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ABSTRACT  

  Street layout and design, once established, are then not easily 

changed.  Urban form affects community development, livability, 

sustainability, and traffic safety.  There has been an assumed relationship 

between urban form and traffic safety that favors designs with less through 

streets to improve safety.  An empirical study to test this assumed relationship 

was carried out for crash data for Portland, Oregon.   

  This thesis presents an empirical methodology for analyzing the 

relationship between urban form and traffic safety utilizing a uniform grid for 

the spatial unit.  Crashes in the Portland, Oregon city limits from 2005-2007 

were analyzed and modeled using negative binomial regression to study the 

effect of urban form and street layout through factors on exposure, 

connectivity, transit accessibility, demographic factors, and origins and 

destinations.  These relationships were modeled separately by mode:  vehicle 

crashes, pedestrian and bicycle crashes.  Models were also developed 

separately by crash type and by crash injury severity.  

  The models found that urban form factors of street connectivity and 

intersection density were not significant at 95% confidence for vehicle and 

pedestrian crash rates, nor for different crash severity levels, indicating that 

high connectivity grid street layout may have comparable safety to loops and 
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lollipops, in contrast to results in earlier studies.  Elasticity for all models was 

dominated by VMT increases.  Business density, population and transit stops 

were also significant factors in many models, underlining the importance not 

only of street layout design, but also planning to direct development to 

influence where businesses, employment, and housing will grow and handle 

traffic volumes safely. 
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1.0     INTRODUCTION 

 

Streets have many functions, both for traffic movement, and as a 

framework for the neighborhood and local community (1).  Street layout and 

design are typically defined in the planning and design phases for a particular 

land area. Once infrastructure is established it is then not easily changed.  The 

design and layout of streets affect not only how the local neighborhood and 

community develop, but also traffic safety.  Even though human factors 

dominate crash causality, it is important to understand secondary effects (2) and 

interactions with the built environment to aid planning and design of new 

development.  It is important to study the actual safety relative to urban form to 

check if long held assumptions are valid, so that further development can 

appropriately consider safety in balance with connectivity and accessibility, along 

with street design factors such as width, traffic control, and presence of 

sidewalks.  With this understanding, safety can be improved.  

  Recent studies in San Antonio, Texas (3) and Calgary, Alberta (4), (5) 

have started to include street layout in the crash analysis, and have shown lower 

crash rates within the limited through way neighborhoods.   
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1.1 Problem Statement 

Traffic safety has long been a concern in street layout and design.  

Designers such as Frederick Law Olmsted rejected the grid layout in the 19th 

century, and started recommending curvilinear streets as part of an idealized 

suburban lifestyle.  Twentieth century designers recommended limited access 

with limited through way designs for residential areas to reduce through traffic, 

sacrificing interconnectivity for perceived safety.  Although rural road safety 

benefits from wide lanes and good visibility; urban streets with these features 

may encourage higher speeds, and thus less safe conditions in an environment 

that mixes vehicular, pedestrian, and bicycle traffic.  

  This assumed that a relationship between urban form and traffic safety 

would favor designs with less through streets to improve safety.  Although this 

premise has been adopted and even codified into national and local standards 

(1), few studies have looked empirically at differences in traffic safety for 

different street layout designs.  If safe street layout and design features could be 

identified, designers would be able to recommend urban form(s) that would 

provide better traffic safety and build safety into the infrastructure, even as 

connectivity, mobility, and accessibility are also considered.  Infrastructure 

designed for the best safety practices and connectivity for vehicle, pedestrian, 
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and bicycle traffic would provide a long term framework for safe and well 

functioning transportation networks that build and sustain communities.   

 

1.2 Research Objectives and Scope 

The objective of this research is to empirically quantify the relationship 

between urban form (defined by exposure, connectivity, transit accessibility, 

demographics, and origin and destination measures) and traffic safety (defined 

by reported motor vehicle crashes).  This study was undertaken to test whether 

grid layout, which provides high connectivity and alternate through routes, is any 

more or less safe than loops and lollipops.  The study looked at reported crashes 

from 2005-2007 within the Portland, Oregon 2007 city limit boundary.  A uniform 

grid was used for spatial analysis to include all crashes without needing to give 

special consideration to crashes on analysis zone boundaries.    

1.3 Organization 

In the following chapter, this thesis will explore prior work related to 

traffic safety and urban form in a literature review.  Chapter 3 describes the data 

sources and methodology used for this study.  Chapter 4 presents qualitative 

analysis.  Chapter 5 covers quantitative analysis, model building using negative 

binomial regression models for crashes, model results, and elasticity.  

Conclusions and recommendations for further work are made in Chapter 6. 
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2.0     LITERATURE REVIEW  

 

 Safety in design of urban streets has been an issue since Roman times 

(1).  Modern studies have looked at not only the street design specifications for 

right of way and lane layout; but also how the form of the street layout may 

affect safety along with land use, demographic, and socioeconomic data. This 

review focuses on published literature that has dealt with empirically modeling 

urban form and safety.  

  Perhaps one of the first studies was conducted by Marks who studied five 

years of crash records on the Los Angeles County street system, encompassing 

86 subdivision tracts over 4,320 acres (6).  The study was limited to right angle 

crashes, which were nearly 84 percent of vehicular crashes within subdivisions, 

and were therefore felt to be representative of most crashes.  Major streets 

bordering the subdivisions were not included in the study, nor was there any 

adjustment for traffic volume made in the analysis in this study. 

  Marks found that most crashes occurred at intersections, and some design 

features increased crash rates.  Four leg intersections had much higher crash 

frequencies than three leg intersections, which have three conflict points 

compared to sixteen conflict points in a four legged intersection.  Features such 
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as jogs in alignment, skew, or “Y” shape at intersections were associated with 

increased crash frequencies.  Obstructions to visibility such as bridges or railroad 

tracks also increased crash frequencies.  Intersections spaced too closely were 

found to be a factor in crash frequencies.  Limited access tracts had much lower 

crash rates than grid layout areas.   

  Based on these results, Marks recommended elements for safe design 

which included limited access design; avoidance of continuous through streets; 

collector streets exiting onto only one major street; preferred use of T-type 

intersections over four legged intersections; and avoiding multi-leg, Y, skewed, 

or jog intersections.  With guidelines such as these, it was stated that 

subdividing could be done for safety. 

 Kim and Levine showed the value of using GIS data for crash analysis 

studying crashes on Oahu (7).  In their analysis, they found that approximately 

43 percent of crashes occurred at intersections.  Using TIGER (Bureau of Census 

Topographically Integrated Geographic Encoding and Referencing) data for 

streets, crashes were assigned to the nearest intersection within 363 block 

groups for the entire island, including urban areas in Honolulu as well as rural 

and agricultural uses (8).  Crashes were found to be concentrated in built-up, 

urban areas.  Freeways themselves were relatively safe, but freeway ramps and 

crossroads were particularly dangerous.  There was variation in the spatial 
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pattern of crashes by time of day, day of week, and different vehicle types.  

Spatial GIS data for crash analysis was recommended as a tool that could be 

used to help develop meaningful community safety plans.   

 Land use activity, pedestrian friendliness, and infrastructure were found to 

be more effective at reducing road hazard than traffic controls or posted speed 

limitations in a study by Ossenbruggen et al (9).  The study looked at 892 

crashes from 87 sites on rural and suburban two lane undivided highways from 

1993 to 1997 in Strafford County, New Hampshire.  In addition to roadway 

measurements, qualitative data on land use activity, street life, and vehicle 

pedestrian interactions were taken at the crash sites.  It was found that 

pedestrian friendly sites were associated with the least hazard, even with high 

traffic volume.  Thus village sites, which were mixed-use areas with sidewalks, 

were less hazardous than residential or shopping areas without sidewalks.  The 

infrastructure itself and multi-purpose activities seemed to be more effective at 

warning drivers of the need to proceed cautiously than sites which required 

traffic control devices to stop or interrupt traffic flow on the main road. 

 Hadayeghi studied crash frequency and severity in Toronto, Ontario to 

develop macro-level crash prediction models based on traffic demand, network, 

economic, and demographic variables (10).  Major and minor roadway length in 

the analysis zone, intersection count, employment, and household population 
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increases also increased crash rates.  Crash rates decreased with higher posted 

speed and higher congestion levels.  It was suggested that geometry of 

neighborhood design may also be important, though it had not been available for 

this study. 

 Ladron de Guevara (11) showed that planning-level models could be 

developed that would be useful in MPO (metropolitan planning organization) 

forecasting.  Crashes from 1998 to 1999 in 859 TAZ (transportation analysis 

zones) in Tucson, AZ were analyzed using negative binomial regression for 

different levels of crash severity.  Demographic and road characteristic variables 

were studied.  Exposure to risk was felt to be better represented in a planning 

forecasting model by population rather than VMT (vehicle miles traveled) since 

population would have better future estimates, and was more likely to be 

available by TAZ than VMT in many jurisdictions.  The fatal crash model found 

both population and population over 17 to be significant factors, along with 

intersection density.  Injury crash parameters also included population density 

and intersection density, along with employment and miles of arterial and 

collector roadways.  

 Al-Masaeid and Suleiman pointed out that reducing the need for travel 

reduces exposure and traffic, and thus reduces crash risk.  They looked at land 

use, population, VMT, and street network factors in crashes 2001-2002 in the 
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Syrian capital of Damascus (12).  The land-use factors included percent 

commercial frontage, green area, industrial, or public buildings.  Grid networks 

had more intersections and higher crash rates than comparable limited access 

elements.  A higher percentage of commercial frontage and public buildings 

correlated with higher crash rates, suggesting that moving commercial frontage 

away from major thoroughfares may reduce crash rates.  There was 

multicollinearity found between some of the street network and urban planning 

variables. 

 Kim et al in 2006 studied crashes on Oahu further using negative binomial 

regression analysis to relate crash rates to land use, population and economic  

activity (13).  A grid of uniform sized cells was set up for analysis, rather than 

TAZ or census block groups.  This study showed that grid cell spatial units can be 

used to statistically model crash rates.  Population had a positive relationship to 

crash frequency, but job count in a particular cell was an even stronger factor to 

explain crash rates.   

  Kim et al also looked at using accessibility measures and other 

demographic and land use attributes to predict crash rates (13).  The 

accessibility measures included road length, bus stops, bus route length, 

intersections, and dead ends.  Uniform 0.1 square mile grid cells were again used 

for the analysis, with each crash assigned to the nearest intersection.  Negative 
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binomial regression was not producing a model fit, so logistic regression was 

used. 

