2008

Rapid Assessment of 2008-2012 Highway Development Projects in Region 6: Threats and Opportunities to Terrestrial Wildlife Resources

Sandra L. Jacobson
USDA Forest Service

Catherine E. de Rivera
Portland State University, derivera@pdx.edu

Kathleen Armstrong

Rebecca Aaby
Portland State University

Nadia Jones
Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/esm_fac

Part of the [Ecology and Evolutionary Biology Commons](https://pdxscholar.library.pdx.edu/esm_fac) and the [Environmental Sciences Commons](https://pdxscholar.library.pdx.edu/esm_fac)

Citation Details

Jacobson, Sandra L.; de Rivera, Catherine E.; Armstrong, Kathleen; Aaby, Rebecca; and Jones, Nadia, "Rapid Assessment of 2008-2012 Highway Development Projects in Region 6: Threats and Opportunities to Terrestrial Wildlife Resources" (2008).

Environmental Science and Management Faculty Publications and Presentations. 85.

https://pdxscholar.library.pdx.edu/esm_fac/85

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Environmental Science and Management Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Rapid Assessment of 2008-2012 Highway Development Projects in Region 6: Threats and Opportunities to Terrestrial Wildlife Resources

Summaries of Highway Development Projects in Region 6 National Forests

Spring 2010
Cover photographs show the Oregon Silverspot Butterfly, a federally listed species on the Siuslaw National Forest in Oregon that is adversely affected by vehicle collisions, and an artist’s rendition of a new wildlife overpass on the I-90 Snoqualmie Pass East project on the Okanogan-Wenatchee National Forest in Washington.
As a premier natural resources agency, the USDA Forest Service offers expertise as a cooperating agency with transportation departments to create sustainable and lower impact highways. American citizens have come to expect swift and safe travels on our Nation’s highways, and now it is our opportunity to recreate the same benefit to the travelling wildlife on our National Forest System lands.

This Rapid Assessment of the current highway development plans of the two states in Region 6, Oregon and Washington, investigates projects in the Statewide Transportation Improvement Plans, or STIPs. The Rapid Assessment produced two separate documents. In this document, the summary results of the Rapid Assessment of each state STIP are displayed in spatial and tabular formats. Another section contains analysis tools and background information designed to help line officers and wildlife program managers analyze and interpret information in the STIP Tracking Tools.

On the following pages, each Region 6 forest map is displayed along with a summary of the most important highway development projects listed in the 2008-2012 STIP. Projects listed are in the respective state STIP as of August 2009. It is likely that some changes have been made from the original STIP, including the completion of some projects listed as 2008 or 2009 construction dates. Each STIP Tracking Tool in this summary is taken from a complete STIP Tracking Tool currently stored in the Region 6 Natural Forests.
Rapid Assessment of 2008-2012 Highway Development Projects in Region 6 – Threats and Opportunities to Terrestrial Wildlife Resources

A collaborative filing system. Greater information on each project is in the expanded STIP Tracking Tool (see page XXX for an example of the full STIP Tracking Tool). The full STIP Tracking Tool is designed to allow users to access information from the state transportation departments (DOT) and can also be used to input and track information found to be useful by Forest Service managers facing previous highway development projects. The STIP Tracking Tool format has been modified from a tracking form developed by Richard Clark (Forest Service liaison to Wyoming DOT).

The STIP Tracking Tools shown in this section reflect one STIP cycle’s projects, currently officially updated every four years. An objective of the Rapid Assessment project was to improve the timeliness of the current system. Thus, a recommendation of the Rapid Assessment team is to update the Tracking Tools with current information at least twice each year to better reflect changing projects. The Tracking Tools are designed to provide an update overview for all projects on a forest, and to also provide a tickler and information storage system for managers to track pertinent information about any given project as it moves from planning to implementation. An example of a complete STIP Tracking Tool is placed at the end of this brochure.

This document contains a summary of higher complexity projects selected for their interest to line officers and resource managers. These projects represent not only the current STIP projects but also a sample of the types of projects that will be on future STIPs. Thus, readers are urged to glance at the tracking tools and narratives for all forests to gain a quick glimpse of the types of projects potentially facing each forest. The summary has extracted brief information on project locations and types, the program year of construction, estimated project cost, Resource Needs Levels, and possible opportunities and threats for terrestrial wildlife resources. The program year of construction may indicate the onset of planning, depending on the type of project. Estimated project cost provides an approximate at-a-glance estimator of project complexity. Resource Needs Level is explained fully in the Analysis Tools section; it provides managers with an estimate of the amount of natural resource specialist time and experience needed to respond to project complexity. Higher Resource Needs Levels indicate increased complexity and staff involvement. Threats and opportunities are also more fully explained in the Analysis Tools section; the summaries here provide ideas for what project attributes may need to be investigated.

The Rapid Assessment team identified a number of constraints and barriers in the current system to the delivery of information on highway development projects of interest to Region 6 wildlife program managers.

- STIPs represent a snapshot in time of planned projects, but are not updated frequently enough in the published STIPs for resource managers to respond in a timely manner. STIPs are updated as project funding, unavoidable delays, new information, or changes in priority occur.
- STIPs do not contain all highway projects, such as emergency
projects, which can be extensive in nature and provide excellent opportunities to improve conditions for aquatic and terrestrial movement. These projects will require an extra coordination effort to take full advantage of each situation.

- Oregon and Washington DOTs do not have a simple method of querying STIPs for spatial locations of projects on National Forest System (NFS) lands. The states also do not have a simple process to query projects that occur within National Forest boundaries.

- States vary greatly in the information presented in STIPs. States do not have standardized terms for project descriptions, nor do they have the same information in STIPs. They have vast amounts of information useful to state DOTs, but lack key information needed by resource agencies. Thus, each state must be queried uniquely to locate information needed by Forest Service wildlife program managers.

- Each state DOT uses an agency-specific method of spatially locating highway projects. It was very difficult to transcribe the information into a format usable to the Forest Service.

The Rapid Assessment team developed a process to identify and spatially pinpoint highway projects on National Forest System lands that can be updated in less than a day’s time. However, the process depends on cooperation with the state DOTs, and also with Regional information managers to process and house pertinent data. The Rapid Assessment team recommends updating the spatial and temporal tracking tools at least twice annually. Additionally, updates caused by emergency or unusual situations (such as the American Recovery and Reinvestment Act projects) can be facilitated with the STIP Tracking Tool but will not automatically occur without support by all agencies to update the information as needed.

It is crucial to note that once a project is on the STIP, several opportunities for early planning have been passed. Ideally, natural resource managers who identify issues and opportunities before the STIP is approved will have the greatest probability of successful implementation. However, current practice does not facilitate resource specialist input.

The Rapid Assessment team would like to acknowledge the assistance of both the Washington and Oregon Departments of Transportation for their help in locating and processing the information needed to compile this report. We especially appreciate the enthusiasm the departments showed in working to improve the process to share relevant information.
Moose-vehicle collisions result in human fatalities about once in 300 collisions, and have considerably higher property damage and serious injury potential than deer-vehicle collisions. For that reason, mitigating for moose passage has a high benefit-cost ratio. (Image: Garrison)

Boreal toads are at the opposite end of the size spectrum when compared with the dangers of hitting a moose, but because of their slow movements and relatively long life they are vulnerable to extirpation when highways are near breeding areas. Researchers have documented extirpations of several populations of anurans in Europe in close proximity to busy roads. (Image: Steve Kozlowski, USFS)
Highway development projects on the Colville National Forest during this planning cycle have minimal threats and opportunities for terrestrial wildlife. However, the Forest Service can propose projects for future STIPs to address currently recognized issues.

