after ex-
plicit instruction.5–8 This conclusion is similar to findings of
student work in physics: Students can carry out the calcula-
tions, but many lack the associated conceptual
understanding.9

A central concept of an integral is as the limit of a Rie-
mann sum. Orton6 interviewed 110 British students ages
16–22 on several integration and limit tasks and classified
student errors as structural �fundamental or conceptual�, ex-
ecutive �operational and procedural�, or arbitrary. One ques-
tion asked students to calculate the sum of five rectangles
that approximated the area under a curve; 97 of the 110
students answered this question correctly. The other 13 stu-
dents had difficulty simplifying their answer. Based on this
result, it was concluded that students do not have significant
difficulty evaluating a given Riemann sum.

Students were also asked to consider the sequence of areas
obtained by using smaller rectangles to approximate the area
under a curve. Students’ responses to this task indicated that
the majority of students view the limit of the Riemann sum
as an approximation, not as an exact answer. This result
points to the difficulty that students have coordinating their
understanding of an integral as a limit.

Cornu10 argues that students’ previous experiences with
the word “limit” contribute to the way in which they make
sense of the concept of limit �both functional and sequential�
in mathematics classes. For instance, students may define the
word limit as a point that is approached but never reached, a
constraint, or a high or low point. Cornu calls these collo-
quial uses of limit spontaneous conceptions, similar to naive
conceptions or misconceptions in physics.11 Students often
view the limit as a dynamic process or as unattainable and
have significant difficulty with the concept of limit because
of its underlying mathematical ideas, such as function, infin-
ity, and the real number system.10,12–15
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B. Electrostatics

Work by Harrington16 and Kanim17 probes student under-
standing of electrostatics and circuits. Many student difficul-
ties in this area arise from conceptual difficulties with vector
superposition; therefore, we have purposely avoided vector
issues in this study.

Kanim17 analyzed students’ answers when they were asked
to calculate the net electric field at a given point due to a bar
of charge. After direct instruction, only 40% of the students
knew that integration was necessary for a continuous charge
distribution and only 10% did the calculation correctly. Stu-
dents also had trouble making sense of charge density, either
assuming that each point had the charge of the whole, or that
each point had a charge so small that the total effect was
small compared to a single point with the same total charge.
Some students treated the distributed charge as if it were at a
point, which is called the “center of charge” in analogy to
center of mass. This approach, like representing a country by
its leader, attempts to represent the whole by a part; it is
named the “part-for-whole” knowledge resource.18 We will
refer to this resource by its Greek name “synecdoche” to
avoid confusion with the “parts-of-a-whole” resource, de-
fined in the next section.

III. THEORETICAL FRAMEWORK
ON STUDENT RESOURCES

The resource perspective focuses on content-specific
primitive cognitive elements and their complex interactions.4

Being content-specific, physics resources can be conceptual,
epistemological �related to beliefs about learning�, math-
ematical, or otherwise. Being primitive, these knowledge el-
ements seem self-evident to the user; they are not explained
or questioned. diSessa’s1 work on sense of mechanism was
the first work in this vein; in Ref. 1 he outlined the primitive
intuitive elements, such as “closer means stronger,” that we
all use to explain the physical world around us.

For our work, we need to understand mathematical re-
sources to help us analyze students’ work as they link intu-
ition with mathematical formalism. For this, we turn to the
work of Sherin,4 who has outlined cognitive mathematical
primitives �called symbolic forms� that allow students to “as-
sociate meaning with certain structures in equations.” As a
simple example, the dependence form is associated with the
idea that the quantity of interest depends on a variable x and
changes when x changes. The associated structure is given
by �. . .x . . . � and indicates that x appears somewhere in the
equation. Symbolic forms allow students to create, modify or
complete, evaluate, and extract implications from equations.
Sherin summarizes the use of symbolic forms:

“Successful physics students learn to express a
moderately large vocabulary of simple ideas in
equations and to read these same ideas out of equa-
tions. I call the elements of this vocabulary sym-
bolic forms. Each symbolic form associates a
simple conceptual schema with an arrangement of
symbols in an equation. Because they possess
these symbolic forms, students can take a concep-
tual understanding of some physics situation and
express that understanding in an equation. Further-

more, they can look at an equation and understand
it as a particular description of a physical system.”4

Sherin’s experimental evidence for symbolic forms came
from observing five pairs of sophomore engineering students
at the University of California, Berkeley who were solving
moderately difficult physics problems. Sherin’s strongest evi-
dence that students are not only applying known principles is
that one pair of students invented a new equation for the
coefficient of friction based on their intuition. His data also
show that students display much certainty �and even emo-
tion� when invoking symbolic forms. For example, when two
students derive the equation a=g� for the acceleration of
two shoved blocks of different mass on a rough surface �with
coefficient of friction �� one student notes, “Wait a minute.
Oh, they both take the same time! �surprised tone�. So, no
matter what the mass is, you’re gonna get the same, the same
acceleration.”4 They are able to see something new at once
and with great certainty by recognizing the “no dependence”
symbolic form in this equation. We infer that symbolic forms
can �at least in some circumstances� be effortlessly invoked
and applied by students.