  Results showed statistical significance for crash rates and vulnerable 

populations (elderly and children), disability, and job count.  None of the 

demographic factors were significant, but business and land-use factors such as 

high density residential and military land uses were statistically significant.  Bus 

stops and bus route length correlated with increased pedestrian crashes.  

Population size was only associated with bicycle crashes.  Multicollinear 

relationships were found with variables such as population size and vulnerable 

populations (i.e. elderly and children).  The researchers concluded that crash 

predictions could be useful to identify locations needing safety improvement 

strategies which could be implemented through enforcement, engineering, and 

education. 

 Clifton et al studied pedestrian-vehicle crashes in Baltimore, MD to test 

the hypothesis that the built environment affects injury severity in such crashes 

(14).  In this area, 25 percent of households did not have access to a vehicle 

though there were numerous public transit options available.  This study used 

more than 4500 pedestrian-vehicle crashes from 2000-2004 that were geocoded 

to nearest intersection. Analysis (probit model) found that pedestrian 

connectivity and transit access were the only significant built environment 
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variables related to safety.  The better these were the less likely severe injuries 

were to occur.  Areas with low connectivity and transit access seemed most in 

need of safety intervention, since injuries there were more severe.  In vehicle 

pedestrian crashes, children were more likely to sustain injury; the elderly were 

more likely to be fatalities; and male pedestrians were more likely to sustain 

injury, especially if substance abuse was involved. 

  Dumbaugh and Rae questioned whether the design concepts which have 

become engrained into policies have been empirically tested (3).  Using census 

block groups for San Antonio crashes 2004 to 2006, they analyzed 150,626 

reported crashes along with street network and demographic variables.  In a 

methodological assumption, they assigned crashes on peripheral streets to each 

adjacent spatial unit. This assumption results in “double counting” since a crash 

would be included in more than one spatial unit.  They found that total crash 

frequency increased with VMT, young or older drivers, and rose fifteen percent 

with each additional arterial mile.  Population density was associated with fewer 

crashes, attributed to less travel demand when located close to services in 

densely populated areas.  Injury crashes also increased significantly with 

additional arterials and four leg intersections.  Higher income was associated 

with decreased crash rates.  Fatal crashes rose with road and street network 

elements that increased vehicle speed. 
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  In conclusion, Dumbaugh and Rae felt that the relationship between 

community design and traffic safety was important and complex, requiring 

community-level design solutions beyond simply preventing residential cut 

through traffic, but which would give attention to how different land uses and 

street network configurations influence speed and driver behavior.  Traffic  

re-located away from residential areas reduced neighborhood traffic volume.  

However, arterials designed with wide lanes and long sight distances for higher 

speeds should have access management, limiting entry and exit points into the 

high speed traffic.  Commercial zones with many entries and exits into the traffic 

stream should instead be located on lower speed thoroughfares. 

  Rifaat and Tay looked at injury crash rates (4) and crash severity 

modeling (5) for Calgary, Alberta.  The street network was classified as being 

one of four patterns:  loops and lollipops, mixed, warped parallel, or gridiron, 

(see Figure 1, Figure 2, Figure 3, and Figure 4).  Other factors studied included 

roadway characteristics, demographics, land use, and socioeconomic factors.  

Crashes on boundary roadways were not considered due to boundary problems 

which would have further complicated the model, and since the peripheral traffic 

was considered to largely be non-local through traffic.  Crashes were converted 

to EPDO (equivalent property damage only) crashes, and different models tried.  

Limited access patterns were associated with lower crash rates than the gridiron, 
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with warped parallel consistently having the lowest crash rates with different 

models.   

 
Figure 1     Loops 

and Lollipops 

 
Figure 2     

Mixed 

 
Figure 3     

Warped Parallel 

Figure 4     

Grid 

 
  

 The papers reviewed are summarized in Table 1.  These have explored 

many urban form factors and their relationship to crashes in many different 

cities.  Exposure, connectivity, accessibility, demographic factors, land use, and 

origin and destination factors were of interest.  Multicollinearity amongst factors 

has led to difficulties with the modeling, and is thus an issue to be aware of in 

this type of study.    

  Choice of spatial unit has also created difficulties.  TAZ and block groups 

were often used as spatial units.  These spatial analysis units were not of equal 

size, requiring them to be normalized for comparison.  TAZ and block groups are 

typically bounded by roadways, which makes treatment of crashes on the 

peripheral roadways an issue:  one study counted them in each adjacent zone, 

effectively double counting those crashes; another study removed those crashes 
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from the study.  A consistent way to handle all crashes is needed.  Kim utilized a 

uniform spatial grid and showed ArcGIS to be a useful crash analysis tool, but 

crash location was still typically tied to the nearest intersection which may skew 

analysis of urban form.  It would be illuminating to study crashes at their specific 

geo-coded location, all included, all equally weighted. 

 This study will look at crash data for Portland, Oregon, considering traffic 

safety related to exposure, connectivity, transit accessibility, demographic, and 

origin and destination factors.  It will utilize a uniform spatial grid as did Kim et al 

(13) for spatial unit, to allow inclusion of all crashes equally weighted without 

double counting.  This should provide insight into overall local traffic safety, 

rather than only within developed neighborhoods. 

  



    

Table 1     Summary of Studies Reviewed 

Resear-

chers 

Spatial 

Unit 

Crash 

data 

Other factors, 

parameters 

Analysis 

Method Findings Conclusions 

Marks 
1957 

LA County 

86 sub-
division 
tracts 

5 years 
crash data, 
- only right 
angle 
crashes, 
- major 
bordering 
streets not 
included 

Did not control 
for  
traffic volume, 
nor consider 
land use 
arrangements 

Compari-
son of 
crash 
rates 

Most crashes were at 
intersections: 
4 leg intersections higher  
   crash frequency than  
3 leg intersections. 
 
Irregularities increased crash 
rates. 

Elements for safe design: 
  limited access design 
  avoid continuous through 
streets 
  collectors exit onto only 
one major street 
  prefer T over 4 leg 
intersections 
  avoid irregularities 

Kim, 
Levine, Nitz 

1995 
Oahu 

363 
census 
block 
groups 

1990 Oahu 
crashes 

 Spatial 
mapping 

Spatial pattern of crashes 
varied by time of day, day of 
week, vehicle type. 

Spatial mapping of crashes 
could be useful for 
community safety 
improvement planning. 

Kim and 
Levine 

1996 
Oahu 

Looked 
at point, 
segment, 
and zonal 
analysis 

Crash data 
geocoded 

 Compared 
actual to 
predicted 
crash rate, 
spatially 
mapped 

~43% crashes occurred at 
intersections. 

GIS data useful in looking at 
spatial relationships of crash 
data 

Ossen-
bruggen 
Pendharkar 
Ivan  

2001 
Stafford 

Count, NH 

87 sites 
on rural 
and 
suburban 
two lane 
undivided 
highways 

1993-1997, 
892 
crashes 

Road 
measurements 
and land use, 
driver behavior 

Ranked 
site 
hazard by 
crash rate 
 
Logistic 
regression 

Village (mixed use) pedestrian 
friendly sites less hazardous 
than residential and shopping 
sites without pedestrian 
amenities such as sidewalks. 

Land use activity, pedestrian 
friendliness, and 
infrastructure more effective 
at reducing road hazard than 
traffic controls or posted 
speed limitations. 

Hadayeghi 
2003 

Toronto, 
Ontario, CA 

463 
traffic 
zones 

1996 crash 
data, 
geocoded 

Socio-
economic,  
demographic, 
traffic demand, 
network data 

Negative 
binomial 
regression 

Crash rate related to roadway 
length, number of 
intersections, employment, 
household population, posted 
speed limit, and higher 
congestion levels. 

Predictive models developed 
relating crash rate to various 
parameters. 
- Geometry of a 
neighborhood design may 
also be significant. 

P
a
g
e
 1

4
 



   

 

Table 1     Summary of Studies Reviewed, continued 

Resear-

chers 

Spatial 

Unit Crash data 

Other factors, 

parameters 

Analysis 

Method Findings Conclusions 

Ladron de 
Guevara, 
Washington
, Oh 
 

2004 
Tucson, AZ 

859 TAZ 1998-1999 
crash 
frequency 
and severity 

Population for 
exposure risk; 
demographic, 
including 
schools, 
job density;  
bus stops;  
bike routes, 
road miles 

Negative 
binomial 
regression 

Fatal crash model found 
population significant.   
 
Injury crash significant 
parameters: population 
density, intersection density, 
employment, miles arterials 
and collector roadways. 

Planning level models can be 
developed and useful for 
MPO safety forecasting. 
 
Population appears to better 
represent exposure to risk 
than VMT for this type 
model. 

Al-Masaeid 
and 
Suleiman 

2004 
Damascus, 

Syria 

14 urban 
zones 

2001-2002 VMT, 
population, land 
use, street 
network 

Multivariate 
regression 
analysis 

Grid networks have more 
intersections and higher 
crash rates than limited 
access elements:  urban 
crashes are exponentially 
proportional to intersection 
density, total street length. 

Reducing the need for travel 
reduces exposure and traffic, 
thus reduces crash risk. 
 
Commercial frontage away 
from major thoroughfares 
may reduce crashes. 

Kim, 
Brunner, 
Yamashita 
 

2006 
Oahu 

Uniform 
grid 

Vehicle, 
bike, and 
pedestrian 
crashes 

Land use, 
employment, 
economic, 
population, 
demographic  

Negative 
binomial 
regression 

Fatal and injury crash 
parameters differed slightly, 
related to population, age, 
intersection density, 
employment, and miles of 
arterial and collector roads. 

Grid cell characteristics can 
be used to statistically model 
crash rates 

Kim, Pant, 
Yamashita 
 

2010 
Oahu 

Uniform 
grid 

2002-2004 
crashes 
assigned to 
nearest 
intersection, 
freeway 
crashes 
excluded 

Demographic, 
land use, 
accessibility 
measures 

Logistic 
regression 

Statistical significance for 
vulnerable populations, 
disability, job count, land 
use.  Pedestrian crashes 
increased with more bus 
stops, bus route length.  
Population only associated 
with bicycle crashes. 

Crash predictions useful in 
developing locations needing 
safety improvement 
strategies through 
enforcement, engineering, or 
education. 
 
Multicollinear relations with 
variables such as population 
size, vulnerable population. 