Drivers through the Colville National Forest face a risk rare in Region 6: a possible vehicle collision with a towering moose. Technology to reduce the risk of moose-vehicle collisions is available, and could be considered as a proposal from the forest in future STIPs. Drivers on the Colville National Forest also face collision risks associated with several other ungulate species including mule and white-tailed deer.

Although the Colville National Forest is home to several large highly mobile mammals, collisions with rare species such as grizzly bears and wolves are uncommon. Many of the large carnivores are easily disturbed by highway noise and human presence, and avoid highways even at low levels of traffic volume. Thus highways can invisibly fragment habitat. None of the projects identified on the current STIP will enable treatment of these issues, but Forests can propose projects to reduce habitat fragmentation while retaining the ability of highways to provide safe and efficient transport of goods and services.

<table>
<thead>
<tr>
<th>PROCESS ELEMENT</th>
<th>Highway Name / (Project Section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colville National Forest</td>
<td>Statewide Transportation Improvement Program (STIP) Projects</td>
</tr>
<tr>
<td>Project Information</td>
<td></td>
</tr>
<tr>
<td>Description of Work</td>
<td>Bridge 31/042 deck repair. Repair and overlay the existing bridge deck to preserve the structural integrity of the bridge 8.79 miles north of Metaline Falls on SR 31.</td>
</tr>
<tr>
<td>SR 31/Slate Crk Br - Deck Rehab</td>
<td>Bridge 31/042 deck repair. Repair and overlay the existing bridge deck to preserve the structural integrity of the bridge 8.79 miles north of Metaline Falls on SR 31.</td>
</tr>
<tr>
<td>SR 31/Tiger to Canada - 2009 Chip Seal</td>
<td>2009 chip seal Bituminous surface roadways require a pavement surface treatment on a six-year cycle to maintain the integrity of the pavement and provide skid resistance for stopping. Application of a Bituminous Surface Treatment for the 2009 Chip Seal to 21.7 miles</td>
</tr>
<tr>
<td>SR 31/Tiger to Canada - 2008 Chip Seal</td>
<td>2008 chip seal Bituminous surface roadways require a pavement surface treatment on a six-year cycle to maintain the integrity of the pavement and provide skid resistance for stopping. Application of a Bituminous Surface Treatment for the 2009 Chip Seal to 21.7 miles</td>
</tr>
<tr>
<td>SR 20/Tiger to Ruby Mt - 2008 Chip Seal</td>
<td>2008 chip seal Bituminous surface roadways require a pavement surface treatment on a six-year cycle to maintain the integrity of the pavement and provide skid resistance for stopping. Application of a Bituminous Surface Treatment for the 2008 Chip Seal to 14.00 miles</td>
</tr>
<tr>
<td>Program Year for Construction</td>
<td>2015</td>
</tr>
<tr>
<td>Estimated Project Cost ($)</td>
<td>1</td>
</tr>
<tr>
<td>Resource Needs Level</td>
<td>1</td>
</tr>
<tr>
<td>Opportunities</td>
<td>Impact of the removal of an old bridge such as lead paint; increased erosion and sedimentation in stream.</td>
</tr>
<tr>
<td>Threats</td>
<td>Consider effects of hazardous materials on amphibians.</td>
</tr>
</tbody>
</table>
Shown while still under construction, the first wildlife underpass for the newly divided US 97 south of Bend will provide passage opportunities for all wildlife in the area when completed. This highway project incorporated many 'Green Highway' features, including wildlife crossing structures. (Image: Oregon DOT)

Mule deer are one of the most important species in national forest management. Migratory herds are seriously impacted by highways crossing migratory routes. Lack of the ability to move to seasonal ranges can restrict animals to crowded or lower quality winter ranges. (Image: Nick Myatt, Oregon DFW)
The Deschutes National Forest is the site of an important milestone in Oregon’s transportation ecology history. The US 97 Lava Butte project incorporated two wildlife crossing structures to restore wildlife movement across US 97 south of Bend, Oregon. These structures are the first of their kind in Oregon. Very high traffic volume on US 97 has caused a nearly complete barrier for mule deer migrating between summer and winter ranges. High vehicle collision rates indicate that crossing structures are key to reducing mortality and increasing traveler safety.

Other firsts are the experimental incorporation of vegetation under the structures, and a naturally landscaped wildlife travel lane on the underpass that accesses the Lava Lands Visitor Center. The additional wildlife travel lane was an inexpensive added feature that will allow wildlife another crossing opportunity under busy US 97. Wildlife can travel undisturbed during most of the year, because the visitor center is open during daylight summer hours when most wildlife species are least active.

Other projects planned on the Deschutes National Forest, including those on Forest Highways, have opportunities to restore or maintain wildlife movement as traffic volumes increase in this rapidly developing area of central Oregon.

State Transportation Improvement Program (STIP) Projects

Deschutes National Forest

<table>
<thead>
<tr>
<th>PROCESS ELEMENT</th>
<th>Description of Work</th>
<th>Highway Name / (Project Section)</th>
<th>Program Year for Construction</th>
<th>Estimated Project Cost ($)</th>
<th>Resource Needs Level</th>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td></td>
<td>US97: LAVA BUTTE - S CENTURY DRIVE</td>
<td>2009</td>
<td>$24,024,000</td>
<td>4</td>
<td>Restore historic migratory mule deer passage.</td>
<td>Clear zone barrier effect; cumulative effects of incrementally increasing barrier.</td>
</tr>
<tr>
<td>Information</td>
<td></td>
<td>S CENTURY DRIVE - GEN’L PATCH BRIDGE - BURGESS RD</td>
<td>2009</td>
<td>$10,230,000</td>
<td>4</td>
<td>Install new or replacement water conveyance structures; investigate the need for wildlife crossing structures.</td>
<td>Increasing human access into less developed areas; increasing traffic volume & speed; cumulative effects of incrementally increasing barrier.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US97: OR31 - CRESCENT SCL, PHASE 2</td>
<td>2010</td>
<td>$1,088,000</td>
<td>3</td>
<td>Investigate the need for wildlife crossing structures.</td>
<td>Clear zone barrier effect; cumulative effects of incrementally increasing barrier.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US97: LAVA BUTTE - HWY OR31 JCT</td>
<td>2008</td>
<td>$252,000</td>
<td>3</td>
<td>Investigate the need for wildlife crossing structures; identify existing wildlife issues.</td>
<td>Clear zone barrier effect; cumulative effects of incrementally increasing barrier.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US97: OR31 HWY JCT - SCL CRESCENT</td>
<td>2009</td>
<td>$8,178,000</td>
<td>2</td>
<td>Use guardrail as a wildlife deterrent fencing; install new or replacement water conveyance structures.</td>
<td>Clear zone barrier effect; cumulative effects of incrementally increasing barrier.</td>
</tr>
</tbody>
</table>
Even as swift as pronghorn are, highways can readily disrupt movements as well as cause mortality through collisions. Studies on pronghorn in Wyoming and Arizona have found clear demarcations of movements bounded by highways. (Image: Margo Butner, USFS)
The Fremont-Winema National Forests share with the Deschutes National Forest one of the highways most affecting migratory mule deer in Region 6: US 97 along the eastern flank of the Cascades. This highway was recognized in the Oregon Wildlife Movement Strategy as being key to deer seasonal movements in this section of the state. The Fremont-Winema National Forests are participating in a proactive interagency effort to locate and prioritize specific sites for mitigation by using a ‘Stepdown’ process in the areas broadly identified in the Oregon Wildlife Movement Strategy along US 97. The products from the ‘Stepdown’ process will enable Forest Service and transportation officials to propose new mitigation projects or incorporate mitigation measures into planned projects to effectively restore wildlife movement.