Sherin’s data corpus included only problems that can be
solved algebraically. Our work is an application of Sherin’s
work in a calculus context. We show that the same symbolic
forms are also useful to students and spontaneously invoked
by them in problems requiring calculus. We expected to see
the parts-of-a-whole symbolic form as the key idea of inte-
gration in electrostatics problems. This symbolic form is as-
sociated with the idea that several pieces must be added to-
gether to make a whole, as when tiny bits of charge are
added up to obtain the total charge.

IV. METHODOLOGY

In the spring of 2000 we conducted individual interviews
with 12 students: Six students from an integrated calculus/
physics course and six from a conventional physics course
that had integral calculus as a corequisite. The details of the
integrated calculus/physics course have been described
elsewhere.19

Our initial intent in inviting students from two different
types of classes was to look for differences in student perfor-
mance due to different instruction. However, we realized that
the similarities between the two groups of students were
worth studying in detail and would give us insight into the
resources that all students use to solve calculus-based phys-
ics problems. Thus, we choose not to compare the two
groups of students in this report.

We recruited students of various abilities; these abilities
were judged based on grades from their previous calculus
and physics courses. Four students had calculus and physics
grades of A; four had calculus and/or physics grades of B;
and four had calculus and/or physics grades of less than B.
We followed the practice of interviewing a small number of
students in order to gain detailed insight into student
thinking.4,7

We conducted three interviews with each student; each
interview was an hour long. The first and the last interviews
concentrated on problem solving; the second interview fo-
cused on the use of calculus to calculate physical quantities.
We will discuss only the second interview.

The students were coached in a think aloud protocol dur-
ing the first interview to help them understand the level of

571 571Am. J. Phys., Vol. 76, No. 6, June 2008 Dawn C. Meredith and Karen A. Marrongelle

 



detail we wanted to hear as they worked on the problems. All
interviews were audiotaped and fully transcribed. Two stu-
dents were omitted due to incomplete interviews, leaving a
total of ten. Students were informed that they would be
working on electrostatics problems but were not prompted to
use calculus as they solved the problems. Setting up the in-
terview context in this way allowed us to determine if stu-
dents knew when and how to use integration in an electro-
statics context. The interviews occurred at least 1 month after
the students were tested on electrostatics while students were
studying circuits and magnetism.

Interview transcripts were analyzed in several stages. First
we noted whether or not students integrated in each problem.
If students did not integrate, we looked for evidence that they
failed to see essential connections �for example, between ac-
celeration and electric field� or had conceptual difficulties
�for example, they were unclear where the charges resided�.

For students who used integration to solve the problems,
we examined why they used integration. Because both our
text20 and the curriculum emphasized integration as a sum,
we expected that students would describe integration as a
process of summation. We were surprised to find a few stu-
dents who did not mention sums. This omission led to our
third stage of analysis, in which we re-examined these inter-
view transcripts for more detail on how the students de-
scribed integration. Lastly, we looked for the invention of
equations using symbolic forms and for instances where
symbolic forms did not help students completely solve prob-
lems, or even led them astray.

We were surprised to find that what we classified as the
most difficult problem �Problem 4, the capacitor problem�,
was the problem that most readily cued students to integrate.
Students struggled on this problem when they failed to con-
nect electric field to acceleration, but once that connection
was made, they were able to recall �not invent� the connec-
tion between acceleration and position.

V. ELECTROSTATICS PROBLEMS
AND STUDENT RESPONSES

In this section we give a brief overview of the interview
problems �Table I� and student responses �Table II�. We ex-

plain the cues for integration in the next section. In the fol-
lowing we use pseudonyms for all of the students.

The constant charge density problem did not require cal-
culus to solve, but served to show how students thought
about density. It was important to know if students had some
understanding of density before attempting more difficult
problems.

All ten students answered this question correctly, though
not always immediately and often with initial errors or un-
certainty. Several students mentioned the process of multipli-
cation. Georgette’s response is typical: “�The charge density
is� 5 �C /m. And the length is 0.5 m, so if you multiply j
�charge density� times L �length� you get 2.5 �C.” Other
students did not explicitly mention a formula, as is shown in
Edward’s answer: “So if it’s 5 �C /m and that is only 0.5 m,
the total charge would be 2.5.”

