
Portland State University Portland State University 

PDXScholar PDXScholar 

Student Research Symposium Student Research Symposium 2016 

May 4th, 12:00 PM - 2:00 PM 

The DC Algorithm & The Constrained Fermat-The DC Algorithm & The Constrained Fermat-

Torricelli Problem Torricelli Problem 

Nathan Peron Lawrence 
Portland State University 

George Blikas 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/studentsymposium 

 Part of the Applied Mathematics Commons 

Let us know how access to this document benefits you. 

Lawrence, Nathan Peron and Blikas, George, "The DC Algorithm & The Constrained Fermat-Torricelli 
Problem" (2016). Student Research Symposium. 2. 
https://pdxscholar.library.pdx.edu/studentsymposium/2016/Posters/2 

This Poster is brought to you for free and open access. It has been accepted for inclusion in Student Research 
Symposium by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/studentsymposium
https://pdxscholar.library.pdx.edu/studentsymposium/2016
https://pdxscholar.library.pdx.edu/studentsymposium?utm_source=pdxscholar.library.pdx.edu%2Fstudentsymposium%2F2016%2FPosters%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=pdxscholar.library.pdx.edu%2Fstudentsymposium%2F2016%2FPosters%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/studentsymposium/2016/Posters/2
https://pdxscholar.library.pdx.edu/studentsymposium/2016/Posters/2?utm_source=pdxscholar.library.pdx.edu%2Fstudentsymposium%2F2016%2FPosters%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


The DC Algorithm & The Constrained Fermat-Torricelli Problem
Nathan L., George B.
Faculty Advisor: Dr. Mau Nam Nguyen
Fariborz Maseeh Department of Mathematics and Statistics
PO Box 751, Portland, Oregon 97207

Abstract
The theory of functions expressible as the Difference of Convex (DC) functions has led to the development of
a rich field in applied mathematics known as DC Programming.We survey the work of Pham Dinh Tao and
Le Thi Hoai An in order to understand the DC Algorithm (DCA) and its use in solving clustering problems.
Further, we present several other methods that generalize the DCA for any norm. These powerful tools
enable researchers to reformulate objective functions, not necessarily convex, into DC Programs.

The Fermat-Torricelli problem is visited in light of convex analysis and various norms. Pierre de Fermat
proposed a problem in the 17th century that sparked interest in the location sciences: given three points in
the plane, find a point such that the sum of its Euclidean distances to the three points is minimal. This
problem was solved by Evangelista Torricelli, and is now referred to as the Fermat-Torricelli problem. We
present the constrained version of the problem using the distance penalty method.

Figure 1: A visualization of the classical Fermat-Torricelli Problem.

The DCA
We start out with an objective function in terms of its DC decomposition:

min
x∈Rn

f (x) := g(x)− h(x)

The global optimality of our objective function is equivalent to the minimization of its dual, expressed in
terms of its Fenchel conjugates:

min
y∈domh∗

h∗(y)− g∗(y)

In order to solve this problem, we apply the following algorithm (DCA):

Initialize x0 ∈ Rn, N ∈ N
for k do = 1, 2, ... , N

Find yk ∈ ∂h(xk)

Find xk+1 ∈ ∂g∗(yk)
end for

Output: xN+1

The DCA will be applied to multifacility location problems.

Figure 2: A generalization of gradient on a non-differentiable function. The subgradient of a function is denoted ∂f (x̄).

Note that if ∂f (x̄) = {∇f (x̄)} then the function is differentiable

Formulation of the Fermat-Torricelli Problem
The solution to the Fermat-Torricelli Problem is well known. The geometric representation of the classical
problem given by Fermat is given in fig 1. Given three points in the plane A, B, C, we construct triangle,
ABC. If any of the angles ∠A, ∠B, or ∠C measures 120◦ or greater, then the respective point is the
solution. In the cases where ∠A, ∠B, and ∠C are less than 120◦, on each of sides in 4ABC we attach
an equilateral triangle whose side lengths are that of the corresponding one. Drawing lines as in fig 1, we
obtain the desired solution. For a more detailed description, see this link.