Prior to 2009, opportunities to provide better wildlife passage by retrofitting existing structures have not been systematically investigated. The Fremont-Winema National Forests is cooperating with the Pacific Southwest and Pacific Northwest Research Stations to research innovative approaches to retrofit existing structures for wildlife passages.

Bridge replacements are occurring in several locations on the Fremont-Winema National Forests. Whenever older bridges are replaced, major opportunities for increasing wildlife passage occur.

Statewide Transportation Improvement Program (STIP) Projects

Fremont-Winema National Forest

<table>
<thead>
<tr>
<th>PROCESS ELEMENT</th>
<th>Description of Work</th>
<th>Project Information</th>
<th>Forest Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>US97: MODOC POINT - SHADY PINE</td>
<td>Preserve Pavement, Rockfall Protection, Widen, Add Retaining Walls and Guardrail</td>
<td>Program Year for Construction: 2009</td>
<td>Opportunities: Install new or replacement water conveyance structures; investigate the need for wildlife crossing structures; set barrier to divert animals to a safer crossing area.</td>
</tr>
<tr>
<td>OR140: RITTER RD - DEER RUN RD (BLY MTN)</td>
<td>ODOT and County Contribution to Widen, Realign Curves and Preserve Pavement Partnering with FHWA</td>
<td>Estimated Project Cost ($): $19,444,000</td>
<td></td>
</tr>
<tr>
<td>OR31/US395: CATTLE PASS - CROOKED CR - BUNDLE 404</td>
<td>Replace Bridges 03913, 03915, Overlay Pavemen; Adjust Guardrail Ends; Fix Areas with Settling Subbase; Thin Treatment</td>
<td>Program Year for Construction: 2008</td>
<td></td>
</tr>
<tr>
<td>OR140: MODOC BILLY CR - FISH HOLE CR (BEATTY/BLY)</td>
<td>Overlay, Guardrail</td>
<td>Estimated Project Cost ($): $4,998,000</td>
<td></td>
</tr>
<tr>
<td>OR140: N LITTLE BUTTE CREEK/GREAT MEADOW SNOW PARK</td>
<td>Overlay, Guardrail</td>
<td>Program Year for Construction: 2008</td>
<td></td>
</tr>
<tr>
<td>OR140: SUMMIT SNOW PARK RD- FOURMILE FLAT RD</td>
<td>Pavement Preservation and Upgrade Guardrail</td>
<td>Estimated Project Cost ($): $8,900,000</td>
<td></td>
</tr>
<tr>
<td>OR140: DREW'S GAP - MADDOCK CORNER (LAKEVIEW)</td>
<td>Various Fish Passage Improvements New RCRB, Possibly a 2400 MM X 2400 MM</td>
<td>Program Year for Construction: 2010</td>
<td></td>
</tr>
<tr>
<td>OR140: LAKESHORE DRIVE - GREEN SPRINGS HWY</td>
<td>Use guardrail as a wildlife deterrent fencing; install new or replacement water conveyance structures.</td>
<td>Estimated Project Cost ($): $3,564,000</td>
<td></td>
</tr>
<tr>
<td>OR62: FORT CREEK FISH PASSAGE</td>
<td>Use guardrail as a wildlife deterrent fencing.</td>
<td>Estimated Project Cost ($): $711,000</td>
<td></td>
</tr>
</tbody>
</table>

The Fremont-Winema National Forests share with the Deschutes National Forest one of the highways most affecting migratory mule deer in Region 6: US 97 along the eastern flank of the Cascades. This highway was recognized in the Oregon Wildlife Movement Strategy as being key to deer seasonal movements in this section of the state. The Fremont-Winema National Forests are participating in a proactive interagency effort to locate and prioritize specific sites for mitigation by using a ‘Stepdown’ process in the areas broadly identified in the Oregon Wildlife Movement Strategy along US 97. The products from the ‘Stepdown’ process will enable Forest Service and transportation officials to propose new mitigation projects or incorporate mitigation measures into planned projects to effectively restore wildlife movement.
Turtles are not wide-ranging like wolverines, but like wolverines, they are long-lived. In long-lived species like turtles, unsustainable losses of females cause slowly reducing populations. Females are disproportionately vulnerable to vehicle-caused mortality because their need to access breeding habitat to lay eggs sometimes leads them across highways. (Image: Simon Wray, ODFW)

Wide-ranging wolverines cross highways in their dispersal movements. These movements are characteristic of the species and are needed to maintain populations. But the more frequently individuals cross highways, the higher their mortality risk. Wolverine carcasses have been recorded along Region 6 highways. (Image: USFS)
The Gifford Pinchot National Forest has several similar projects on the current STIP. Rockslope protection projects might have virtually no wildlife impacts and opportunities, or conversely these projects may provide opportunities to use the slope for a diversion barrier to funnel animals to a crossing location that is safer for the travelling public and the animals themselves.

Several projects incorporate replacement of drains. Depending on the location and type of drains being replaced, opportunities may arise for accommodating small animal passage.

Although the projects planned during this cycle may have few opportunities to consider wildlife issues, it is likely that there are other highways on the Gifford Pinchot National Forest with wildlife issues needing mitigation that could be incorporated into the next planning cycle.