The nonconstant charge density problem required integra-
tion for solution. Three of the ten students misinterpreted the
spatial dependence in the problem. These students inter-
preted the spatial dependence as a dependence on the length
of the bar and not on the distance of a piece of the bar from

Table I. Problem statements.

Problem Description

1 Constant density: Consider a bar of charge with a charge density of 5 �C /m.
If the bar is 0.5 m long, what is the total charge on the bar?

2 Nonconstant density: Consider a bar of charge with a charge density of
�5+7x� �C /m, where x is measured in meters and x=0 at the left end of the
bar. If the bar is 0.5 m long, what is the total charge on the bar?

3 Electric field: Consider again the bar of charge with a charge density of
5 �C /m and 0.5 m length. What is the electric field 3 m directly to the left of
the bar?

4 Capacitor: Consider a parallel plate capacitor on which the charge is changing
over time so that the electric field is also changed as E�t�=8 sin�5t� N /C in
the y direction, where the y direction is vertical. The plates are 3 cm apart and
40 cm long. An electron with charge 1.6�10−19 C and mass 9.11�10−31 kg
enters the region between the plates at time t=0 with velocity v0=2�106 m /s
in the horizontal direction, at a distance midway between the plates. Does the
electron hit the plates before leaving? Assume that �at each instant in time� the
electric field is constant within the capacitor plate and 0 outside; that is, ignore
fringe effects. Also ignore the gravitational force �Ref. 21�.

Table II. Summary of students’ use of integration cues.

Name Level Summary

Larry Low Never integrated.
Bruce Low Integrated once using recall.
Ivan Low Integrated once using dependence.
David Medium Integrated twice using dependence.
Edward Medium Integrated three times using dependence and

recall.
Alex High Integrated three times using all three cues.
Kevin High Integrated twice �almost� using dependence

and parts-of-a-whole.
Isaiah Medium Integrated three times using all three cues;

mentioned limits.
Esther High Integrated three times using all three cues;

mentioned limits.
Georgette High Integrated twice using parts-of-a-whole and

dependence; mentioned limits.
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the origin, relieving them of the need to integrate. The re-
maining seven students understood the density equation as it
was intended, each mentioning in some way that the density
varies along the length of the bar. All of them used integra-
tion to solve the problem.

As students attempted to solve the electric field problem,
we observed a large spectrum of student skills and under-
standings. Three students struggled with the physics con-
cepts; each introduced ideas from several places �for ex-
ample, bar magnets and capacitance�. They were unable to
make much headway even after they were given the formula
for the electric field due to a point charge and did not see the
need to integrate. Two other students solved this problem
using the center of charge method.16,17 The remaining five
students used integration to solve this problem.

The capacitor problem is nontrivial: The motion is two-
dimensional, the acceleration is given only indirectly and
changes in time, and the position is necessary to solve the
problem. The physical situation was unfamiliar to the stu-
dents, though many made useful analogies to motion in a
constant gravitational field. Additionally, the magnitudes of
the quantities were confusing to some students: The time the
electron is inside the capacitor is beyond their experience. A
complete solution would require solving a transcendental
equation; none of the students got far enough to see this
difficulty.

Four students were unsuccessful, primarily because they
did not see that the connection between electric field and
acceleration was a necessary part of the solution. The re-
maining six students realized that integrating the acceleration
would yield the velocity and the position, although there was
a range of abilities in carrying out that plan.

VI. STUDENT RESOURCES USED
IN INTEGRATION PROBLEMS

At this point we return to our main questions: What re-
sources do students use to help them integrate in physics
contexts? Are these resources common among students? Are
some resources more useful than others in being able to in-
tegrate in nontrivial or novel physics situations? In this sec-
tion we give some of the details of student answers, orga-
nized by the three different cues for integration that we found
students used: Recall, the symbolic forms of dependence,
and parts-of-a-whole. Failure to integrate is also discussed.
These results and the students’ approaches to solving the four
problems are summarized in Tables II and III.

Within each cue, quotations are organized by question:
Nonuniform density, electric field, and capacitor. We have
included some long and less than clear comments by the
students and we speculate in Sec. VII about what we can

learn from students’ lack of clarity. We have deleted some of
the interviewer’s simple prompts. We begin each cue with a
description of how the cue is identified, building on Sherin’s
work for the identification of symbolic forms.

One student, Larry, did not employ integration in his so-
lutions for any of the problems. We are unable to determine
if his lack of progress arose from difficulties with physics,
calculus, or both. Thus, we present an analysis of the nine
remaining students’ approaches to the problems.