P
a
g
e
 1

5
 



   

 

Table 1     Summary of Studies Reviewed, continued 

Researchers 

Spatial 

Unit Crash data 

Other factors, 

parameters 

Analysis 

Method Findings Conclusions 

Clifton, 
Burnier, and 
Akar 
 

2009 
Baltimore, MD 

disaggregat
e data, 1/4 
mile buffer 
around 
each crash 
location 

Pedestrian 
vehicle 
crashes 
2000-2004 
geocoded to 
nearest 
intersection 

Street network, 
transit access, 
land use, vehicle 
type, weather, 
road condition, 
sex, population, 
substance abuse 

Probit 
model 
 

Transit access and pedestrian 
connectivity were the only 
built environment variables 
significant in the analysis. 
Used Herfindahl-Hirschmann 
index measure of land use 
mix. 

Areas with low 
connectivity and transit 
access need greater 
safety interventions, 
injuries there are more 
severe. 

Dumbaugh 
and Rae 
 
 

2009 
San Antonio,  

TX 

747 census 
block 
groups plus 
buffer to 
include 
periphery 
streets 

2004-2006 
crashes,  
on and off 
roadway; 
peripheral 
crashes 
included and 
possibly 
double 
counted 

Parcel-level land 
use data, 
demographic 
data; roadway 
network data 
(street miles, 
number of 3, 4 
leg intersections) 

Negative 
binomial 
regression 

Traffic re-located away from 
residential areas reduces 
neighborhood traffic volume.  
Arterials designed with wide 
lanes and long sight distances 
for higher speeds should have 
limited access, with 
commercial traffic on lower 
speed thoroughfares. 

There is an important 
relationship between 
community design and 
traffic safety.  
Designing pedestrian 
scale, livable streets 
emphasizes access over 
mobility, and has better 
traffic safety. 
 

Rifaat and Tay 
 

2009 
Calgary, 
Alberta 
Canada 

227 
community 
areas 

2003-2005 
two vehicle 
crashes;  
- no crashes 
on boundary 
roadways  

4 street patterns:  
- gridiron,  
- warped parallel,  
- loop & lollipop,  
- mixed 
 

Logistic 
regression 

Roadway and demographic 
data provided control 
relationships to crash rates. 
- Crashes on boundary 
roadways not considered due 
to boundary problem 

Compared to gridiron, 
loops and lollipops 
design has decreased 
crash injury risk. 

Rifaat and Tay 
 
 2010 
 Calgary, 
 Alberta 
 Canada 

227 
community 
areas 

2003-2005 
two vehicle 
crashes;  
 
crashes on 
boundary 
roadways 
not 
considered 

*4 street patterns  
- gridiron,  
- warped parallel,  
- loop & lollipop,  
- mixed 
* Road condition, 
demographic, 
socioeconomic, 
land use;  

Negative 
binomial 
regression 

Crash data converted into 
EPDO (equivalent property 
damage only) crashes. 
*  AADT estimated from ITE 
trip generation models. 
*  Control factors affected 
crash rates; socioeconomic 
and demographic factors also 
statistically significant 

Limited access street 
patterns had lower 
crash rates than 
gridiron layouts. 

P
a
g
e
 1

6
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3.0     DATA SOURCES AND PREPARATION 

Prior work had shown that important data for studying the relationship 

between urban form and traffic safety were of course crash data, as well as 

choice of spatial unit, and how crashes along roadways at the periphery of 

spatial units were handled.  Other important factors fell into categories of 

exposure (traffic volume), connectivity (street length, number and types of 

intersections), accessibility to transit, demographics (population), and origin and 

destination (employment and businesses). Data sources and preparation of these 

sources are discussed in the following sections. 

3.1 Data Sources 

3.1.1 Crash Data 

This study looked at reported crashes from 2005-2007 within the Portland, 

Oregon city limit (as defined in 2007).  Crash data were available from the City 

of Portland, geo-coded by crash location.  Further crash details were found using 

OrTSDA, the Oregon Traffic Safety Data Archive, which is a mirror of the 

statewide Crash Data System (CDS) maintained by ODOT (Oregon Department 

of Transportation).  Crash data from a three-year period were used in order to 

have a large data set while limiting the likelihood of structural changes over the 

study period. 
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  Crash reporting varies from state to state.  Oregon is a self-reporting state 

for crashes, where the individual drivers are required to file an Oregon Traffic 

Accident and Insurance Report within 72 hours if they are involved in a crash 

that results in injury, death, more than $1,500 damage to their vehicle, or more 

than $1,500 damage and towing of another vehicle.  While police officers do 

complete and file reports, many non-injury, property-damage-only (PDO) crash 

reports do not include a police officer’s written report.  These reporting 

disparities mean that many PDO crashes are not reported in Oregon. 

  Freeway crashes were eliminated from the data.  A freeway is a very 

different type of transportation infrastructure, which would be expected to have 

very different effects on traffic safety than the local streets which were the focus 

of this study.   

3.1.2 Exposure 

Exposure data tend to be crucial in crash analysis:  the more exposure to 

use of the transportation system, the greater the probability of crashes.  Metro, 

the regional government in the Portland metropolitan area, provided ArcGIS 

layers from the regional travel demand model that included 2005 exposure data 

on volume to capacity ratios (v/c), peak hour volume, VMT (vehicle miles 

traveled), and average free speed.  Although available for only some streets, 

these data were felt to give relative data for analysis and comparison.   
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3.1.3 Connectivity 

Connectivity data were a chance to represent the street network layout.  

The street network scale developed by Rifaat and Tay was applied to all 1284 

spatial grid cells; some had too little street network to have one of the four 

network types assigned.  Other data expected to shed light on connectivity 

included road network length for street or arterials, as well as counts of 

intersections and how many legs to the intersections,  

  Metro maintains a rich geo-spatial database, the Regional Land Use and 

Information System (RLIS). The RLIS 2009 dataset at PSU (Portland State 

University) was used for data on streets and roadway.  Road network data 

included layers with lines showing the location of streets, minor arterials, major 

arterials, and freeways. 

3.1.4 Transit Accessibility 

Transit accessibility was expected to also inform this study.  High transit 

usage could mean less vehicles on the road, and thus less exposure.  Transit 

riders are often pedestrians either before or after their transit portion of a trip.  

Transit ridership data were obtained from 2007 TriMet data in the PORTAL 

database archive at PSU.  Transit stops, routes, and schools were available in the 

RLIS 2009 dataset. 
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3.1.5 Demographics, Origins, and Destinations 

Population has been shown to be a strong factor in previous crash data 

studies, and is often used in transportation modeling and forecasting.  

Employment is a strong factor in trip generation, since most workers need to 

commute to the workplace.  The number of businesses was of interest since 

businesses attract not only customers and employees to make trips, but the 

number of business establishments also affects the number of driveways along 

roadways which increases likelihood of conflict and potential for crashes.   

  The RLIS database included demographic data on population, housing 

units, and dwelling units.  Metro shape files provided 2005 employment data 

(number of employees) by TAZ (transportation analysis zones), and modeled 

block size in raster layers.   

  Business data were obtained from www.ReferenceUSA.com for grocery, 

clothing, goods, services (beauty, laundry, mail, bank), fitness, entertainment, 

food, schools & academies, religious institutions.  The businesses were then geo-

coded by address so that the number of businesses could be counted 
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3.2 Preparation 

3.2.1 Definition of Spatial Analysis Unit 

  ArcGIS was used to illuminate and aggregate the data.  A uniform spatial 

grid of ~0.1 square miles (1670 feet long on a side) was set over the Portland 

metropolitan area to be used as the spatial unit for analysis, each spatial unit 

inherently of the same area.  This allowed all crashes to be included without 

double counting, since there would be little likelihood that spatial grid boundaries 

would fall on roadway locations, unlike the use of TAZ or census block group 

spatial units, which typically are bounded by roadways.  The grid was limited to 

whole cells within the 2007 Portland City Limits for a total of 1284 cells. 

 

Figure 5     Spatial Data Grid within the Portland City Limits 
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3.2.2 Data Aggregation 

Crash data were allocated into the spatial grid cells using ArcGIS.  

Exposure, connectivity, transit accessibility, demographic, and origin and 

destination data were also aggregated into the grid cells:  the point data were 

summed by count, line data summed for total length, and polygon data summed 

proportional to the percentage of the polygon’s area that was within a grid cell.   

  Point data: cell value  = � �
�

���
 

  Line data: cell value = � (	
�� 	����ℎ �
�ℎ
� ��
�)
�

���
 

  Polygon data: cell value  = � ��
���������

�

���
  

where pctArea = (% polygon in grid cell) * (factor value for polygon) 

As an example, a spatial grid cell containing 30% of the area of a TAZ 

spatial unit with a factor value of 120 would get 30% of the TAZ value for a 

factor, or 36.  The proportion of that factor for all other TAZ units represented in 

the grid cell was similarly calculated, and the total summed to compute a value 

for that factor for that grid cell.  Table 2 lists the data variables and how they 

were aggregated into the spatial grid cells. 

  Intersections were counted using ArcGIS to determine points where street 

lines intersected, and an algorithm then eliminated duplicates and tallied the 

number of intersection legs. 
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Table 2     Data aggregated into Uniform Spatial grid Cells for Study 

 

DATA Description Aggregation SOURCE 

Crash data Portland, OR 2005-2007 sum of point data City of Portland, OrTSDA 
CONNECTIVITY 

Street Network 4 = grid 
3 = warped parallel 
2 = mixed 
1 = loops and lollipops 
0 = could not determine 

values assigned to 
each spatial grid cell 

evaluated by researcher 
inspecting each spatial 
grid cell 

Intersections Count of total 
intersections  

intersections per 
spatial grid cell 

RLIS 2009,  
intersection analysis 

Streets Total street length, 
arterial length, major 
arterial length, freeway 
length 

sum of street length  
(line data) in spatial 
grid cell 

RLIS 2009 

TRANSIT ACCESSIBILITY 

Transit stops Count of transit stops sum of point data RLIS 2009 
Transit route Total transit route length sum line data in 

spatial grid cell 
RLIS 2009 

Ons and Offs Total transit count of 
riders getting on and off 

sum of values in 
spatial grid cell 

PORTAL 2007 data 

EXPOSURE 

v/c Volume to capacity ratios 
on some roadways 

average of values in 
spatial grid cell 

Metro 2005 
Transportation Model 

VMT Vehicle miles traveled sum of values in 
spatial grid cell 

Metro 2005 
Transportation Model 

Avg free speed 2006 data average of values in 
spatial grid cell 

Metro 2005 
Transportation Model 

Schools 2006 data sum of point data RLIS 2009 
DEMOGRAPHICS, ORIGINS, and DESTINATIONS 

Population  2006 data apportioned ratio of 
area in spatial grid 
cell to factor value 

RLIS 2009 

Dwelling units 2006 data apportioned RLIS 2009 
Households 2006 data apportioned RLIS 2009 
Employment 2006 data apportioned Metro 
Business  2010 sum of point data ReferenceUSA.com 
Block Size Raster file raster converted to 

points, sum of 
points in spatial grid 
cell 

Metro 
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4.0     DESCRIPTIVE ANALYSIS  

 

  This section will take an initial look at the data, with analysis of the crash 

data, and a qualitative look at exposure, connectivity, transit accessibility, 

demographic, and origin and destination data using chloropleths from ArcGIS. 