State Transportation Improvement Program (STIP) Projects

<table>
<thead>
<tr>
<th>PROCESS ELEMENT</th>
<th>Highway Name / (Project Section)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SR 14/1.5 Miles East of Bergen Road - Rockfall Mitigation</td>
</tr>
<tr>
<td></td>
<td>US 12/3 Miles East of SR 123 - Stabilize Slope</td>
</tr>
<tr>
<td></td>
<td>US 12/4.5 Miles East of SR 123 - Stabilize Slope</td>
</tr>
<tr>
<td></td>
<td>US 12/4.4 Miles East of SR 123 - Stabilize Slope</td>
</tr>
<tr>
<td></td>
<td>US 12/West Side White Pass - Stabilize Slope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock scaling, rock bolting, wire mesh, cable net installation Install rockfall mitigation measures.</td>
</tr>
<tr>
<td>Scaling, rock bolts, rock dowels and drape with wire mesh. Repairs unstable rock slope by removing loose rocks, constructing a fence at the base of the western part of the slope, and installing nets and mesh on the slope. Reduces the likelihood of future rock fall reaching the roadway surface.</td>
</tr>
<tr>
<td>Scaling, rock bolts, dowels, draped cable mesh, horizontal drains. Stabilize an unstable rock slope by removing loose rocks and using rock bolts and dowels to reinforce large rock blocks. The project also will install horizontal drains and drape slope with cable net slope protection.</td>
</tr>
<tr>
<td>Trim blasting, scaling, rock bolts, dowels, horizontal drains, mesh. Stabilize an unstable rock slope by removing loose rocks and using rock bolts and dowels to reinforce large rock blocks. The project also will install horizontal drains and drape slope with cable net slope protection.</td>
</tr>
<tr>
<td>Scaling, fiber-reinforced shotcrete, rock dowels, rock bolts. Stabilize an unstable rock slope by removing loose rocks and using fiber-reinforced shotcrete, rock bolts, and rock dowels to reinforce large rock blocks. The slope will also be draped with cable-net slope protection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program Year for Construction</th>
<th>Estimated Project Cost ($)</th>
<th>Resource Needs Level</th>
<th>Opportunities</th>
<th>Forest Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>$1,592,000</td>
<td>2</td>
<td>Use barrier to divert animals to a safer crossing area.</td>
<td>Cumulative effects of incrementally increasing threat: sedimentation & water quality concerns from scraping away pieces of rock.</td>
</tr>
<tr>
<td>2009</td>
<td>$1,517,000</td>
<td>2</td>
<td>Use barrier to divert animals to a safer crossing area.</td>
<td>Cumulative effects of incrementally increasing threat: sedimentation & water quality concerns from scraping away pieces of rock.</td>
</tr>
<tr>
<td>2010</td>
<td>$1,438,000</td>
<td>2</td>
<td>Replacement of drains can produce greater terrestrial passage opportunities.</td>
<td>Cumulative effects of incrementally increasing threat: sedimentation & water quality concerns from scraping away pieces of rock.</td>
</tr>
<tr>
<td>2010</td>
<td>$958,000</td>
<td>2</td>
<td>Replacement of drains can produce greater terrestrial passage opportunities.</td>
<td>Cumulative effects of incrementally increasing threat: sedimentation & water quality concerns from scraping away pieces of rock.</td>
</tr>
<tr>
<td>2009</td>
<td>$463,000</td>
<td>2</td>
<td>Use barrier to divert animals to a safer crossing area.</td>
<td>Cumulative effects of incrementally increasing threat: sedimentation & water quality concerns from scraping away pieces of rock.</td>
</tr>
</tbody>
</table>
Badgers readily use existing or added culverts to cross highways. However, often in their desert haunts too few culverts occur to provide frequent passage opportunities. Some studies have indicated a high frequency of badger mortalities are due to vehicle collisions. (Image: unknown)
The Ochoco and Malheur National Forests are treated together in this rapid assessment because few highway development projects are planned during this round for either of the forests, and highways affect similar species on both forests.

Highways with relatively low to moderate traffic volume typically have the highest rate of wildlife-vehicle collisions of any size highway. This is because traffic gaps are large enough that animals tend to underestimate the danger, and traffic is not noisy or frequent enough to cause as much avoidance as occurs on high volume highways. The Ochoco and Malheur National Forests are likely to have highways with a high rate of wildlife-vehicle collisions because of moderate traffic volume. Transportation departments tend to have more tools to solve the safety aspects than ecological aspects of animal/vehicle collisions.

Involvement by the Forest Service, especially specialists in interpreting wildlife and highway interactions, can guide projects towards meeting both transportation and resource agency missions. Due to less noise from high traffic volume, highways in remote areas usually will be relatively permeable to most wildlife species. An awareness of trigger points for when issues become population-level impacts will help reduce future problems. If the rate of vehicle caused mortality is acceptable from an ecological and safety perspective, mitigation can be deferred to higher priority forests while recognizing opportunities associated with highway projects as they come on line.

Fish passage improvements on US 26 might provide an opportunity to increase terrestrial wildlife passage as well.

State Transportation Improvement Program (STIP) Projects

Malheur and Ochoco National Forests

<table>
<thead>
<tr>
<th>PROCESS ELEMENT</th>
<th>Highway Name / (Project Section)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US26: BRIDGE CREEK FISH PASSAGE IMPROVEMENTS</td>
</tr>
<tr>
<td>Description of Work</td>
<td>Bridge Creek Fish Passage Improvements</td>
</tr>
<tr>
<td>Program Year for Construction</td>
<td>2011</td>
</tr>
<tr>
<td>Estimated Project Cost ($)</td>
<td>$346,000</td>
</tr>
<tr>
<td>Resource Needs Level</td>
<td>1</td>
</tr>
<tr>
<td>Opportunities</td>
<td>Consider installing terrestrial passage simultaneously with aquatic passage.</td>
</tr>
<tr>
<td>Threats</td>
<td>Fish passage structures might impede terrestrial passage.</td>
</tr>
</tbody>
</table>
The Mt Baker-Snoqualmie National Forest shares with the Okanogan-Wenatchee National Forest one of the most heavily travelled interstates in the United States, Interstate 90. This massive route is not being upgraded on the western flank of Snoqualmie Pass at this time, but numerous other projects of significance are planned for the forest. Two planned bridge replacements might offer many opportunities for improving wildlife passage opportunities. Realignment of the road at Nooksack River may pose substantial issues with sediment, aquatics passage, and disturbance, while potentially providing opportunities to improve passage for wildlife in the area. Some project descriptions in the STIP are difficult to assess for threats or opportunities to wildlife resources, and need to be investigated as to the project extent.

Here, mountain lions use a newly constructed wildlife underpass in Montana. Large projects provide opportunities to plan wildlife crossing structures that can be used by many species. (Image: Confederated Salish Kootenai Tribe)
State Transportation Improvement Program (STIP) Project Planning & Development Tracking Form

Mount Baker-Snoqualmie National Forest

<table>
<thead>
<tr>
<th>PROCESS ELEMENT</th>
<th>Highway Name / (Project Section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest Service</td>
<td>SR 542/Nooksack River - Redirect River and Realignment Roadway</td>
</tr>
<tr>
<td>Description of Work</td>
<td>Replace existing Bridge 12/316. Existing bridge does not meet current standards. A new bridge will be constructed in order to meet current standards and maintain safe operation of the highway.</td>
</tr>
<tr>
<td>Resource Needs Level</td>
<td>4</td>
</tr>
<tr>
<td>Estimated Project Cost ($)</td>
<td>$12,120,000, $7,405,000, $5,601,000, $7,029,000, $170,000, $160,000, $924,000</td>
</tr>
</tbody>
</table>

Opportunities
- Investigate opportunities to improve drainage for terrestrial crossing.
- Best opportunity in 50-70 years to restore or maintain habitat connectivity; chance for input on where bridge is situated; install new or replacement but structures; ability to fix bottleneck, such as with shelving.
- Use barrier to divert animals to a safer crossing area.
- Use barrier to divert animals to a safer crossing area.
- Investigate the extent of action to determine wildlife passage opportunities.
- Investigate the extent of action to determine wildlife passage opportunities.
- Investigate the extent of action to determine wildlife passage opportunities.
- Investigate the extent of action to determine wildlife passage opportunities.
- Consider installing terrestrial passage simultaneously with aquatic passage.