A. Integration not cued

Five of the nine students failed to integrate in at least one
problem. Three students did not integrate in the nonconstant
density problem because they interpreted x to be the total
length of the bar and thus misinterpreted the dependence in
the equation. In the electric field problem, four students
failed to integrate. Ivan and David used the incorrect center
of charge method. Neither Georgette nor Bruce integrated in
this problem, and we infer this lack was due to their struggle
with the physics concepts. Both Georgette and Bruce brought
in several related but irrelevant ideas �dipoles, perpendicular
and parallel fields, magnetic fields, and capacitance�. In the
capacitor problem, Larry and Ivan failed to integrate; they
could not have been cued to integrate by any method because
they did not recall the relation between force and accelera-
tion.

In all cases in which integration was not cued, there was
evidence that a misunderstanding of the physics prevented
the student from being able to see the need to integrate;
however, we cannot conclude that if they had understood the
physics, they would have been cued to integrate. There were
two cases where clearing up confusion about the physical
situation allowed students to solve the problem confidently.
In one case, Isaiah correctly calculated the charge in the
constant density problem. He was not confident in his answer
because he was not sure that the density was a smooth func-
tion; he instead focused on the discreteness of the electrons.
Once the interviewer suggested that he assume the total
charge in each same sized chunk is equal �acknowledging
that this assumption is an idealization�, he was confident that
his answer was correct. The second case appeared in the
electric field problem. Kevin was stuck for a long time, not
knowing if the charge on the bar is allowed to move. Once
he was asked what he would do if the charge were evenly
spread over the bar, he knew immediately to integrate, and
he proceeded nearly correctly and with confidence.

We conclude that an understanding of the physical situa-
tion is necessary, but not sufficient for students to use their
mathematical resources. This idea is not new, but bears
repeating.

Table III. Summary of how each integration cue is used by students.

Cue

Used by how
many students?

�10 max�

Used in how
many solutions?

�30 max�
Used in which

problems?
Used with other

cues?

Recall 5 5 Capacitor only No
Dependence symbolic
form

8 14 All three Yes

Parts of a whole
symbolic form

5 8 All three Yes
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B. Recall cue

Sherin4 notes that recall is not a symbolic form because it
is not necessarily connected with a conceptual understanding
and does not have a single mathematical structure; neverthe-
less, it can be useful in problem solving. We found that stu-
dents did use it to cue integration. We identify the recall cue
in student work when a student simply states a fact such as
“velocity is the derivative of position.” This cue was used in
the capacitor problem by five of the nine students. None of
these students mentioned any notion of dependence or parts-
of-a-whole in the same problem. It should not be surprising
that the capacitor problem was the only problem for which
students used the recall cue because connecting velocity and
acceleration through integrals and derivatives is a common
application of calculus in physics classes and of physics in
calculus classes.

Bruce integrated in the capacitor problem only after
spending several minutes on another unproductive method.
In the following quote we have italicized the phrases that
indicate that he is using recall �with some difficulty� to cue
integration: “Well, like, I was thinking, um…I was talking to
�another student� and all those equations I didn’t remember,
well if you take the simplest one �acceleration� and keep
integrating, you end up getting them all. But with this one…I
was just thinking about it, but I’m not really sure how, how I
would exactly start. Well I know, obviously, like, the deriva-
tive of position equals velocity, and the derivative of velocity
equals, um…uh, hey. No, yeah, see, see…I’m getting, like,
these equations popping up that don’t actually come back.
And then I’m just, like, nope they’re not coming back. Like,
I don’t have a…so, and then, uh, velocity to
acceleration…take the derivative…I don’t know how to get
from acceleration to force as far as calculus.”

The other four students who used recall �Edward, Alex,
Isaiah, and Esther� were able to recall more quickly and con-
fidently. Edward’s solution is typical of these responses: “if
you use F net equals ma…that will give us acceleration,
which is the derivative of the velocity.”

C. Dependence cue

Eight of the nine students used the symbolic form of de-
pendence as a cue to use integration at least once. Sherin
describes the dependence symbolic form as “a whole de-
pends on the quantity associated with an individual symbol”
and identifies it in student conversation as follows: “The ob-
servation that a particular symbol appears in the expression.
Common phrases: depends on, is a function of. Also indi-
cated by inferences, such as if x varies, then the whole may
vary.”4 We use Sherin’s definition and identification scheme
to define the dependence cue. Dependence is a piece of the
conception of covariance that Thompson7 found to be essen-
tial in understanding functions and definite integrals.