4.1 Crash Data 

  The study dataset had a total of 21,492 non-freeway crashes within the 

city limits of Portland for the years 2005-2007.  This number of crashes is 

considerably lower than more than 150,000 in the San Antonio study (3).  This 

may be largely due to the underreporting issue with Oregon crash data.  Looking 

at the crash data aggregated into the uniform spatial grid cells revealed that 

spatially crashes were concentrated in areas with heavy traffic:  downtown, 

along high volume arterials, and adjacent to freeways (see Figure 6).  Figure 7 

shows a histogram of crash count per spatial grid cell for the study dataset; most 

cells had low crash counts. 

  



 

Page 25 

 

Figure 6     Total Non-freeway Crashes Portland 2005 – 2007 

 

 
Figure 7     Histogram of 2006-2007 Crashes in Portland City Limits 
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 Analysis of the crash data by crash types, see Figure 8, clearly showed 

that the four primary crash types were angle; stopped, where both vehicles were 

going the same direction; straight crashes where both vehicles were going the 

same direction; and turn crashes where one vehicle was turning in front of an 

oncoming vehicle going straight in the opposite direction.   

  Figure 9 illustrates each of these crash types.  Angle crashes would have 

increased likelihood of occurrence the more cross streets to a roadway, causing a 

vehicle to cross in front of another vehicle, so would be expected to increase the 

more intersections.  Stopped crashes, most likely rear ending, would be 

increased with traffic control bringing vehicles to a stop at intersections.  Straight 

crashes would likely be caused by going too fast, thus overtaking another 

vehicle; or due to a sudden deceleration that the following vehicle did not 

respond to in time.  Turn crashes would have increased likelihood with increased 

cross streets and driveways, where one vehicle would turn across an on-coming 

vehicle's path.  

  PDO (property damage only) crashes were most common (see Table 3) at 

60.4 percent of the total crashes.  Minor injury level C accounted for 21.6 

percent of the total crashes, which was more than half of all injury crashes.  

Fixed object and pedestrian crash types accounted for 49 of the 82 fatalities.   
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Figure 8     2005 – 2007 Total Crashes by Crash Type 
 

 
 
 

 
Figure 9     Primary Crash Types 
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Table 3     2005 - 2007 Portland Non-freeway Crashes in Spatial Grid Cells 

 

 Total Fatality Injury INJ A INJ B INJ C PDO 

Angle 7303 9 2769 197 1200 1372 4525 
same direction -  

1 stopped 
6086   2675 75 743 1857 3411 

same direction -  
both straight 

2094 4 507 17 148 342 1583 

opposite direction,  
1 straight, 1 turning 

1431 1 617 48 242 327 813 

parked vehicle 881 3 177 22 81 74 701 
same direction –  

1 turning, 1 straight 
797 2 174 5 46 123 621 

fixed object 757 24 293 54 136 103 440 

bicyclist 511 7 477 71 256 150 27 

pedestrian 457 25 427 83 204 140 5 
same direction –  

all others 
310   50 2 9 39 260 

opposite direction, 
both straight 

285 6 127 23 58 46 152 

opposite direction,  
1 stopped 

242   30 2 9 19 212 

angle -  
1 vehicle stopped 

128   25 3 3 19 103 

opposite direction  
all others 

92   20   6 14 72 

overturned 43 1 31 6 17 8 11 

other non-collision 25   12 3 7 2 13 

other object 22   5   2 3 17 

train 20   7 2   5 13 

animal 4   1     1 3 
motor vehicle on 

other roadway 
4           4 

 TOTAL 21492 82 8424 613 3167 4644 12986 

  0.4% 39.2% 2.9% 14.7% 21.6% 60.4% 
 

 INJ A = injury level A, incapacitating 
  INJ B = injury level B, non- incapacitating 
  INJ C = injury level C, possible injury 
  PDO = property damage only  
More information on injury severity can be found at: 
http://www.oregon.gov/ODOT/TD/TDATA/car/docs/2007CodeManualVersion2.0.pdf 
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Figure 10   2005 – 2007 Vehicle Crashes by Crash Type, Spatial Maps 
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 Figure 10 shows that the spatial distribution of crashes differed for 

different crash types.  Angle crashes, stopped vehicle crashes, and crashes 

where both vehicles were going straight showed similar distributions to total 

vehicle crashes with crashes concentrated along major arterial corridors.  Turn 

crashes were more randomly distributed, although major arterial corridors are 

still discernible.  High frequency in specific spatial grid cells indicates that specific 

locations may have problems which contribute to likelihood of each particular 

crash type.   

 The crash dataset included 503 pedestrian crashes and 523 bicycle 

crashes. These crashes are summarized by motor vehicle operator error, see 

Table 4 and Table 5.  Failure to yield right of way (ROW) was the leading cause 

cited in the crash data for both pedestrian and bicycle crashes; presumably the 

vehicle failing to yield.  Whereas greater than 60 percent of all vehicle crashes 

were PDO, pedestrian and bicycle crashes involved injury more than 93 percent 

of the time.  Pedestrian crash fatality outcomes were more than ten times that of 

overall crash fatalities, and bicycle crash fatality rates were three times that of 

overall crashes. 

  Spatially, pedestrian crashes were concentrated downtown and along 

major arterial routes in the city, see Figure 11; bicycle crashes were more 

randomly distributed, see Figure 12. 
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Table 4     2005 – 2007 Pedestrian Crashes  

 

 21492Total Fatality Injury INJ A INJ B INJ C PDO 

Failed to Yield 
Right of Way 

294 13 277 42 140 95 4 

Non-motorist 
illegally in roadway 

111 7 103 28 42 33 1 

Too fast for 
conditions 

16 1 15 3 11 1  

Other driving error 13   13 3 7 3  

Inattention 12 2 10 2 3 5  
Disregarded  

Red-Amber-Green 
traffic signal 

11   11 2 8 1   

Careless 10   10 5 5     
Speed too fast for 

conditions 
8 1 7 6   1   

Not visible 7 1 6 1 4 1   

Other 6 2 4   2 2   

Improper passing 4 2 2   2     

Improper turn 2   2 2      

Reckless 2   2     2   
Followed too 

closely 
4   4 2 2     

Passed stop sign 1   1 1       

Fatigue 1   1   1   

no code applicable 1   1 1       

TOTAL 503 29 469 98 227 144  5 

  5.8% 93.2% 19.5% 45.1% 28.6% 1.0% 
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Table 5     2005 – 2007 Bicycle Crashes  

 

 Total Fatality Injury INJ A INJ B INJ C PDO 

Failed to Yield 
Right of Way 343 4 318 38 178 102 21 

Disregarded Red-
Amber-Green 47 1 43 10 17 16 3 
Non-motorist 

illegally in roadway 28   27 5 13 9 1 

Other 20   20 4 10 6   

Other driving error 18 2 15   9 6 1 

Passed stop sign 18   18 4 10 4   

Improper turn 13   13 3 9 1  
Followed too 

closely 11   10 5 3 2 1 
Improper lane 

change 6   6 1 4 1   

Inattention 6   6 3 1 2  

Careless 4   4 2 2    

Improper passing 3   3 1 1 1  

Reckless 3   3     3   
Speed too fast for 

conditions 2 1 1   1    

Not visible 1   1   1     

 TOTAL 523 8 488 76 259 153 27 

  1.5% 93.3% 14.5% 49.5% 29.3% 5.2% 
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Figure 11   2005 – 2007 Pedestrian Crash Spatial Map 

 
 

 
Figure 12   2005 – 2007 Bicycle Crash Spatial Map 
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 Vehicle crashes are shown in Figure 13.  PDO crashes (see Figure 14), 

show essentially the same distribution as total vehicle crashes, which is expected 

considering that PDO were more than 60% of the vehicle crashes.  Figure 15 

shows all fatal and injury crashes, still in a similar distribution to total vehicle 

crashes.  Fatal crashes were rarer, as seen in Figure 16.  Adding injury level A 

crashes in Figure 17 starts to again make major corridors discernible. 

 

Figure 13   2005 – 2007 Vehicle Crashes 
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Figure 14   2005 – 2007 Vehicle Crashes, PDO Severity 

 

 
Figure 15   2005 – 2007 Vehicle Crashes, FI Severity 
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Figure 16   2005 – 2007 Vehicle Crashes, Fatal 

 

 
Figure 17   2005 – 2007 Vehicle Crashes, Fatal and Injury A Severity 
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4.2 Exposure 

   Higher exposure on the transportation network typically increases crash 

risk.  This study considered exposure factors for vehicles, not for pedestrians nor 

bicycles.  Exposure data were represented by volume to capacity ratios, VMT 

(vehicle miles traveled), average free speed, and presence of schools.  Volume to 

capacity ratio (v/c) values within a spatial grid cell were averaged for each grid 

cell, see Figure 18.  Downtown did not have the highest v/c ratios.  Instead, 

some particular arterial corridors, such as Powell Boulevard in the southeast and 

Barbur to the southwest can be seen in the v/c spatial map.  Note that some 

spatial grid cells had no v/c data.  These cells were eliminated from the modeling 

dataset, reducing the cells for modeling consideration from 1284 to 928 total 

cells 

 Average free speed is shown in Figure 19, with major arterials having 

higher speeds and the highest average free speeds in outlying areas.  These 

average free speeds are based on posted speeds, and are inputs to the travel 

demand model rather than modeled values. 
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Figure 18   2005 Average of Volume to Capacity Ratios within a Spatial Grid Cell 

 

 

 
Figure 19   2005 Average Free Speed 
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4.3 Connectivity  

Connectivity and urban form were looked at using several factors  One 

was the four level street network scale developed by Rifaat and Tay (4) of loops 

and lollipops, mixed, warped parallel, or grid (see Figures 1 through 4), referred 

to as the "street network" factor in this study,  Some spatial grid cells did not 

have a discernible type, and were assigned a value of zero.  These cells were 

also removed from the modeling dataset, taking the set down to 792 spatial 

cells, still a considerable sample size.  Figure 22 is a histogram of the frequency 

that the four different street network values were assigned. 

  The percentage of intersections in each spatial grid cell that were four leg 

intersections was also calculated.  This would be 100% for full grid street layout, 

decreasing to a lower percentage as the street network becomes less grid like.  