Threats
- Investigate down stream effects; investigate the extent of action to determine threat level.
- Impact of the removal of an old bridge such as lead paint; increased erosion and sedimentation in stream.
- Impact of the removal of an old bridge such as lead paint; increased erosion and sedimentation in stream.
- Cumulative effects of incrementally increasing barrier with slope protection: sedimentation & water quality concerns from scraping away pieces of rock.
- Cumulative effects of incrementally increasing barrier with slope protection: sedimentation & water quality concerns from scraping away pieces of rock.
- Cumulative effects of incrementally increasing barrier with slope protection: sedimentation & water quality concerns from scraping away pieces of rock.
- Cumulative effects of incrementally increasing barrier with slope protection: sedimentation & water quality concerns from scraping away pieces of rock.

- Investigate the extent of action to determine threat level.
- Investigate the extent of action to determine threat level.
- Investigate the extent of action to determine threat level.
- Fish passage structures might impede terrestrial passage.
Gray squirrels were recognized in the Oregon Wildlife Movement Strategy as a species affected by habitat fragmentation and mortality from highways. Gray squirrels are representative of common species that can be adversely affected much more than wildlife managers normally recognize until populations are greatly reduced. (Image: Kathy Munsell, ODFW)

Emergency projects, by definition, are not planned, so they will not be listed on STIPs except under unusual circumstances. Bridge damage from Mt. Hood debris flows resulted in the need for major bridge replacements and other reconstruction. Opportunities for improving ecosystem function are still available on fast-moving emergency projects, such as the case here where repairs will enable more natural floodplain functions, but responding rapidly can be challenging. (Image: S. Jacobson)
The Mt Hood National Forest has numerous projects listed in the STIP, some of which may have substantial threats or opportunities to terrestrial wildlife. Not all highway projects are on the STIP, however, including emergency repairs. One of the largest and most significant projects on the Mt Hood National Forest is an emergency repair project on State Route 35 which includes several underpasses potentially capable of improving wildlife passage for the next half century. Emergency repairs, especially at stream-road crossings, are fleeting opportunities with little lead time to improve passage for both aquatic and terrestrial animals, so it is important to request assistance in identifying and designing passage improvements.

Other planned projects that warrant consideration for terrestrial wildlife resources are bridge replacements and passing lane additions. Passing lane additions are incremental increases in a highway’s barrier effect. These types of improvement projects are often complex projects with opportunities for substantial mitigation for new and existing impacts.

State Transportation Improvement Program (STIP) Projects

Mount Hood National Forest

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Information</td>
<td>Description of Work</td>
</tr>
<tr>
<td></td>
<td>Repair Bridge # 2176A, Replace Bridges # 021948, 02062A, 02062B</td>
<td>Repair 07458A, 08610, 08610W, 08623, 08662, Replace 08605, 08605W</td>
<td>Install Downhill Passing Lane</td>
<td>Planning Access Accomodation of Anticipated Resort/ Casino ES,JAMP,B-PT DEC REP</td>
<td>Install Slow Movin Vehicle Turnout and Chain-Up Area</td>
<td>Repair or Reconstruct Fencing Along I-84</td>
<td>Repair and Widen Bridge #07519</td>
<td>Improvements to Marine Park Underpass</td>
<td>Planning Phase For Project</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Project Information

<table>
<thead>
<tr>
<th>Highway Name / (Project Section)</th>
<th>Program Year for Construction</th>
<th>Estimated Project Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-84: DODSON - TANNER CREEK BUNDLE 209</td>
<td>2008</td>
<td>$18,438,000</td>
</tr>
<tr>
<td>I-84: CASCADE LOCKS - 2ND ST(HOOD RIVER)BUNDLE 208</td>
<td>2008</td>
<td>$16,889,000</td>
</tr>
<tr>
<td>US26: MP 49.20 - MP 51.2</td>
<td>2008</td>
<td>$12,544,000</td>
</tr>
<tr>
<td>I-84: ACCESS IMPROVEMENTS (CASCADE LOCKS) PROJECT</td>
<td>2011</td>
<td>$3,000,000</td>
</tr>
<tr>
<td>US 26: FS ROAD 35 TO FS ROAD 36</td>
<td>2011</td>
<td>$2,151,000</td>
</tr>
<tr>
<td>I-84 SANDY RIVER - THE DALLES (FENCING)</td>
<td>2008</td>
<td>$1,697,000</td>
</tr>
<tr>
<td>US30: CLATSKANIE RIVER-BUNDLE 459</td>
<td>2010</td>
<td>$1,659,000</td>
</tr>
<tr>
<td>CASCADE LOCKS MARINE PARK UNDERPASS</td>
<td>2008</td>
<td>$892,000</td>
</tr>
<tr>
<td>US26: BEAVER CREEK REALIGNMENT REFINEMENT</td>
<td>2008</td>
<td>$204,000</td>
</tr>
</tbody>
</table>

Forest Service

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest Service</td>
<td>Best opportunity in 50-70 years to restore or maintain habitat connectivity; chance for input on where bridge is situated; install new or replacement bat structures; ability to fix bottleneck, such as with shelving.</td>
<td>Best opportunity in 50-70 years to restore or maintain habitat connectivity; chance for input on where bridge is situated; install new or replacement bat structures; ability to fix bottleneck, such as with shelving.</td>
<td>Investigate the need for wildlife crossing structures.</td>
<td>Consider wildlife fencing to divert animals to a safer crossing area.</td>
<td>Best opportunity in 50-70 years to restore or maintain habitat connectivity; chance for input on where bridge is situated; install new or replacement bat structures; ability to fix bottleneck, such as with shelving.</td>
<td>Investigate the need for wildlife crossing structures.</td>
<td>Investigate the need for wildlife crossing structures; identify existing wildlife issues.</td>
<td>Investigate the need for wildlife crossing structures; identify existing wildlife issues.</td>
</tr>
</tbody>
</table>

Threats

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact of the removal of an old bridge such as lead paint; increased erosion and sedimentation in stream.</td>
<td>Impact of the removal of an old bridge such as lead paint; increased erosion and sedimentation in stream.</td>
<td>Clear zone barrier effect; cumulative effects of incrementally increasing barrier.</td>
<td>Clear zone barrier effect; cumulative effects of incrementally increasing barrier.</td>
<td>Clear zone barrier effect; cumulative effects of incrementally increasing barrier.</td>
<td>Impact of the removal of an old bridge such as lead paint; increased erosion and sedimentation in stream.</td>
<td>Clear zone barrier effect; cumulative effects of incrementally increasing barrier.</td>
<td>Clear zone barrier effect; cumulative effects of incrementally increasing barrier.</td>
<td>Clear zone barrier effect; cumulative effects of incrementally increasing barrier.</td>
</tr>
</tbody>
</table>
Overpasses covered with vegetation are a tiny ecosystem of connectivity across the heavy traffic and several lanes of an interstate highway. When built as part of the Snoqualmie Pass project, the Noble Creek wildlife overcrossing will help restore habitat connectivity for wildlife and plants across Interstate 90. Huge, complex projects such as this take years to plan and a great deal of dedicated staff time from resource agency personnel as well as the DOTs. (Simulated Image: Washington DOT)

Lynx are vulnerable to vehicle collisions, and can be affected at the population level by vehicle-caused mortality. A high proportion of the mortality in reintroduced lynx in Colorado has been from vehicle collisions. (Image: USFS)
The Okanogan-Wenatchee National Forest is famous in transportation ecology circles because of its application of the best available science in wildlife and highway interactions on the Interstate 90 Snoqualmie Pass East project. The Interstate Highway System that tied all corners of the nation together is now slightly over 50 years old, and many sections are now requiring substantial modernization and reconstruction. Interstates carry so many vehicles on so many lanes that they pose an almost complete barrier to wildlife movement. The I-90 Snoqualmie East project is a huge improvement project that dwarfs all other infrastructure projects in Region 6.