In the nonconstant density problem, the seven students
who integrated mentioned the dependence on x as a cue to
integrate. For instance, Ivan noted that “It looks like it’s
going to have to be an integral, because length is varying
with the charge, �sic� so you were going to integrate the
charge density…because the length is varying. So…you
don’t want to take it at every little point because there is an
infinity amount of points between 0 and 0.5 m.” �Quote 1�

Ivan’s explanation illustrates his thinking that length var-
ies and because length can be measured at an infinite amount

of points along the bar, an integral is needed to compute the
total charge. Similarly, but more concisely, Edward, Alex,
Georgette, Esther, and Isaiah described their use of depen-
dence as a cue to integrate. Edward’s explanation is typical
of this way of thinking: “Um, so you would have to do an
integral, cause you have to integral �sic� it cause well, cause
it’s changing with the distance x.”

In the electric field problem, five students integrated and
all used the dependence cue. Isaiah’s explanation is typical
of other students’ responses: “I know that I am only going to
do another integral, because the distance matters.” We inter-
pret “because distance matters” as Isaiah’s way of saying that
the density varies with the location on the bar.

In the capacitor problem two students were cued to inte-
grate by dependence, but not in a way that we expected or
that led to a solution. Both David and Georgette integrated
force over time in an unsuccessful attempt to calculate the
total force. In the following response from David, we see that
he was trying to use integration to find a formula for the
electric field, mistakenly beginning with the formula for the
magnetic field. We have simplified this quotation, but kept
intact all references to the integration process: “But �the dis-
tance� is changing. So you probably need to do an integral
again. ’Cause that’s going to be changing, it will be like 1.5,
1.3,…’Cause your, that’s, all that’s changing over time, so
that makes it really complicated…That’s how we do that. I
guess you would want to take the integral because, again,
you’d do like seven equations to plug in different �distances�.
So we’re doing the integral and saying, okay, it’s from 0,
from 1.5 to 0 you get the entire force.”

By integrating the total force over time, the result is
change in momentum—the impulse-momentum theorem.
However, there is no evidence that he is recalling the
impulse-momentum theorem; rather he �re-�invented it in or-
der to deal with a changing force. Georgette, who started to
solve this problem in a manner similar to David, realized that
integrating the force with respect to time would change the
units, and she therefore abandoned this approach.

In summary, eight of the nine students used the depen-
dence symbolic form in at least two problems to cue integra-
tion. Sherin’s description of this symbolic form is very much
in agreement with what we heard the students saying: Some-
thing changes �varies�, and so integration must be used.

D. Parts-of-a-whole cue

Five of the nine students used the symbolic form of parts-
of-a-whole to cue integration at some point in solving the
problems; in many instances it was in combination with de-
pendence. Sherin describes parts-of-a-whole as “amounts of
generic substance, associated with terms, that contribute to a
whole” and identifies it “unlike competing terms, these enti-
ties are not influences. Utterances enumerate the parts that
contribute to the whole, sometimes in correspondences with
a diagram. Also indicated by inferences, such as the obser-
vation that if one part increases and the others are held fixed,
then the whole increases.”4 Interpreting the integral as a sum
of many contributions, without any reference to balancing or
canceling, requires invoking the parts-of-a-whole resource.

In the nonconstant density problem, four students, Alex,
Esther, Georgette, and Isaiah, indicated that integration was
required because they needed to add up charges. Alex ex-
plained the need to integrate as follows: “If you have just a
little bit, just look at a little chunk of the bar and assume that
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the charge density over that little chunk is constant. Then you
would call that little chunk the thickness of it, the length of
it, dx. And so that is your, so the charge due to that little
chunk is the charge density at the beginning times the thick-
ness of the chunk so you just add them all up all the way
along the bottom and use an integral to do that.” �Quote 2�

Alex describes the object that is being added up as formed
multiplicatively; that is, “the charge density at the beginning
times the thickness of the chunk.” Thus, not only does Alex
recognize that he is accumulating objects, but he also iden-
tifies how the objects are formed �through multiplication�.
Thompson and Silverman22 point to such multiplicative rea-
soning as an important aspect of understanding the Riemann
sum.

In the electric field problem, three students, Alex, Esther,
and Kevin, used both parts-of-a-whole and dependence as
cues to integrate. Alex noted, “So the E field due to this
chunk…is something and then you add that, the contribution
due to each chunk…because the r for each chunk is differ-
ent.” Alex mentions both parts-of-a-whole �“and then you
add that, the contribution due to each chunk”� and depen-
dence �“the r for each chunk is different”�. Kevin initially
used the center of charge method for this problem, but once
he understood that the charge was evenly spread over the bar,
he used integration. Kevin �along with all of the other stu-
dents in the conventional physics course� did not have direct
instruction on integration to calculate electric fields. Thus, he
essentially reinvented this method of solution. He explained,
“Then you’d have to integrate, you’d have to integrate over
the distance from there to there…cause you have to take the
sum of the electric fields from each part.”