Zero could be achieved if only 3 leg intersections are designed into a loops and 

lollipops style of development.  The percentage four leg intersections could be 

calculated, and was thus less subjective than applying the street network scale in 

Figure 20.  Percentage four leg intersections also has continuous rather than 

discrete numeric values, generally better for modeling. 

  The percentage four leg intersections correlated well with the Rifaat and 

Tay street network scales visually, see Figure 20 and Figure 21.  Both factors 

were used in modeling.    
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Figure 20   Street Network Value Assignments 

1 = Loops and Lollipops         2 = Warped Parallel             3 = Mixed             4 = Grid 
 

 

Figure 21   Percentage of Intersections which are Four Leg Intersections 

  



   

Page 41 

 

Figure 22   Histogram of Street Network Values 
1 = Loops and Lollipops         2 = Warped Parallel             3 = Mixed             4 = Grid 

 

 
 Modeling also included total major arterial length as a factor, since it did 

not correlate to other street and intersection factors, see Appendix E, Figure E-1. 

4.1 Transit Accessibility  

Several factors were considered to represent transit accessibility.  As can 

be seen in Figure 23, transit stops are widespread throughout the Portland city 

limits along major arterial routes and concentrated in the downtown area.  

Outlying areas have sparse or no transit service.  This corresponds to population 
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and housing density, shown in later figures, indicating a well planned transit 

system which has more service in areas of greater demand. 

  Total boardings were also considered, as well as route length. 

 
Figure 23   2007 Transit Stops Spatial Map 

4.2 Demographics  

  The highest population was concentrated in the downtown area, (see 

Figure 24).  There was a large area with high population density east of the 

Willamette River, and sparse population in outlying areas.  Dwelling units (Figure 

25) and households showed the same distribution. 
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Figure 24   2006 Population 

 

 
Figure 25   2006 Dwelling Units Spatial Map  
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4.3 Origins and Destinations  

  Employment (Figure 26) and the number of business establishments 

(Figure 27) were included to represent origins and destinations, since there is 

travel to get to and from work, as well as to patronize businesses of all sorts.  

Employment, or the number of employees, was highly concentrated around the 

downtown area, with some satellite areas.  The number of business 

establishments also was concentrated heavily in the downtown area, but had a 

more diverse spread throughout the city, corresponding to the densely populated 

areas seen in Figure 24. 

 
Figure 26   2005 Employment Spatial Map  
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Figure 27   2010 Business Spatial Map  
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5.0     MODEL DEVELOPMENT AND RESULTS 

5.1 Development 

5.1.1 Summary of Input Data 

Spatial grid cells with street length less than 3,300 feet, which would 

correspond to twice the length of the side of a cell, were eliminated as a lower 

bound on street length in a cell for urban form to be evident.  Cells with no 

volume model data (VMT, v/c) were also eliminated.  This left a dataset with 928 

spatial grid cells for modeling.  A further reduction was made to eliminate cells 

which had street network of zero, indicating that I had been unable to determine 

which of the four Rifaat and Tay street network categories it corresponded to.  

With this final reduction, the dataset was 792 spatial grid cells.  A summary of 

the model input data for 792 spatial grid cells can be found in Table 6.  

Minimum, mean, maximum, standard deviation, and totals are shown. 

5.1.2 Selection of Independent Variables 

  Many of the independent variables were correlated.  Using Pearson’s 

correlation and qualitative analysis, these were reviewed and reduced to a 

smaller set of factors to be used for modeling (see Appendix E).  For example, 

since population was highly correlated with household and dwelling units, 

population was chosen to use in the modeling, representing all three 
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demographic factors.  Bus stops and routes were the majority of the transit stops 

and routes, and all highly correlated, so there was no need to duplicate these 

factors by including them separately:  only the transit stops factor was left in the 

model.  Transit boardings and alightings, (ons and offs), were highly correlated; 

the sum of ons and offs was included in the model building.  Street length and 

intersection factors showed cross correlation.  Street network street length, 

major arterial length, percent four leg intersections, total intersections, and block 

size represented connectivity factors. 
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Table 6     Modeling Input Data Summary  

 
Min.  Mean Max. Median std dev TOTAL 

CRASH DATA 

     Vehicle Crashes 0 24.82 287 13 34.56 19658 

Pedestrian Crashes 0 0.5947 9 0 1.222 471 

Bicycle Crashes 0 0.649 16 0 1.527 514 

Angle Crash Type 0 8.963 139 4 15.48 7099 

Turn Crash Type 0 1.726 20 0 2.92 1367 

Straight Crash Type 0 2.518 44 1 4.62 1994 

Stop Crash Type 0 7.304 70 3 11.16 5785 

Fatal Crashes 0 0.05051 1 0 0.219 40 

Fatal, Injury A Crashes 0 0.5896 7 0 1.01 467 

Injury Crashes 0 9.068 107 5 12.71 7182 

Fatal & Injury Crashes 0 9.119 107 5 12.74 7222 

PDO Crashes 0 15.7 180 8 22.48 12436 

EXPOSURE 

      VMT 2.392 2045.78 14623.3 10328 2680 1.62E+6 

v/c 0.0035 0.438 1.215 0.4547 0.201 
 Avg Free Speed 15.5 30.23 60 29 5.83 
 schools count 0 0.2803 4 0 0.586 222 

CONNECTIVITY 
     Street Network scale 1 2.448 4 2 0.909 

 intersections 0 23.67 81 22 11.34 18750 

fourLegPct 0 0.311 1 0.2697 0.229 
 nonFwy Street 3649 12682 28697 12481 3789 10E+6 

Major Arterial length 0 1535.7 18547.6 212.8 2471 1.22E+6 

block Size  9 61.39 325 55 33.09 
 ACCESSIBILITY 

     Transit Stops 0 5.987 87 4 8.09 4742 

On + Off 0 173305 8715715 27212 592000 1.4E+08 

DEMOGRAPHIC 

     Population 4.1 559.3 2475.7 567.7 303 442939 

ORIGINS AND DESTINATIONS 

   Employment 0.39 149.25 346.32 157.24 936 319731  
Business density 0 5.77 108 2 10.73 4570   
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5.1.3 Model Building 

Since crashes are essentially a failure event, crash data do not follow a 

normal distribution.  Poisson modeling can be considered, but the likelihood of 

many zero values recommends that a check be made for over dispersion.  

Poisson modeling with the study data confirmed that the data were over 

dispersed, so negative binomial regression would be an appropriate model (15), 

of the form:  

Ncrash = exp(a + b*xb + c* xc + . . . + n * xn) 

  where Ncrash  = number of crashes 

 a through n  = coefficients 

  xi  = factor i  value 

VMT provided a better fit as log(VMT), equivalent to putting VMT before 

the exponent in the formula, which was consistent with crash models that are 

have volume outside the exponential term:  

Ncrash =  VMT * exp(a + b*xb + c* xc + . . . + n * xn) 

  where Ncrash  = number of crashes 

 VMT = vehicle miles traveled 

  a through n  = coefficients 

  xi  = factor i  value 
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  The street network factor was included in the negative binomial models as 

a factor, having discrete values of: 

  1 = loops and lollipops 

2 = mixed 

3 = warped parallel, and  

4 = grid street layout 

 which compared each of the other levels to level 1 = loops and lollipops. 

  Negative binomial models were developed for vehicle crashes, pedestrian 

crashes, and bicycle crashes separately.  Preliminary analysis had indicated that 

the top four crash types were angle crashes, turning crashes, straight, and 

stopped vehicle crashes.  Separate models were developed for each of these 

crash types.  

  Separate models were also developed for levels of crash severity.  

Modeling was unsuccessful on fatalities alone due to the small number of  

non-zero data points.  Crash severity was looked at for several groupings:  “FA” 

grouped fatal and injury level A (incapacitating) together, the most severe crash 

injuries; “FI” grouped fatal and all three injury levels (A = incapacitating,  

B = non-incapacitating, C = possible injury) together; “I” grouped the three 

injury levels, and PDO (property damage only crashes).   

  Negative binomial regression models were developed in a step-wise 
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fashion by adding one factor at a time using the cumulative regression method 

described by Banfro and Hauer (16) to decide whether the addition of a factor 

improved the model.  This method involved inspection of the regression 

diagnostic plots (cumulative residual plots) for each model as the new factor was 

added.  The standard deviation for the 2 sigma limits was calculated as follows: 

 
 
where  σ* = standard deviation,  
  σ (n) = sigma for the current value 
  σ(N) = sigma for all values 
 

The cumulative residual  plots were judged as to whether the cumulative 

residuals were within the + 2 sigma limits, the 2 sigma limits were getting 

narrower, the cumulative residuals were centered around zero, and the final 

cumulative of residuals was closer to zero, since the cumulative residuals should 

theoretically sum to zero.  If the cumulative regressions looked better with the 

second factor, the factor was kept in the model.  If not, the factor was dropped 

from the model.  Figure 28 shows that adding the block size factor into the 

vehicle crash model improves the cumulative regression. R code for developing 

these CURE plots is included in the Appendix.  

  Other model fit plots were also examined.  As seen in Figure 29, the 

standard deviation residuals Q-Q plot should be approaching a straight line.  

 Finally, a negative binomial regression was also run with all the modeling 
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factors, followed by a case with the significant factors from the all factors model.  

The model from the "add a factor" approach was then compared to the  

"all factors" and "all significant factors" models by comparing cumulative residual 

charts for non-freeway street length, and the best one selected for the results.  

 
Figure 28   Cumulative Residual CURE 2 sigma Plots for Comparison 
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Figure 29   Plots for Negative Binomial Regression Fit 
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5.2 Model Results 

  Table 7 shows goodness of fit for the negative binomial modeling results.  

All models had the same sample size, 792 spatial grid cells.  Note that the 

models have better fit where there are more crash data:  vehicle crashes, angle 

and stopped vehicle crashes; all injury crashes, and PDO crashes.  The standard 

error is low, and estimated R2 values look good for crash modeling  

Table 7     Negative Binomial Modeling Goodness of Fit 
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Crash Group  

Vehicle  5854 2.037 0.119 -5920 2298 791 875 776 0.62 

Pedestrian  1393 1.43 0.27 -1367 909 791 575 780 0.37 

Bicycle  1482 1.03 0.167 -1461 884 791 590 782 0.33 

Crash Type  

        angle 4376 1.599 0.11 -4346 1986 791 881 778 0.56 

turn 2478 0.76 0.07 -2453 1037 791 713 781 0.31 

straight 2656 1.248 0.12 -2628 1539 791 745 779 0.52 

stop 4081 1.163 0.078 -4055 1711 791 839 778 0.51 

Crash Severity  

       FA 1533 1.785 0.387 -1517 821 791 663 785 0.19 

FI 4541 1706 0.116 -4510 1812 791 889 778 0.51 

I 4526 1.715 0.117 -4494 1822 791 885 777 0.51 

PDO 5128 2.143 0.136 -5098 2329 791 862 778 0.63 
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5.2.1 Estimated Coefficients 

  The model coefficients are presented in Table 8:  negative coefficients are 

in red type; statistical significance is indicated by shading, see key for the table. 