As if I-90 were not enough, the Okanogan-Wenatchee National Forest has several other substantial projects, especially bridge replacements. Overall, these projects applied carefully can result in a restoration of wildlife passage opportunities in several locations.
Salamanders of many species are vulnerable to highway impacts because of their low mobility and because of their movements to breeding habitat. Fortunately, some salamander species are abundant and not at risk from highway impacts, and mitigation for those at risk is relatively simple and inexpensive. Not all aquatic organism passages will function for terrestrial salamanders. (Image: Betsy Howell)

Fishers are prone to disruption in their movements from highway disturbance, and studies in parts of their range show them as victims of vehicle collisions. However, fishers readily accept small culverts as wildlife passages if placed in suitable locations for their movement needs and if they are not inundated with water. (Image: Dennis Garrison)
A recent success of the Olympic National Forest, the reintroduction of fishees, highlights some of the movement needs of animals as they attempt to meet their basic life history needs. Reintroduced animals often travel widely before finding a location to settle down, and incur increased risk of mortality while traveling across highways. Several reintroduction projects have been severely hindered by vehicle cause mortality.

Many wildlife species disperse great distances while seeking mates or establishing their own territories, and these movements are key to animals recolonizing habitat. Enabling animals of many species to move as a result of changing habitat or other conditions is likely to be a key management need in light of climate change.

Highways provide Americans with safe access to almost all corners of our country, but National Forest System lands are among the least fragmented and developed. Highways with increasing traffic volume threaten the ability of animals to move freely across the last best places. Fortunately, there are mitigation measures to assist transportation planners in reducing impacts or even restoring former habitat connectivity. The Olympic National Forest does not have major highway projects planned in the STIP for this cycle, but might consider proposing projects for the future to maintain or enhance wildlife movement.

Olympic National Forest

<table>
<thead>
<tr>
<th>PROCESS ELEMENT</th>
<th>Highway Name / (Project Section)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US 101/Sol Duc River Bridge - Upgrade Bridge Rail</td>
</tr>
<tr>
<td>Description of Work</td>
<td>Upgrade bridge rail 101/320 The existing bridge rail does not meet current standards. Motorist safety will be enhanced by retrofitting the existing bridge rail to meet current standards.</td>
</tr>
<tr>
<td>Program Year for Construction</td>
<td>2009</td>
</tr>
<tr>
<td>Estimated Project Cost ($)</td>
<td>$245,000</td>
</tr>
<tr>
<td>Resource Needs Level</td>
<td>1</td>
</tr>
<tr>
<td>Threats</td>
<td>Consider disturbance effects to wildlife during construction</td>
</tr>
</tbody>
</table>
When any bridge project is planned, it provides an opportunity to create habitat for bats. Simple and inexpensive designs can be added to bridges for bats. (Image: Norman Barrett, USFS)

Salamanders as a group can be seriously affected by highways because they are highly vulnerable to fragmentation and vehicle-caused mortality. Population-level impacts from highways do not always occur, but simple mitigation measures are available and are recommended in some cases. (Image: Karen West, USFS)

Salamanders as a group can be seriously affected by highways because they are highly vulnerable to fragmentation and vehicle-caused mortality. Population-level impacts from highways do not always occur, but simple mitigation measures are available and are recommended in some cases. (Image: Karen West, USFS)
The Rogue River-Siskiyou National Forests have planned bridge repair and replacements that could be utilized as opportunities for greater large mammal passages and bat habitat. Bridge replacements have the potential to greatly enhance aquatic and terrestrial movement capabilities, or to cause serious new problems. Bridge replacements can enhance passage by widening the area under the bridge, or providing an unsubmerged pathway alongside the stream. Alternatively, bridge replacements can cause much greater obstruction of terrestrial animal movement if rock armament is overused. Early planning can help ensure a suitable design to allow for greater animal passage.

Several paving and overlay projects in this planning cycle might be investigated for opportunities to provide additional small culverts for small animal passages. Planned guardrail improvements may provide opportunities for deterring larger animals such as deer from entering the highway at locations with collision risks.

State Transportation Improvement Program (STIP) Projects

Rogue River-Siskiyou National Forest

<table>
<thead>
<tr>
<th>PROCESS ELEMENT</th>
<th>Highway Name / (Project Section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of Work</td>
<td>Repair Bridge 02496, 07904, 16861, & Replace Bridges 03461</td>
</tr>
<tr>
<td>Pavement Preservation, Add Left Turn Refuge, Upgrade Guardrail, Replace Drain Pipes</td>
<td></td>
</tr>
<tr>
<td>Inlay/Overlay/ Roadway</td>
<td></td>
</tr>
<tr>
<td>Agness Road (Curry County) Local Earmark Proposed</td>
<td></td>
</tr>
<tr>
<td>Replace Paving, Super elevation & Drainage</td>
<td></td>
</tr>
<tr>
<td>Rouge River Bicycle/ Pedestrian Path (Curry County) Local Earmark Proposed</td>
<td></td>
</tr>
<tr>
<td>Paved Parking, Visitor Access/Info</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Year for Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Project Cost ($)</th>
<th>13,987,000</th>
<th>3,564,000</th>
<th>2,792,000</th>
<th>2,229,000</th>
<th>1,200,000</th>
<th>750,000</th>
<th>520,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Needs Level</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forest Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunities</td>
<td>Best opportunity in 50-70 years to restore or maintain habitat connectivity; chance for input on where bridge is situated; install new or replacement bat structures; ability to fix bottleneck, such as with shelving.</td>
</tr>
<tr>
<td>Use guardrail as a wildlife deterrent fencing; new drain pipes may provide wildlife passage.</td>
<td></td>
</tr>
<tr>
<td>Install new or replacement water conveyance structures.</td>
<td></td>
</tr>
</tbody>
</table>

| Threats | Impact of the removal of an old bridge such as lead paint; increased erosion and sedimentation in stream. |
| Clear zone barrier effect; cumulative effects of increasingly increasing barrier. |
| Consider disturbance effects to wildlife during construction. |
Not all victims of vehicle collisions are even noticed, especially if they cause no property damage or injury. Oregon Silverspot Butterflies are an example of a species that needs to move to meet its life history needs. Twice daily, females fly across the highway between foraging areas and breeding areas, placing them at risk of vehicle collisions. Mortalities from collisions are likely unsustainable to this tiny population. (Image: Mike Patterson, Celata Research Associates)

Oregon Silverspot Butterfly habitat on the Siuslaw National Forest is shown along US Highway 101. Mitigation methods are being investigated to reduce the risk of vehicle collisions with the butterflies. (Image: USFS)
The Siuslaw National Forest is unique in Region 6 because one of its rarest denizens is an invertebrate heavily impacted by roadkill. Highway 101 along the Oregon coast separates the foraging and breeding habitat of the Oregon Silverspot Butterfly. Egg-depositing females travel the most frequently across the busy highway and are subject to vehicle-caused mortality. Collaborative interagency research is helping to develop innovative mitigation measures. Investigations here will assist in other areas of the world that are also grappling with vehicle-caused impacts to rare invertebrates.