In solving the capacitor problem, only Kevin invoked
parts-of-a-whole. He found that acceleration was necessary
to solve the problem. Furthermore, he understood that he
could not use standard kinematics equations because the ac-
celeration was not constant. Kevin again appealed to parts-
of-a-whole resource when he proposed an alternative ap-
proach to solving the capacitor problem: “I guess you got to
do the sum of all the accelerations” to get the velocity. He
then changed his mind: “No, I think we use energy when it’s
a variable acceleration.” We see evidence that Kevin was
reflecting on past problem solving experiences when he
stated, “for the most part I have always just used energy
�when acceleration was not constant�.”

E. Misapplication of symbolic forms

Sometimes students misapplied symbolic forms. For ex-
ample, the notion of dependence as a cue to integrate can
cause some problems. Edward, Kevin, and Isaiah wrote
kqdr /r2 in the integral instead of kdq /r2=k�dr /r2, simply
sticking in a dr next to the formula for a point particle. When
questioned, the students said that they chose to integrate with
respect to dr because r was changing, not noticing that the
units and physical meaning of the integrand had changed.
The use of the dependence symbolic form in this problem
appears to be a dead end because students cannot reason
using this resource that they need to use �dx instead of qdx.
Put a different way, this resource is appropriate only when
the quantity that changes is a density or rate of change; oth-
erwise �as in the case of the electric field� it will yield an
incorrect result.

Similarly, the parts of a whole symbolic form is misused
in the capacitor problem. Both Kevin and Esther talked about

“adding up the acceleration” to get the velocity. This appli-
cation of the symbolic form is not quite right: Adding up the
changes in velocity �acceleration�dt� gives the total change
in velocity. Additionally, Georgette and David integrated the
electric field to find the total force �they were using both
dependence and parts-of-a-whole symbolic forms�. Georgette
correctly noted that integrating force with respect to time
would yield an answer with units different from force �it is
the total change in momentum�. David did not know what to
do with what he believed to be the total force because he had
forgotten the role of acceleration.

F. Larger study

To check our conclusions based on this small group, we
asked 144 students in a calculus-based physics course �who
had just spent a few classes learning how to find the electric
field due to several point charges� to state why integration
would be necessary to find the electric field due to a bar of
charge, reminding them that integration was not necessary
for a point charge. This question differs from our original
questions. It is a preinstruction question which indicates that
integration is necessary and asks why this use is needed. The
goal was to see what cued integration for these students.

The majority of responses reflected results from our inter-
views: 53 of the 144 students made use of the dependence
symbolic form, seven students used the parts-of-a-whole
symbolic form, 13 students felt that integration was neces-
sary to find the centroid of the bar �the synecdoche resource�,
and 16 students noted that the field was due to an infinite
number of points, or that the whole bar needed to be taken
into consideration. This last response is similar to Ivan’s jus-
tification for integrating when the charge density is not con-
stant: “So…you don’t want to take �the charge density� at
every little point because there is an infinity amount of points
between 0 and 0.5 m.” None of these 17 students �including
Ivan� explicitly invoked parts-of-a-whole resource.

There were also some new responses. Thirty students be-
lieved that integration was necessary to find the area of the
bar, and the area was in turn essential to find the field. Nine
students felt that the “spreading out” of the charge required
integration without elaborating further on the connection be-
tween this feature and the need for integration. The other 15
answers were each unique. We did not see the “area” re-
sponse in our interviews, and speculate that this response
was cued by a picture of the bar with a visible thickness �in
our interviews the questions were not accompanied by pic-
tures�. We speculate that these students did not yet under-
stand why integration was necessary, and made the one con-
nection that was visibly obvious: The area of the bar.
Spreading out was sometimes mentioned in connection with
other ideas: Needing to take all the points into account or
needing to calculate the area.

These data support our earlier results that the dependence
symbolic form is the most common cue for integration, and
the parts-of-a-whole cue is activated by fewer students. It
also indicates that the synecdoche resource is persistent, even
when students are told a problem requires integration.

G. Section summary

We have shown that students use symbolic forms to cue
the use of integration in a physics context, and that these
symbolic forms are used even in cases where recall was pos-
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sible �for example, for the impulse-momentum theorem�.
The most common resource used was dependence, followed
by parts-of-a-whole. We presented evidence that symbolic
forms can cue integration in a novel situation and allow stu-
dents to invent equations.