This problem has been generalized to any finite number of points in the plane. Harold Kuhn asserted and
proved the necessary conditions for generalization in 1972. The Weiszfeld algorithm was the first numerical
approach to solve the general case. In the following panels we present the minimizer for the classical problem,
and a detailed derivation for that of the constrained problem.

The Fermat-Torricelli Problem and The Weiszfeld
Algorithm

Given multiple points in the plane and an initial starting point, the Weiszfeld Algorithm is a numerical
method for obtaining the optimal center. We present the Weiszfeld Algorithm. We denote the set of data
points {a1, a2, ..., am} ⊂ Rn, and initial vector x0 ∈ Rn.

Given {a1, a2, ..., am} ⊂ Rn, x0 ∈ Rn and N ∈ N
for k = 0, 1, 2, ..., N do

xk+1 =

∑m
i=1

ai
‖x−ai‖∑m

i=1
1

‖xk−ai‖
end for

Output: xN+1

The formal conditions for convergence were not shown before the algorithm’s development. In 1972, Harold
Khun showed that given the sequence {xk}k generated by the Weiszfeld Algorithm, xk → x̄ precisely when
xk /∈ {a1, a2, ..., am}.

Figure 3: The three circles represent convex subsets of R2. Similar to the original problem, but we are looking for a point

in the shaded region whose sum of distances to each black point is minimal with respect to the shaded region.

The Constrained Fermat-Torricelli Problem
Up until this point, we have only considered x ∈ Rn; that is, a single constraint on the objective function.
Next, we consider a finite sequence of convex subsets {Ωi}Ni=1 of Rn. Given data points {a1, a2, ..., am} ⊂ Rn,
the constrained Fermat-Torricelli problem becomes the following:

minimize f (x) =

m∑
i=1

||x− ai|| (1)

subject to x ∈
N⋂
i=1

Ωi

In a similar fashion of the algorithm presented above, the following is a minimizer for (1):

x =

∑m
i=1

ai
‖x−ai‖

+ 2µ
∑p

i=1 P (x; Ωi)∑m
i=1

1
‖x−ai‖

+ 2µp
,

where µ > 0 is a penalty constant. We present the associated numerical method for obtaining the minimizer,
x̄. Define

F (x) := x, x /∈ {a1, a2, ..., am}

Given {a1, a2, ..., am} ⊂ Rn, x0 ∈ Rn and N ∈ N
for k = 0, 1, 2, ..., N do

xk+1 = F (xk)

end for

Output: xN+1

Figure 4: The function f is an example of a DC function.

Figure 5: After choosing an initial starting point, we iteratively minimize the Euclidean distance to all neighbouring points

(diamonds). Where the lines converge is the optimal solution.

Some Motivation for Multifacility Location Problems
In the previous algorithms, we have only considered one case of a more general framework. It is often the
case that in the world of commerce multiple facilities are needed to export and deliver product to a wide
range of consumers, who may live in wide-spanning locations. In order to determine the optimal location
for facility development, industry turns to some the numerical methods we present. We apply the DCA, in
combination with Nesterov’s Smoothing Technique to these problems.

Figure 6: The above map demonstrates how the optimal solution isn’t always feasible in application

Location Analysis with Generalized Distances
Using Nesterov’s Smoothing Technique and the DCA we are able to solve multifacility location problems
under different norms. As a corollary, this allows us to further generalize the Fermat-Torricelli problem in
terms of a Minkowski gauge. For our purposes, let F be the closed unit ball in Rn, then the Minkowski
gauge associated with F is defined as ρF (x) := ‖x‖. Further, F ◦ := {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ F}.