Other important highway projects on the Siuslaw are the construction of new passing lanes and pavement overlay projects. New passing lanes result in incremental increases in the width of a highway that over time can signal a dramatic reduction in the ability of animals to move across the landscape. Pavement overlay projects might allow installation of inexpensive dry culverts that function as small animal passages. Both types of projects need investigation into cumulative effects, and consideration of identified wildlife movement areas.
Williams Creek is an important travelway for aquatic and terrestrial wildlife, but the size and shape of the culvert, shown here, hindered passage for both. This culvert will be replaced during this STIP cycle, considering the needs of wildlife passage as well as aquatics. (Image: USDA Forest Service)

The delightful ring-tailed cat frequents rocky riparian areas, where it is often hit as it crosses highways winding along parallel paths with rivers. This species will readily accept water conveyance structures to cross under highways if a few simple rules are used in their design. (Image: Arizona GFD)
The Umpqua National Forest has a major opportunity to engage in planning the widening of State Route 138, which is identified in the Oregon Wildlife Movement Strategy as a wildlife movement corridor for several species. Widening projects incrementally increase the barrier effect of highways, but also provide many opportunities to mitigate existing impacts. During major construction projects, a variety of mitigation measures can be incorporated to restore or to prevent loss of the ability of animals to move freely across the highway. Major widening projects are intensive and usually they require special expertise to recognize and handle complex threats and opportunities. Considerable staff time can be expected if an environmentally sensitive highway project is desired.

Bridge replacements on the Umpqua National Forest also provide excellent opportunities for increasing wildlife passage opportunities if early engagement in the planning occurs. Opportunities to watch for include ensuring that bridge replacements provide for both aquatic and terrestrial passage through appropriate design.

State Transportation Improvement Program (STIP) Projects

<table>
<thead>
<tr>
<th>Project Information</th>
<th>Highway Name / (Project Section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of Work</td>
<td>OR138: NORTH UMPQUA HWY WIDEN/ OVERLAY</td>
</tr>
<tr>
<td></td>
<td>OR230/OR138:NORTH UMPQUA-UPPER ROGUE D/B B520</td>
</tr>
<tr>
<td></td>
<td>BARNETT ROAD - BLUE HERON PARK UNIT 2C</td>
</tr>
<tr>
<td>Program Year for Construction</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>2009</td>
</tr>
<tr>
<td>Estimated Project Cost ($)</td>
<td>$14,791,000</td>
</tr>
<tr>
<td></td>
<td>$13,987,000</td>
</tr>
<tr>
<td></td>
<td>$775,000</td>
</tr>
<tr>
<td>Resource Needs Level</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Opportunities</td>
<td>Investigate the need for wildlife crossing structures.</td>
</tr>
<tr>
<td></td>
<td>Best opportunity in 50-70 years to restore or maintain habitat connectivity; chance for input on where bridge is situated; install new or replacement bat structures; ability to fix bottleneck, such as with shelving.</td>
</tr>
<tr>
<td>Threats</td>
<td>Clear zone barrier effect; cumulative effects of incrementally increasing barrier.</td>
</tr>
<tr>
<td></td>
<td>Impact of the removal of an old bridge such as lead paint; increased erosion and sedimentation in stream.</td>
</tr>
</tbody>
</table>
Elk vie with deer as the animal drivers fear a collision with most, with good reason. In collisions, elk are far more lethal to drivers and cause greater property damage than deer but tend to cause fewer accidents overall due to their fewer numbers. Elk are easily disturbed by high traffic volume and they tend to avoid highways more than deer.

Black-tailed jackrabbits have been declining across the west due to habitat fragmentation and other causes. Lagomorphs are surprisingly very susceptible to collisions with vehicles because of their zigzagging behavior—a behavior highly adaptable to evading coyotes but much less so when running from a sedan.
The Umatilla and Wallowa-Whitman National Forests are combined in this rapid assessment because very few projects are identified on the forests for this round of highway project developments. However, both forests have several highways identified on the Oregon Wildlife Movement Strategy as important wildlife corridors or high mortality areas. In particular, Interstate 84 winds through both forests, in areas with high elk concentrations. During this round of relative quiet on highway project developments, it is possible for either of the forests to work collaboratively with Oregon DOT and Western Federal Lands Highway Program partners to identify opportunities for projects that propose safety measures to reduce animal-vehicle collisions. The Forest Service can propose projects for inclusion on future STIPs to plan and construct effective mitigation measures such as underpasses, especially in those areas identified in the Oregon Wildlife Movement Strategy.

State Transportation Improvement Program (STIP) Projects

Umatilla and Wallowa-Whitman National Forest

<table>
<thead>
<tr>
<th>PROCESS ELEMENT</th>
<th>Highway Name / (Project Section)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I-84 CORRIDOR ROCKFALL CORRECTIONS</td>
</tr>
<tr>
<td>Description of Work</td>
<td>Rockfall Corrections</td>
</tr>
<tr>
<td>Program Year for Construction</td>
<td>2008</td>
</tr>
<tr>
<td>Estimated Project Cost ($)</td>
<td>$616,000</td>
</tr>
<tr>
<td>Resource Needs Level</td>
<td>2</td>
</tr>
<tr>
<td>Opportunities</td>
<td>Use barrier to divert animals to a safer crossing area.</td>
</tr>
<tr>
<td>Threats</td>
<td>Cumulative effects of incrementally increasing barrier with slope protection: sedimentation & water quality concerns from scraping away pieces of rock.</td>
</tr>
</tbody>
</table>
Studies have shown that forest grouse are rarely represented as roadkill, and they avoid habitat within hundreds of meters of highways. This suggests that highways linearly fragment grouse habitat more than previously suspected because grouse avoid highways. (Image: Ray Davis, USFS)

Some species rarely stray from their aquatic habitat and would not benefit from terrestrial passages. Conversely, as resource agencies have focused on improving aquatic organism passages, terrestrial passage opportunities may not have been provided. Considerations differ for the two groups, and newer designs and decision protocols are needed to allow for both terrestrial and aquatic passages. (Image: Chris Hatten)
Bridge replacements on the Willamette National Forest offer several opportunities for increasing wildlife movement across highways. Drainages are natural travelways for many wildlife species, and bridges can be readily designed to provide passage for terrestrial as well as aquatic species. Bridge replacements are important opportunities because bridges have a very long design life, and replacements occur as seldom as a half century or longer. It is key to ensure that opportunities are taken to incorporate passage design at the time of replacement because of this short window of opportunity.