Students typically do not pay attention to units when they
choose the variable of integration; instead they pay attention
to what is changing. We assert that this mistake is not trivial:
It arises from students’ strong reliance on the symbolic form
of dependence as a cue for integration. This need to attend to
units is similar to the multiplicative nature of the integrand,
providing an additional challenge to students.22

Integration is most often used in calculus classes to find
the area under a curve or to find the total amount of a quan-
tity when its density or rate of change is nonconstant. In
finding the electric field due to a bar of charge, neither of
those meanings of integration is appropriate; instead integra-
tion must be viewed as adding up infinitesimal physical ef-
fects to obtain a total physical effect. This interpretation of
the integral is a nontrivial change from the interpretations
given in calculus class. There is another mismatch between
mathematics and physics classes: In mathematics courses
typically units are often not considered. However, in calcu-
lating the electric field, for example, it is essential to distin-
guish between charge and change density; one gives the cor-
rect units and the other does not. From these two important
examples, we claim that physics is not a straightforward ap-
plication of mathematics already learned; it is a reinterpreta-
tion of mathematical conventions in the context of physical
principles.23,24

VII. SPECULATION ON NESTING OF RESOURCES

Based on our data analyses we conjecture that the depen-
dence symbolic form is used by students developmentally
before they use the parts-of-a-whole symbolic form. We base
this conclusion on the number of students using each re-
source, the clarity of speech associated with each resource,
and correlation between the parts-of-a-whole resource and
the sophisticated notion of a limit.

We hypothesize that dependence is used before parts-of-a-
whole because three students �Ivan, David, and Edward�
used dependence as a cue but did not talk productively about
sums. For example, in Quote 1, Ivan did not explicitly dis-
cuss summing in his response to the nonconstant density
problem. In contrast, all students who used parts-of-a-whole
�Esther, Alex, Isaiah, Kevin, and Georgette� also used depen-
dence as cues to integrate. We observed more clearly articu-
lated responses from students who used the parts-of-a-whole
symbolic form. For instance, Alex in Quote 2 clearly dis-
cussed summation in his response to the nonconstant density
problem. We take this clarity of explanation as evidence that
these students have more experience and facility with the
ideas involved, indicating greater cognitive development on
this topic.

Three students who used parts-of-a-whole �Esther, Isaiah,
and Georgette� also mentioned limits either directly or indi-
rectly in their explanations. For example, Esther notes: “The
charge density describes the charge per tiny little pieces and
since that is changing, I need to add up all the densities in all
the little pieces, which is a Riemann sum, which as you let
the width of the pieces go to zero, becomes the integral over
the length of the bar.” As discussed in Sec. II the concept of

limit is difficult for many students. Therefore, we conclude
that those students who invoked the idea of limit are students
with stronger conceptual understanding.

We infer that two of the students who did not mention
limits were struggling with the notion of limits in ways docu-
mented in Sec. II. For instance, David �who never talked
about limits� explicitly talked about sums in his response to
the nonconstant density problem, but noted that the sum
�which he referred to as a set of equations� “won’t even give
you an exact amount.”

We encourage future research efforts to further examine
the developmental nesting of dependence, parts-of-a-whole,
and other symbolic forms.

VIII. IMPLICATIONS FOR INSTRUCTION

We would like for students to be cued to integrate by the
parts-of-a-whole symbolic form because this resource is
more powerful and flexible in many physics contexts than
the dependence symbolic form. Yet we have seen that parts-
of-a-whole is not a cue for most students with methods of
direct instruction.17 We designed instruction25 to promote
this goal while taking into account common student difficul-
ties and tested this activity on the same group of 144 students
discussed in Sec. VI. The activity was done by groups of
students during the regular 80-min weekly problem solving
session.

Our first strategy was to use methods of guided discovery,
promoting student reinvention of a formula for the electric
field due to a bar of charge using the parts-of-a-whole re-
source. The first step was to invoke this resource in a simpler
context: The students were asked to find the total charge on a
bar with nonconstant density. Most integrated or found the
area under the curve geometrically. Then they were presented
with a quote from a fictitious student �using wording very
similar to Alex’s clear explanation in Quote 2� who noted
that she solved the problem using the parts-of-a-whole sym-
bolic form and were asked to evaluate the validity of her
method. Forty-four out of 45 groups agreed that her method
and reasoning were correct. The one group that disagreed
had the same concern as Isaiah that the charge might not be
evenly spread out over the bar. The result indicates that al-
though most students do not spontaneously invoke the parts-
of-a-whole symbolic form, it is recognized as applicable
when suggested. At the end of the tutorial, 30 groups were
able to reinvent the correct expression for the electric field
due to a bar of charge. Of the remaining groups, six groups
integrated but used q instead of �, three groups took r to be
constant but integrated the constant charge density, and the
remaining five groups had various difficulties.