5.2.1.1 Exposure 
 

  Looking at exposure factors in Table 8, VMT is significant in all the 

models.  This would be expected, since the relationship of increased crash rates 

with increased traffic volume are well established.  The volume to capacity ratio, 

or v/c, is not significant for all models, however.  Models of bicycle crashes, 

angle, and turn crashes, and the higher severity injuries (FA combines fatalities 

and incapacitating injury severity) did not show this factor as significant.   

V/c could be seen as an indication of congestion, and as such indicates that 

congestion is less important for crashes of those types.  It makes sense that 

congestion, where more stop and go behavior increases the risk of incidents with 

one vehicle overtaking another vehicle, would contribute to increased straight 

and stop crashes.  

  Average free speed was significant for all three different crash mode 

models, and for turn and PDO crashes.  What is interesting is that the coefficient 

is negative, implying that a higher speed would decrease the crash risk; typically 

higher speeds are associated with increased crash rates.  This could tie in with 

congestion:  if speeds are lower due to increased congestion, that could explain 
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why lower speeds were less safe.  Alternatively, it could be due to the quality of 

the data source, which is based on posted rather than actual speed limits. 

  Schools were significant for a few crash models:  vehicle crashes, angle 

crashes, FI and I.  This again had a negative coefficient, meaning the more 

schools in an area, the less crashes predicted.  This could indicate that efforts to 

improve traffic safety around schools are indeed effective, slowing drivers down 

and making them more alert to the potential for pedestrians in the area.  With 

this in mind, it's interesting to note that schools are not significant for the 

pedestrian crash model, which is the type of crash most school traffic safety 

policies are targeting. 

5.2.1.2 Connectivity Factors 
 

  No connectivity factors were statistically significant for vehicle or 

pedestrian crashes.  Several factors were significant for bicycle crashes, though:  

street network layout of warped parallel and grid network compared to loops and 

lollipops; intersection density, and total street length.  This indicates that bicycles 

may have a greater crash risk with more streets, particularly more grid like.  This 

may be due to the need to cross intersections, which is indicated by the 

intersection coefficient being the highest coefficient in the bicycle model.   

  The percentage of four leg intersections was significant for angle crashes.  

This is logical due to the fact that four leg intersections have more opportunities 
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for angle crashes.  Major arterial length was significant for stopped vehicle 

crashes and injury crashes; block size was also significant for stopped vehicle 

crashes.  This makes sense because major arterials are more likely to have traffic 

signal control, and shorter block lengths would mean more frequent stop lights, 

thus more opportunity for rear end collisions.  

5.2.1.3 Transit accessibility, Demographics, and Origin Destination  
 

  Transit accessibility and origin and destination factors were significant in 

many models.  Transit stops were significant in vehicle, crash severity, and crash 

type models.  Transit stops correlate to employment (see Appendix E), but 

employment was not significant in most models, only the vehicle crash model, 

where is had a negative coefficient.  Pedestrian crashes showed transit ons and 

offs to be significant; which is logical since transit riders are pedestrians 

immediately before and after their transit trip:  the higher pedestrian volumes 

would be expected to increase the possibility for pedestrian crashes.  

  Population was not significant for bicycle crashes nor for FA injury severity 

crashes, but was for all other crash models.  Business density was significant in 

all the models.  Many trips are due to people getting to and from work, as well 

as frequenting businesses, so finding these factors significant for crash rates 

indicates another aspect of exposure to the transportation network. 

 



 

Table 8     Model Coefficients 

 

Vehicle Ped Bicycle angle turn straight stop FA FI I PDO 

  Intercept -1.909 -4.974 -4.369 -2.810 -5.417 -5.828 -4.558 -4.100 -2.846 -2.677 -2.475 

Exposure 

             log(VMT)  0.534 0.381 0.527 0.463 0.743 0.771 0.684 0.412 0.515 0.491 0.535 

  average v/c 0.661 1.375 
 

0.115 
 

0.678 1.653 
 

0.700 0.730 0.680 
AvgFreeSpeed  -0.012 -0.015 -0.054 -0.009 -0.026 -0.009 -0.003 0.008 -0.004 -0.006 -0.013 

  Schools   -0.093 

  

-0.129 

    

-0.113 -0.113 -0.082 

Connectivity 

           Street Mixed 0.140 0.136 
 

0.256 0.395 0.060 0.065 
 

0.084 0.107 0.163 
Warped 
Parallel 0.116 0.138 0.518 0.246 0.498 0.226 0.034 

 
0.108 0.162 0.167 

  Street Grid 0.075 0.049 0.659 0.299 0.459 -0.147 0.062 
 

0.075 0.166 0.186 

  Intersections 0.005 0.005 0.719 0.005 
 

-0.004 0.003 
 

0.001 -0.008 0.001 

  FourLegPct   0.299 
  

0.847 
 

0.041 
 

0.518 0.107 -0.070 0.146 
  non-Freeway 

Street 1.7E-05 
 

8.0E-05 1.9E-05 2.6E-05 2.0E-05 -1.4E-5 

 
1.4E-05 1.3E-05 3.3E-05 

   Major 
Arterial length 

    
-5.8E-05 

        Block Size 
         

4.2E-03 
 Transit 

Accessibility 
             Transit Stops 0.020 -0.002 0.012 0.016 0.016 0.011 0.023 0.014 0.015 0.015 0.015 

  Ons & Offs 5.6E-08 2E-07 
         Demographic 

             Population 4.9E-04 1.3E-03 
 

7.3E-04 6.9E-04 3.7E-04 6.6E-04 -8.9E-5 6.7E-04 7.3E-04 4.8E-04 

Origin-Dest 

             Employment -1.77E-04 
            Business 0.033 0.029 0.018 0.032 0.016 0.035 0.023 0.012 0.026 0.026 0.030 

Significance 0.001  0.01  0.05  0.1     
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a
g
e
 5

8
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5.2.2 Elasticity 

Elasticity gives a measure of relative effect of a factor on the outcome.  

Elasticity was calculated as follows (17): 

Exj = βjxj  

where  Exj is the elasticity for attribute j,  
βj is the model coefficient and  
xj is the mean value for attribute j. 
 

5.2.2.1 By Vehicle, Pedestrian, and Bicycle Models  
 

Looking at elasticity for vehicle crashes in Figure 30, VMT had the largest 

affect.  For every additional one percent VMT, there would be an additional 1.7% 

increase in vehicle crashes.  Street network, non-freeway street length, 

population and business density had the next strongest affects on crash rate, 0.3 

elasticity for mixed and warped parallel compared to loops and lollipops; a lower 

elasticity of 0.2 for grid layout.  Population and business density elasticity were 

both under 0.3. 

  The highest elasticity for pedestrian crashes was 1.3 for VMT, and 0.74 for 

population.  Bicycle crashes have high elasticity for VMT, warped parallel and 

grid street network, intersections, and non-freeway street length.  Average free 

speed had a high negative elasticity of -0.44., indicating that the model predicts 

less crashes with increased speed.  This could be explained if the lower free 
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speed is due to heavier congestion and thus higher likelihood of bicycle vehicle 

interaction, or due to bicyclists avoiding high speed roadways if a lower speed 

alternate route is available.  

Figure 30a 

 

Figure 30b Figure 30 c 

Figure 30   Elasticity for Vehicle, Pedestrian, and Bicycle Crashes 
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5.2.2.2 Vehicle Crash Types 
 

Elasticity for crash type models are shown in Figure 31.  For all the major 

crash types, VMT had the highest elasticity.  Angle and turn crashes showed 

positive elasticity for the street layout factors.  These crashes are more likely to 

occur with more intersections; particularly angle crashes at four leg intersections, 

so this is not surprising.  Straight and stopped vehicle crashes had less elasticity 

for street layout and connectivity factors.   

  All four crash type models showed a positive elasticity for population and 

businesses.  They also all showed a negative elasticity with average free speed, 

particularly turn crashes.  Lower speeds may encourage drivers pull out of 

driveways or cross streets when they think they have adequate gap to pullout, 

but they really don't; whereas higher speed roadways may intimidate drivers to 

wait for safer gaps.  The business count may indicate something about 

driveways:  more businesses typically require more access points, unless design 

specifically limits access.  So the negative elasticity for average free speed and 

positive elasticity for business density may be related. 
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Figure 31a 

 

 

Figure 31b 

Figure 31c Figure 31d 

 

Figure 31   Elasticity for Vehicle Crash Types 
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5.2.2.3 Crash Severity 

 

Elasticity for models by crash severity is shown in Figure 32.  Again, VMT 

had the highest elasticity for all crash severities.  V/c showed some positive 

elasticity in the less severe injury categories, but was not in the model for FA, 

since the factor did not improve that model.  FA crashes had few significant 

factors:  VMT, average free speed, percent four leg intersections, transit stops, 

and business density.  This set of significant factors for FA crashes, including the  

only positive elasticity for average free speed, brings to mind a busy roadway 

where many things are going on:  lots of traffic, moving fast, with transit 

vehicles and riders in the mix; four legged signalized intersections where drivers 

may be going through beyond their signal phase; and high business density 

meaning more access points where vehicles are entering and leaving the 

transportation network.  There are many things going on that could take a 

driver's attention away from the task of safe driving in this situation, with high 

speed contributing to less reaction time. 

  Street network factors had positive elasticity for all three less severe crash 

models, as do population and businesses.  Average free speed was again a 

negative elasticity.   
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Figure 32a 

 

 

Figure 32b 

Figure 32c Figure 32d 

 

Figure 32   Elasticity for Crash Severity 
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5.2.2.4 Elasticity by Factors 

 

Looking at elasticity by factors in Figure 33, the elasticity for VMT was 

high for all models, particularly for turn, straight, and angle crashes.  This 

indicated that increased traffic in an area greatly increased the probability of 

crashes.  Straight crashes had the highest elasticity.  This may be due to 

increased VMT in urban areas usually being due to increased congestion, causing 

vehicles to pack themselves into tighter space, with less distance between 

vehicles.  Decreased distance between vehicles gives a driver less time to 

respond to a sudden deceleration of a vehicle in front of them, which could lead 

to a straight or stopped vehicle crash.  