State Transportation Improvement Program (STIP) Projects

<table>
<thead>
<tr>
<th>Highway Name / (Project Section)</th>
<th>Description of Work</th>
<th>Program Year for Construction</th>
<th>Estimated Project Cost ($)</th>
<th>Resource Needs Level</th>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCKENZIE HWY: WHITE BRANCH SNOW GATE - LINN CO LINE</td>
<td>Resurface and Bridge Replacement White Branch Snow Gate - Linn Co Line</td>
<td>2008</td>
<td>$3,250,000</td>
<td>3</td>
<td>Best opportunity in 50-70 years to restore or maintain habitat connectivity; chance for input on where bridge is situated; install new or replacement bat structures; ability to fix bottleneck, such as with shelving.</td>
<td>Impact of the removal of an old bridge such as lead paint; increased erosion and sedimentation in stream.</td>
</tr>
<tr>
<td>OR 58: SALT CREEK HALF VIADUCTS - BUNDLE 252</td>
<td>Replace 4 Bridges #07185, 7186, 7987, 7188</td>
<td>2007</td>
<td>$1,514,000</td>
<td>3</td>
<td>Best opportunity in 50-70 years to restore or maintain habitat connectivity; chance for input on where bridge is situated; install new or replacement bat structures; ability to fix bottleneck, such as with shelving.</td>
<td>Impact of the removal of an old bridge such as lead paint; increased erosion and sedimentation in stream.</td>
</tr>
<tr>
<td>MCKENZIE HWY: MP 66.7 & 68.4 BR REPLACE</td>
<td>Resurface Inlay/Overlay</td>
<td>2008</td>
<td>$1,000,000</td>
<td>1</td>
<td>Investigate bridge issues.</td>
<td>Consider disturbance effects to wildlife during construction.</td>
</tr>
<tr>
<td>OR22: PAMELIA RD - SANTIAM JCT</td>
<td>Inlay/Overlay</td>
<td>2012</td>
<td>$9,213,000</td>
<td>2</td>
<td>Investigate the need for wildlife crossing structures; identify existing wildlife issues.</td>
<td>Consider disturbance effects to wildlife during construction.</td>
</tr>
<tr>
<td>OR58: SALT CREEK TUNNEL - ODELL MAINT STATION</td>
<td>Inlay/Overlay</td>
<td>2012</td>
<td>$7,031,000</td>
<td>1</td>
<td>Investigate the need for wildlife crossing structures; identify existing wildlife issues.</td>
<td>Consider disturbance effects to wildlife during construction.</td>
</tr>
<tr>
<td>US20: HOGG ROCK ROCKFALL MITIGATION</td>
<td>Construct Rock Fall Mitigation</td>
<td>2009</td>
<td>$7,077,000</td>
<td>1</td>
<td>Use barrier to divert animals to a safer crossing area.</td>
<td>Cumulative effects of incrementally increasing barrier with slope protection: sedimentation & water quality concerns from scraping away pieces of rock.</td>
</tr>
</tbody>
</table>

Several smaller projects on the Willamette National Forest such as pavement overlays may have the potential to provide passage for small mammals and amphibians by including installation of simple dry culverts. Paving projects are often noisy with much commotion, potentially causing disturbance to sensitive wildlife during construction periods.
Complete STIP Tracking Tool

The previous pages provide examples of the information available in state STIPs to Forest Service line officers and wildlife program managers. The Rapid Assessment team has provided a mechanism to identify and track projects of interest. No other such tool is available to any Forest Service staff in the nation. However, STIPs are living documents, and these tracking tools will require updating to remain useful. The updating process is not automatic and will require an active decision to implement on a continuing basis.

Shown on this page is a complete version of the summarized STIP Tracking Tool displayed in the rest of this document. Each forest has a complete tracking tool, stored on the Region 6 “O” Drive* as well as on the Wildlife Crossings Toolkit website (http://www.fs.fed.us/wildlifecrossings). These sites contain further information on how to use the tools, and the complete STIP Tracking Tools for some forests include additional projects of low impact.

The STIP Tracking Tool serves two purposes: to display current projects and to organize project-level details as projects progress.

The summary STIP Tracking Tools display projects in the current STIP as obtained from the respective state DOTs. The Tracking Tool can be used in its summary form for updates from the states.

The second purpose of the STIP Tracking Tool is to provide a mechanism for regional or forest staff to track important project details. These fields can be updated by any user as needed, but they are recommended to be managed by the primary point of contact between a unit and the DOT or Federal Lands Highway Program. The STIP Tracking Tool has limitations in that some projects will not show up in the state DOT STIPs. Some of these, such as emergency projects or shuffled priority projects, may need to be entered manually. To be most useful, the current Tracking Tool will need to be updated with these special projects as well.

The STIP Tracking Tool provides some information useful to Forest Service natural resource staff that is not obtainable from the state STIPs. Most notable are the fields identifying Threats and Opportunities to terrestrial wildlife, and the Resource Needs Level. Threats and Opportunities provide a starting place for those unfamiliar with highway projects to identify typical issues. Resource Needs Level provides line officers with an approximation of the complexity of a project to allow planning for staff and skill needs.
Glossary of Terms and Acronyms Used

DOT: Department of transportation. In Region 6, Oregon and Washington state departments are ODOT and WSDOT respectively.

Federal Lands Highway Program (FLHP): The Office of Federal Lands Highway (FLH) provides program stewardship and transportation engineering services for planning, design, construction, and rehabilitation of the highways and bridges that provide access to and through federally owned lands. The primary purpose of the FLHP is to provide financial resources and technical assistance for a coordinated program of public roads that service the transportation needs of Federal and Indian lands. The Forest Service’s Region 6 is served by the Western Federal Lands Highway Division in Vancouver, WA.

Highway Project Development: Transportation departments typically use this term for the environmental analysis and design phase of a highway project.

Transportation planning is a term used for longer term, strategic planning, somewhat analogous to the Forest Service’s forest planning process.

Resource Needs Level: Resource Needs Levels help line officers and program staff estimate staff and skill needs based on the complexity of a highway development project. Resource Needs Levels increase in complexity, beginning with simple projects at RNL 1 and increasing in complexity to major construction projects at RNL4. The Resource Needs Levels concept was developed by Rick Clark, Forest Service liaison to Wyoming DOT, and modified here for Region 6 terrestrial wildlife issues. The concept can also apply generally for other resource areas once threats and opportunities are identified for those disciplines.

STIP: Statewide Transportation Improvement Program, a planning document itemizing funded highway development projects and spanning multiple years. Each state has a different process to develop their STIP.

STIP Tracking Tool: Spatial and tabular information on current STIP highway projects of interest to the Forest Service. The Tool is a spreadsheet and can be readily edited as needed.

Threats and Opportunities: The STIP Tracking Tool categorizes highway development projects by their typical threats and opportunities for terrestrial wildlife. Not all projects in a state’s STIP are included in the tracking tools because some are not likely to have either threats or opportunities with regards to terrestrial wildlife.
Replacing culverts to enable aquatic passage does not always help to increase wildlife passage, but it did in this example on Little Boulder Creek in Washington. Perched culverts are barriers to many terrestrial wildlife species as well as aquatics. A wider opening combined with natural substrate of small to moderately sized materials facilitates passage by many terrestrial animals. (Images: Washington DOT)

An undersized culvert on the Umpqua National Forest’s Williams Creek hindered both aquatic and terrestrial passage across the highway. Umpqua National Forest staff worked hard to obtain funding, including funding from the American Reinvestment and Recovery Act, to replace the culvert with a bridge that will enable aquatic and terrestrial passage when completed. (Images: USDA Forest Service)