To show the power of the parts-of-a-whole symbolic form,
it would be useful to return to these ideas in several other
contexts: The electric field due to a bar of nonconstant den-
sity, the electric potential due to a charge distribution, the
electric field due to a bar of charge where vector issues are
important, and the Biot–Savart law. In each successive appli-
cation of the parts-of-a-whole resource, students should be
given less and less guidance as they reinvent the appropriate
integral.

Another strategy is to lead students to discover the inap-
propriateness of the synecdoche resource in this context. By
comparing the value of the electric field using the center of
charge method and the integral, students were prompted to
note that the electric field using these methods is not the
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same. Students are asked if the center of charge method
would work if the field’s functional dependence on r were
proportional to qr or q /r. At least a few students found this
question natural and intriguing, and were surprised to dis-
cover that the synecdoche resource only applies for linear
dependence. This �mis�application of the synecdoche re-
source is a case where the applicability of an intuitive re-
source must be verified quantitatively.

In addition to these strategies, instructors should be pre-
pared to allow students to revisit the notion that the limit
gives the exact sum; there will surely be a few students in
each class for whom this idea is still a stumbling block.
While not related to resources, we note that students often
confused charge with charge density, and confuse r �the dis-
tance between the charge and the field point� with x �the
location on the axis�. Looking at cases where these quantities
differ can help distinguish them.

IX. SUMMARY AND CONCLUSIONS

The goal of our investigation was to explore the math-
ematical resources students invoke to guide their work as
they integrate in the context of electrostatics. Based on our
investigation, we have found evidence that students do in-
voke Sherin’s symbolic forms in calculus contexts. In par-
ticular, students invoked the symbolic forms of dependence
and parts-of-a-whole when they solved electrostatics prob-
lems that required integration, even in novel situations. Stu-
dents are more likely to invoke the dependence symbolic
form than parts-of-a-whole. However, the use of the depen-
dence symbolic form led to inaccuracies if the quantity being
integrated was not a rate or a density; in these cases, the units
were always incorrect and few students noticed this error.

The parts-of-a-whole symbolic form is useful conceptually
in physics when it is necessary to add little pieces of a physi-
cal quantity �for example, the electric field�. This point of
view is different from the standard presentation in a calculus
class, which links integration to finding the area under a
curve or finding the total amount given a rate or density.
Therefore, students must reinterpret mathematics in a phys-
ics context, not simply apply known mathematical ideas.

Because the parts-of-a-whole symbolic form requires a re-
interpretation of mathematics, students need to be guided to
discover the parts-of-a-whole symbolic form as a useful way
to solve problems requiring integration. They should also be
guided to discover the applicability of parts-of-a-whole in
different contexts to reinforce their understanding of this
point of view.

Initial data indicate that students invoke the dependence
symbolic form developmentally before parts-of-a-whole,
possibly because of difficulty with the notion of limit. Re-
search in mathematics education has shown that many stu-
dents understand the limit only as an approximation to a sum
and not as an accurate method to take an infinite number of
values of the integrand into account.10 Therefore, it is not
surprising that these ideas are challenging in a physics con-
text as well. More research is needed to explore this conjec-
ture.

Finally, we found that students’ lack of understanding of
physics concepts sometimes masks their mathematical under-
standings. For example, when students were confused about
the location of the electrons, they often could not proceed

with problem solving. Conversely, Aarons26 argued that a
lack of mathematical proficiency may interfere with an un-
derstanding of physics concepts.

Our work opens more lines of investigation. Physics in-
structors often count on students to learn the requisite math-
ematics in their mathematics classes and expect them to ef-
fortlessly apply it in the physics context. But it is likely that
such a transfer of skills does not happen as readily as we
would hope because students must reinterpret mathematics in
a physics context. What resources and skills do students
bring from mathematics courses and what reinterpretation of
the mathematics must be guided by their physics instructors?
What resources are most productive in each application? Is
this resource spontaneously invoked by students, or must we
suggest its use to students?

For example, the Taylor series is taught in first year cal-
culus; however, students do not readily understand when and
why it is useful in a physics context. The use of the Taylor
series requires scaled variables, which are typically not dis-
cussed in calculus and require explicit instruction in physics.

In such studies we must keep in mind that mathematical
resources are not the only resources that affect student suc-
cess in the physics classroom. Tuminaro et al.’s work gives a
broad theoretical framework for understanding students’
mathematical reasoning and understanding in the context of
physics.27,28 In addition to mathematical resources �including
Sherin’s symbolic forms�, they note that student expectations
and patterns of activities are essential to understanding stu-
dents’ use of mathematics in a physics context. They con-
clude that there are many reasons for students’ mathematical
errors in physics in addition to students’ lack of mathemati-
cal resources. Therefore, the correct diagnosis of student er-
rors is necessary for effective teaching.
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