  Volume to capacity (v/c) had highest elasticity in the pedestrian and 

stopped vehicle crash models.  Increased v/c could mean more congestion, 

leaving less space for pedestrians and vehicles to stay separated.  The less 

severe and non-injury crash models also showed sensitivity to v/c. 

 Average free speed had negative elasticity for every model except FA.  

Bicycle crashes had the strongest negative elasticity, which seems counter 

intuitive.  This may be due to bicyclists tending to prefer lower speed routes to 

riding alongside higher speed traffic.  In lower speed conditions, bicycle riders 

may take advantage of their size and squeeze between or past vehicles stopped 

at traffic signals or stop sings, putting them at greater risk of collision.  The most 
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severe injuries, FA crashes, had the only positive elasticity for average free 

speed, strongly suggesting a link between speed and severe injury.   

 Elasticity for street network compared to loops and lollipops can be seen 

in Figure 34.  These factors had especially high elasticity for bicycle and turn 

crashes, as was discussed going through elasticity by model.  Bicycle crashes 

also had high elasticity for intersection density, percent four leg intersections, 

and total street length (see Figure 35).   

  Population elasticity was highest for the pedestrian crash model.  This 

makes sense since the more people there are, the more pedestrians .  Population 

elasticity was higher for the less severe crash types. 

 Similarly business had positive elasticity as well, with less of an effect on 

FA crashes than other severity levels.  The positive elasticity all models may be 

due to the fact the a higher count of businesses probably means more smaller 

businesses, which would each have a separate location, and thus more 

driveways for people to get to and from the businesses.  Driveways have been 

associated with increased crash risk. 
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Figure 33   Elasticity for Exposure Factors 
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Figure 34   Elasticity for Street Network Factors 
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Figure 35   Elasticity for Connectivity Factors 
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Figure 36   Elasticity for Transit Accessibility, Demographic,  

Origin and Destination Factors 
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6.0     CONCLUSIONS 

 

Street layout and design, once established, are then not easily changed.  

Urban form affects community development, livability, sustainability, and traffic 

safety.  There has been an assumed relationship between urban form and traffic 

safety that favors designs with less through streets to improve safety.  An 

empirical study to test this assumed relationship was carried out for crash data 

for Portland, Oregon, considering factors for exposure, connectivity, transit 

accessibility, demographics, and origin and destination measures.   

  This study looked at traffic safety and urban form for the city of Portland, 

Oregon using a uniform spatial grid to provide an impartial way to assign crashes 

to the analysis spatial units.  Data were assigned to each spatial grid cell by 

summing point data, line data, or apportioning data from a different underlying 

polygon spatial unit into the grid cell spatial unit. 

 In qualitative analysis of chloropleths showing the spatial distribution of 

the crashes in the grid cell aggregation, major arterials and high volume 

roadways clearly stood out as having more crashes.  Comparing the 20,705 non-

freeway vehicle crashes to 503 pedestrian and 523 bicycle crashes indicated 

much higher and more severe injury rates for pedestrian and bicycle crashes 

than in vehicle crashes:  the pedestrian fatality rate is more than ten times that 
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for vehicles, and the bicycle fatality rate is nearly four times that for vehicle 

crashes.  The pedestrian or bicyclist involved in a crash with a vehicle has little 

protection against the order of magnitude greater mass and momentum of the 

vehicle.   

  Qualitative analysis of the exposure factors showed higher volumes along 

major arterials and in the downtown area, as would be expected.  Connectivity 

factors for street network using the four Rifaat and Tay designations (4) were 

assigned to each spatial grid cell, and visually correlated to a calculable factor of 

percentage four leg intersections.  Transit stop locations gave a view of transit 

accessibility.  Demographic factors of population, households, and dwelling units 

were highly correlated; only population was included in modeling.  Distribution of 

employment and businesses throughout the study area could also be seen in the 

chloropleths for those factors.  Employment was highly concentrated in the 

downtown area and other specific clusters.  Business density was also 

concentrated downtown and on the near east side, but was distributed 

throughout the city more so than the employment, indicating smaller businesses 

employing fewer workers.   

   Negative binomial regression models were built separately for groups of 

vehicle, pedestrian, and bicycle crashes.  Models were also built for the top four 

crash types, as well as by crash severity.  The selected models showed that 
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exposure factors were significant in all models studied:  higher traffic volumes 

and congestion increased crash likelihood.  Exposure factors also had the highest 

elasticity, indicating that crash rates have strong sensitivity to these volume 

factors.  Average free speed had a surprising negative elasticity, particularly for 

bicycle crashes. 

  Elasticity for connectivity factors showed bicycle, angle, and turn crashes 

to be particularly sensitive to a more grid like street network, compared to loops 

and lollipops.  Street network was a factor in less severe crashes, but was not 

seen as a factor in incapacitating or fatal crashes.  FA crashes were the only 

model to have a positive elasticity for average free speed, indicating that speed 

can be a strong factor in severe injury crash rates. 

 Urban form factors of street connectivity and intersection density were not 

significant at 95% confidence for vehicle and pedestrian crash models, nor for 

different crash severity levels.  This indicates that street layout in terms of grid 

versus loops and lollipops does not have a statistically significant effect on 

vehicle crash safety, so connectivity does not have to be sacrificed in the name 

of safety for vehicles or pedestrians.  Other factors, such as VMT, v/c, 

population, and business density, are far more influential.  

 Several origin and destination factors were significant in the models.  

Business density was significant for all crash models.  Business density could 
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indicate the number of access points into the transportation network.  Driveways 

increase crash rates, so the significance of the business factor may be due to 

increased driveways and access points.  If so, limited access design could help 

control and mitigate crash risk along corridors. 

 Population was also significant in many models.  Although logical, this 

dependence of crashes on business and population densities raises concerns 

about vibrant, economically vital areas where businesses, pedestrians, bicyclists, 

and transit thrive alongside vehicle traffic.  Thriving neighborhoods are at the 

heart of successful development.  These results should be seen to highlight the 

important effect planning and directing development for where businesses, 

employment, and housing will grow potentially has on safety, and stress that 

design and planning include plans for traffic safety.  Portland Metro is working on 

planning for major corridors which handle large traffic volumes to serve multiple 

transportation modes as "complete" streets that are safe for all modes, and 

attract people to spend time and enjoy their streets.  

  This study makes a contribution to the study of traffic safety and urban 

form in having found that connectivity factors for street layout are not 

statistically significant for vehicle and pedestrian crash rates.  This substantiates 

that grid street layout designs, which provide high connectivity and thus 

alternative routes to allow large traffic volumes to pass through an area, are not 



   

Page 75 

sacrificing traffic safety compared to limited access loops and lollipops, despite 

long held assumptions that limited access designs are better in terms of traffic 

safety.   

  The methodology of aggregating crashes and factors into a uniform 

spatial grid for traffic safety analysis, an approach suggested by Kim (13), 

provides a way to include all crashes for analysis regardless of whether they 

were located along arterials that would border TAZ or block group spatial units. 

Previous researchers have looked at the relationship of traffic safety and urban 

form using TAZ or block group spatial units.  These spatial unit choices were 

problematic regarding how to handle crashes on the peripheral roadways.  The 

uniform spatial grid methodology gives equal weight to all crashes for an 

unbiased look at the overall traffic safety, so that safety for neighborhoods 

streets and arterials can both be considered. 

6.1 Further Work 

The model could be applied to data for years later than the study, when 

they are available, to see how well the models predicted Portland City crashes.   

A larger study area could be considered if geo-coded crash data are available, 

and using connectivity factors such as percent four leg intersections, total 

intersection density, and total street length, rather than needing to manually 

assign the Rifaat and Tay street network scale.   
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  Data on volume for more streets would be expected to improve the 

model.  Arterial congestion data would be particularly interesting to study along 

with speed data to see if there are interactions or relationships there that affect 

crash rates, particularly for bicycle crashes.  This study had data for vehicle 

roadways; further studies with bicycle and pedestrian facility and volume data 

could be illuminating for pedestrian and bicycle crash safety.   

  Future work could consider looking at spatial proximity effects on the 

analysis.  Spatial correlation likely exists, but we did not develop models to 

account for this.  Even though freeway roadways and crashes were eliminated 

from the study, a dummy variable indicating whether a spatial grid cell included 

freeway could be included to look for whether areas adjacent to freeways have 

the same or higher crash rates than non-freeway adjacent areas.   

  Specific locations could be looked at in more detail, and a mean time to 

failure (i.e. crash) analysis approach. 
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APPENDIX A:  R code for the CURE plots 

################################################# 

# K. Gladhill, R. Conrad, C. Monsere 

# October 30.2010 

# CURE 2s* Plots Ref Hauer "Statistical Road Safety Modeling" TRR 

################################################# 

#function cureSigma 

cureSigma <- 

function(dependentVar,orderVar,orderVarName,model1,model2,limY) 

{ 

  models <- cbind (orderVar, dependentVar, fitted(model1), fitted (model2)) 

  models <- as.data.frame(models[order(orderVar),])                    #order the 

new data frame 

  names(models) <- list("Parameter", "CRASH", "M1","M2")           #add names 

to the data fields 

  ## +2sigma 

  ##sigma 1 

  res1N<-sum((models$CRASH-models$M1)^2) 

  res1n<-cumsum((models$CRASH-models$M1)^2) 

  sigma1<-sqrt(res1n*(1-(res1n/res1N))) 

  ##sigma 2 

  res2N<-sum((models$CRASH-models$M2)^2) 

  res2n<-cumsum((models$CRASH-models$M2)^2) 

  sigma2<-sqrt(res2n*(1-(res2n/res2N))) 

 

  ## Cumulative and CURE plots 
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  # find the max value for the y-axis before opening plot window 

  ymax1 <- 2*max(sigma1, na.rm=TRUE) 

  ymax2 <- 2*max(sigma2, na.rm=TRUE) 

  if (limY < 1) 

    { 

    par(mfrow = c(1, 2)) #set graph parameter 

        plot( models$Parameter, cumsum(models$CRASH-models$M1), type="l",  

col="red",  

          main="CURE 2s* Plot, Model 1", ylab="Cum Residuals", 

xlab=orderVarName) 

          abline(h=0, lty=2) 

          lines( models$Parameter,-2*sigma1 , col="blue") 

          lines( models$Parameter, 2*sigma1 , col="green") 