Let {a1, a2, ..., am} be our set of data points in Rn. For k centroids we want to minimize the objective
function given by

f (x1, . . . , xk) :=

m∑
i=1

min
`=1,...,k

ρF (x` − ai), where x` ∈ Rn for ` = 1, . . . , k. (2)

Despite the objective function f not necessarily being convex, the problem given by (2) always admits an
optimal solution in (Rn)k. We can approximate f as a DC program, denoted fµ(x) = gµ(x) = hµ(x) where
x ∈ (Rn)k and µ > 0 is the smoothing parameter. Specifically, we have

gµ(x1, . . . , xk) :=
1

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖

hµ(x1, . . . , xk) :=
µ

2

m∑
i=1

k∑
`=1

[
d(
x` − ai
µ

;F ◦
]2

+

m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

ρF (x` − ai).

In the next panel we outline the steps necessary for solving the multifaciltiy location problem with the DCA
and the smooth DC decomposition given in this section.

The DCA For Multifacility Location
Given a set of data points {a1, . . . , am} in Rn, let B be the k × n matrix whose rows are

∑m
i=1 ai. With

reference to the previous panel, we have the following:

∇Gµ(Y ) =
1

m
(B + µY ), where Gµ(X) := gµ(x1, . . . , xk)

Similarly, Hµ(X) := hµ(x1, . . . , xk) = H1
µ + H2

µ, where H1, H2 are the respective summands previously
shown. The calculations for their subgradients can be found in [3]

Given X1 ∈ Rk×n, N ∈ N, F, µ > 0, and a1, . . . , am ∈ Rn

for k = 1,. . . , N do

Calculate Uk := ∇H1
µ(Xk)

Find Vk ∈ ∂H2
µ(Xk)

Set Yk = Uk + Vk
Let Xk+1 = 1

m(B + µYk)

end for

Output: XN+1.

Results
In this table we compare three algorithms’ run-time performance in assigning a single center to data points:
the Weiszfeld Algorithm, Algorithm 4, and Algorithm 5 as outlined in Tao, An. The initial center (X) was
identical in all trials. The data points (A) were consistent across all algorithms; A was a n × 2 matrix,
whose rows represented the data points. Each trial was given 1000 iterations (k). We are running on a
64-bit, 16.00-GB RAM, AMD FX Eight Core 4.00-GHz processor, with Windows 10 OS.

size A 5 50 500 1200

Weiszfeld 0.064774 0.304614 2.749730 6.458274

Algorithm 4 0.078024 0.157531 0.935655 2.154189

Algorithm 5 0.017729 1.253552 121.958931 701.684650

Table 1: Run-time performance in seconds

It is a work in progress to compare the average distances between the various algorithms. In algorithms 4,
and 5 there are parameters which by adjusting effects the rate of convergence. We do note, however, that
with a decent approximation of those parameters, the average distance from the optimal center is roughly
equal across these algorithms. We present some of these preliminary calculations.

size A (n) 5 50 500 1200

Weiszfeld 3.0902e+05 3.0891e+06 3.0894e+07 7.4144e+07

Algorithm 4 2.9402e+05 2.8891e+06 2.8394e+07 6.6944e+07

Algorithm 5 2.5902e+05 2.4891e+06 2.3894e+07 5.4944e+07

Table 2: Distance to centroid; Euclidean distance relative to data points.

n = 5 n = 50

n = 500 n = 1200

Figure 7: Comparision between the Weiszfeld Algorithm, Algorithm 4 and
Algorithm 5, with size of A as 5× 2, 50× 2, 500× 2 and 1200× 2, respectively.

Discussion
The three algorithms all find reasonable approximations to the optimal solution. As is documented, for all
data sets the total distance to centroid found by algorithm 5 outperformed the others. This is to be expected.
In long term calculation the run-time of algorithm 5 is not unreasonable. However, for applications, its run-
time performance is unfortunate.
As previously mentioned, it will be our aim in the future to improve upon parameter selection in order
to expediate convergence in algorithms 4 and 5. It is clear that algorithm 4 is the best trade-off between
run-time and accuracy. A careful selection in parameter choice may make it optimal for application.
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