 

        plot( models$Parameter, cumsum(models$CRASH-models$M2), type="l",  

col="red",  

          main="CURE 2s* Plot, Model 2", ylab="Cum Residuals", 

xlab=orderVarName) 

          abline(h=0, lty=2) 

          lines(models$Parameter,-2*sigma2, type="l", col="dodgerblue", pch=16) 

          lines(models$Parameter, 2*sigma2, type="l", col="seagreen", pch=17) 

      par(mfrow = c(1, 1)) #set graph parameter 

    }  

  if (limY > 0) { 

      par(mfrow = c(1, 2)) #set graph parameter 

        plot( models$Parameter, cumsum(models$CRASH-models$M1), type="l", 

ylim=c(-ymax1,ymax1), col="red",  
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          main="CURE 2s* Plot, Model 1", ylab="Cum Residuals", 

xlab=orderVarName) 

          abline(h=0, lty=2) 

          lines( models$Parameter,-2*sigma1 , col="blue") 

          lines( models$Parameter, 2*sigma1 , col="green") 

 

        plot( models$Parameter, cumsum(models$CRASH-models$M2), type="l", 

             ylim=c(-ymax2,ymax2), col="red",  

          main="CURE 2s* Plot, Model 2", ylab="Cum Residuals", 

xlab=orderVarName) 

          abline(h=0, lty=2) 

          lines(models$Parameter,-2*sigma2, type="l", col="dodgerblue", pch=16) 

          lines(models$Parameter, 2*sigma2, type="l", col="seagreen", pch=17) 

      par(mfrow = c(1, 1)) #set graph parameter 

    } 

 }  

#end function 
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cureSigma3 <- 

function(dependentVar,orderVar,orderVarName,model1,model2,model3,limY) 

{ 

  models <- cbind (orderVar, dependentVar, fitted(model1), fitted (model2),fitted 

(model3)) 

  models <- as.data.frame(models[order(orderVar),])                     #order the 

new data frame 

  names(models) <- list("Parameter", "CRASH", "M1","M2","M3")    #add names 

to the data fields 

  ## +2sigma 

  ##sigma 1 

  res1N<-sum((models$CRASH-models$M1)^2) 

  res1n<-cumsum((models$CRASH-models$M1)^2) 

  sigma1<-sqrt(res1n*(1-(res1n/res1N))) 

  ##sigma 2 

  res2N<-sum((models$CRASH-models$M2)^2) 

  res2n<-cumsum((models$CRASH-models$M2)^2) 

  sigma2<-sqrt(res2n*(1-(res2n/res2N))) 

  ##sigma 3 

  res3N<-sum((models$CRASH-models$M3)^2) 

  res3n<-cumsum((models$CRASH-models$M3)^2) 

  sigma3<-sqrt(res3n*(1-(res3n/res3N))) 

 

  ## Cumulative and CURE plots 

  # find the max value for the y-axis before opening plot window 

  ymax1 <- 2*max(sigma1, na.rm=TRUE) 

  ymax2 <- 2*max(sigma2, na.rm=TRUE) 
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  ymax3 <- 2*max(sigma3, na.rm=TRUE) 

 if (limY < 1) 

    { 

    par(mfrow = c(1, 3)) #set graph parameter 

 

        plot( models$Parameter, cumsum(models$CRASH-models$M1), type="l",  

col="red",  

          main="CURE 2s* Plot, Model 1", ylab="Cum Residuals", 

xlab=orderVarName) 

          abline(h=0, lty=2) 

          lines( models$Parameter,-2*sigma1 , col="blue") 

          lines( models$Parameter, 2*sigma1 , col="green") 

 

        plot( models$Parameter, cumsum(models$CRASH-models$M2), type="l",  

col="red",  

          main="CURE 2s* Plot, Model 2", ylab="Cum Residuals", 

xlab=orderVarName) 

          abline(h=0, lty=2) 

          lines(models$Parameter,-2*sigma2, type="l", col="dodgerblue", pch=16) 

          lines(models$Parameter, 2*sigma2, type="l", col="seagreen", pch=17) 

 

        plot( models$Parameter, cumsum(models$CRASH-models$M3), type="l",  

col="red",  

          main="CURE 2s* Plot, Model 3", ylab="Cum Residuals", 

xlab=orderVarName) 

          abline(h=0, lty=2) 

          lines(models$Parameter,-2*sigma3, type="l", col="dodgerblue", pch=16) 
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          lines(models$Parameter, 2*sigma3, type="l", col="seagreen", pch=17) 

 

      par(mfrow = c(1, 1)) #set graph parameter 

    }  

  if (limY > 0) { 

      par(mfrow = c(1, 3)) #set graph parameter 

 

        plot( models$Parameter, cumsum(models$CRASH-models$M1), type="l", 

ylim=c(-ymax1,ymax1), col="red",  

          main="CURE 2s* Plot, Model 1", ylab="Cum Residuals", 

xlab=orderVarName) 

          abline(h=0, lty=2) 

          lines( models$Parameter,-2*sigma1 , col="blue") 

          lines( models$Parameter, 2*sigma1 , col="green") 

 

        plot( models$Parameter, cumsum(models$CRASH-models$M2), type="l", 

            ylim=c(-ymax2,ymax2), col="red",  

          main="CURE 2s* Plot, Model 2", ylab="Cum Residuals", 

xlab=orderVarName) 

          abline(h=0, lty=2) 

          lines(models$Parameter,-2*sigma2, type="l", col="dodgerblue", pch=16) 

          lines(models$Parameter, 2*sigma2, type="l", col="seagreen", pch=17) 

 

        plot( models$Parameter, cumsum(models$CRASH-models$M3), type="l",    

ylim=c(-ymax2,ymax2), col="red",  

          main="CURE 2s* Plot, Model 3", ylab="Cum Residuals", 

xlab=orderVarName) 
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          abline(h=0, lty=2) 

          lines(models$Parameter,-2*sigma3, type="l", col="dodgerblue", pch=16) 

          lines(models$Parameter, 2*sigma3, type="l", col="seagreen", pch=17) 

 

      par(mfrow = c(1, 1)) #set graph parameter 

    } 

 }  

#end function 
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APPENDIX B:  Join point data to spatial area in ArcGIS 9.3.1 

Join point data to spatial area 

a. Choose layer with point data, start join from there: 

 
 

 
This may take some time. 
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b. In joined attribute table, choose column to summarize on. 

In this case, a count of field “Col_Row” will do, it’s the ID for each grid 

cell. 
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c. Right-click on the table on the "Source" tab to open that table to check 

data in the summary column: 

 
 

d. Join summary data to the original spatial Layer. 

Start with R-click of spatial layer, choose Joins and Relates -> Join 
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e. Check the attributes table for spatial layer, it now includes columns from 

the joined table. 
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APPENDIX C:  Join Line Data to spatial area in ArcGIS 9.3.1 

Determine the length of line data in polygons 

1. Create a new output layer is containing road segments intersecting grid 

cells, clipped at each cell. 

Analysis Tools -> Overlay - > Intersect 
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2. Sum the lines that fall within the polygons 

a. ArcToolbox,  

‘Analysis Tools -> Statistics ->Summary Statistics 

 
Hit OK, and Close—it will look like nothing happened…that’s OK. 
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b. In the Table of Contents window, Right-click the polygon layer and 

select :  Join and Relates ->Join… 

 
Hit OK—if prompted hit yes 

The summary value should now appear as a column in the polygon 
attribute table.. 
 

  



   

Page 93 

APPENDIX D:  Apportion polygon data to a different polygon spatial 

area in ArcGIS 9.3.1 

 

Example for employment by TAZ being put into uniform grid layer 

 

1. Create smaller TAZ/Employment areas contained within each grid cell 

a. Select the “ArcToolbox from the top  

(it’s a red icon, looks like a toolbox) 

Analysis Tools -> Overlay - > Union 

 

For Input, select the “Employment” and the shapefile for the layer 

with the polygons data are going into. 

Make sure the Output file is named what you want it to be

Hit OK—It will take a bit, but the new shapefile should be 

automatically added to the map. 
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2. Clean-up output layer and perform calculations 

a. Right click output layer  and select “Open Attribute Table” 

b. Delete all unnecessary columns by selecting from the top of each 

column).   

c. While still in the Attributes window, select “Options”  

(at the bottom of the dialogue  box),  

then “Add Field” (to be the new “area” of the smaller 

TAZ/Employment areas) 

d. Enter information as show below, and hit OK:   
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e.  To populate the new “AreaPart” Right click the “AreaPart” column, 

select “Calculate Geometry” hit “yes”  and enter information as 

show below: 

 
Much of the information above should be there (if not all)—hit OK. 

 

f. Create a new field—this will be to calculate the percentage of the 

total TAZ/Employment area that is in the grid cell.  Field 

information is as below: 
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g. Select  the new area field, Right-Click and select “Field Calculator” 

and “Yes”.  Using the Mouse to select the Values (sometimes if you 

use keyboard it doesn’t work right), select AreaPart / Area and hit 

OK.   

 
If there is a prompt (from an error) hit “yes”—this “error” is 

because some cells have zero “Area” because the TAZ/Employment 

does not cover the entire grid. 
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h. Create a new field for the Proportion of Employment in the smaller 

area by selecting “options”, “add new field named something like 

“PortionEmp”. 

 

i. Select  the “PortionEmp” field, Right-Click and select  

“Field Calculator” and “Yes”.   

Select the values:  [PctArea] * [Employment] 

Hit OK when done, and yes if there is a prompt. 

 

j. Format the EmpGrid_Union and label the “PortionEmp” field by  

following steps from above and shown below: 

 
 

k. Hit Apply and OK 
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3. Sum the Smaller TAZ/Employment totals that fall within the grid cells 

a. From the ArcToolbox,  

‘Analysis Tools -> Statistics ->Summary Statistics 

For the Statistics field, select the ‘PortionEmp’—this is the 

proportion of employment within the smaller TAZ/Employment 

areas (that fall within a given grid).  They will need to be summed 

up within each grid (so choose ‘SUM’ for the statistic type in the 

drop down, as shown above). 

 

For the case field, you will have to select, the ‘Col_Row’ field—this 

is because you want to sum by each grid (denoted by the Col_Row 

coordinate). 

 

Hit OK, and Close—it will look like nothing happened…that’s OK. 
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b. In the Table of Contents window, select the ‘grid’ layer by  

Right-click, and select:  

Join and Relates ->Join… 
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Hit OK—if prompted hit yes 

 

Note:  gridEmp_Union_Statistics1 can be found under Source tab, 

 
 



 

APPENDIX E:  Pearson’s Correlation on Factors – Figure E-1 Correlation for Exposure Factors 
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Figure E-2, Pearson’s Correlation for  
Transit accessibility, Exposure, Demographic, and Origin Destination Factors 
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