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        Feb 17, 2009 

 

 

Dear editors, 

 

Please find enclosed a revised version of the manuscript titled “An idealized model and 

systematic process study of oxygen depletion in highly turbid estuaries”, ESCO-D-08-00110, by 

Talke, De Swart and De Jonge.  We are also including an additional 3 files, which we would like 

to publish as supplementary material. 

The products are the result of a labor-intensive process in which we made a more thorough 

analysis of field data, calibrated model results to the field data, re-organized the main text, 

simplified the figures and presentation, and shifted parts (such as complete sensitivity studies) to 

the supplementary material.   We believe that these changes, which were made in response to 

editor and reviewer comments, have bolstered both our results and our presentation.  The 

supplementary material contains supporting material for readers who would like more 

background information, while the main text is now focused towards the broader Estuaries and 

Coasts audience.   

 

 

Yours sincerely, 

 

(also on behalf of H.E. de Swart and V.N. de Jonge), 

 

 

Dr. S.A. Talke 
 

Cover Letter



        Feb. 17, 2009 

 

Dear editors and reviewers, 

 

In the following pages, our responses to the comments of the editors and reviewers are given in 

italics.  We thank the editors and the reviewers, and believe the manuscript has been much 

improved by your constructive comments. 

 

Yours sincerely, 

 

(also on behalf of H.E. de Swart and V.N. de Jonge), 

 

 

Dr. S.A. Talke 

 

*Response to Reviewer Comments



 

Detailed Reply to Editor 

 

Comment:  I ask that you give particular attention to these weaknesses in the current manuscript: 

(a)absence of explicit statements and justifications of all assumptions (both implicit and explicit);  

(b) absence of derivation and justification of equations comprising your model; and  (c) absence 

of any verification of model computations through comparisons against measurements.  

 

To address these major comments, we have 

(a) Produced a figure (Fig 6) which portrays the geometric configuration of the 

model and the key assumptions made during the derivation 

(b) Included a complete derivation of the circulation and SSC model in an 

electronic supplement (supplement S.1).  In addition, we have added data and 

discussion into Supplement S.2 which justifies our diagnostic model of salinity and 

the functional form of the vertical variation in SSC.  We have also included more 

references to Talke et al. (2008,2009), which also describe the model, in the main 

text.   

(c) Explicitly compared the results of our DO model with measurements from 3 

stations in the Ems estuary in Section 4.1 (labeled „Model validation‟).  Fig. 7 now 

shows a comparison of DO vs. SSC (modeled and measured) and Fig. 8 now 

shows a comparison of measured and modeled DO as a function of temperature.  

In addition, we have reconfigured our experimental results section to show more 

clearly the longitudinal structure of SSC and DO, as well as the historical changes 

to these over the past 2 decades.  Establishing these facts more explicitly allows 

for better comparison with the results of the estuarine DO model. 

 

  

Comment:  Your manuscript is long, a bit tedious to read, and therefore will not attract the 

attention it deserves from busy readers. This problem can be resolved if you restructure your 

paper so the modeling details (e.g. sensitivity analyses and associated figures) are placed in a 

document that will be archived as online Supporting material.  

 

 

To address this comment, we have reconfigured the results section.  Section 4.1 has been 

reconfigured to become a „model validation‟ section, as requested by the reviewers.  To 

streamline the model results presentation, Eq. 17-19 and its development and discussion have 

been placed into section 3.2.  Eq. 20, the former Fig. 6, and much of the associated discussion 

from the former section 4.1, have been placed in Supplement S3.  This has removed about 930 

words.  

 

In Section 4.2, Figures 8-10 and Figs. 12-13, and the associated text describing these sensitivity 

studies, have been moved to Supplement S.3.  Approximately 1800 words of text were removed in 

this way.    

 

In the place of the exhaustive sensitivity studies we have included figures that (a) explain the 

effect of known changes that have occurred to the estuary and/or (b) demonstrate a critical 



sensitivity.   These figures are now simplified and shown as pcolor plots, which allows for more 

accessible reading and interpretation. 

  

Comment:  Then, you can focus your manuscript on the key results so they will be more 

accessible to general readers. In the end, your primary text can be greatly streamlined by 

focusing on model justification and results that will of general interest, and then archiving the 

modeling details for the smaller audience of scientists/engineers who will be interested in those 

details.  

 

We have archived material into 3 Supplemental sections, and believe the main text is now much 

more focused on the key results. 

 

Comment:  Finally, please compose a new Abstract, following guidelines to authors specifying a 

concise abstract of 100-150 words. 

 

We have written a new abstract that is 150 words long. 

 



Detailed reply to Associate Editor 

 

Comment:  The ms tried to combine three aspects: a. presents the fact that SSC and hypoxia are 

closely related in a highly turbid river (so that DO consumption is a function of SSC); b. 

derivation of a DO model, based on their previously-derived momentum-SSC model; and c. 

model results and sensitivity tests against choices of parameters. 

 

In part b, assumptions and derivations leading to Eq. 5 was not clearly stated. I understand that 

this was included in another paper (Talke et al., 2009). But all assumptions need to be clearly 

listed perhaps using a table (salinity vertically well-mixed; horizontal salinity distribution was 

presumed as a known function so that flow field and salinity distribution is not solved as a 

coupling process; vertical distributions of SSC and DO was solved, again, from decoupling them 

with the horizontal flow field, etc) and when Eq. 5 was given, a reference should be added. 

 

The major assumptions have been included in the new Fig. 6, and we have included more 

references to Talke et al., (2008,2009).  We have also included a more thorough derivation of the 

circulation and SSC model in Supplement S1.   

 

Comment:  In part c, I'd suggest the authors to include some real-case data in discussing the 

model results. For example, the authors have excused channel deepening from 5 to 7m as one of 

the primary cause for higher frequency of hypoxic events in the Ems estuary, some averaged DO 

concentrations before and after channel deepening could be added to figure 6c.  

 

We have addressed this comment by adding Fig. 4 and Fig. 5 to the field-results section (which 

show DO concentrations as a function of salinity before and after deepening from 5 to 7 m), and 

Fig. 7 and Fig. 8 to the results section (which explicitly compare measured and modeled DO as 

a function of SSC and temperature).   

 

Fig. 4 and Fig. 5 explicitly establish the DO concentrations as a function of salinity before and 

after deepening, and link worsening DO conditions to changes to the turbidity zone (0.5- 2 psu 

salinity). This conclusion allows us to better compare field results with the results of our model 

study (Fig. 9), though explicit comparisons are not possible because SSC data is unavailable 

before 1998.     

 

Fig. 7 and Fig. 8 explicitly compare model and measurement results, hence addressing the 

comment about including real case data into discussion of the model. 

 

Several assumptions adopted by the model may lead to DO prediction being vertically over-

mixed. For example, the assumption of well-mixed salinity field and the independent solution of 

vertical TSS and DO concentrations from the impact of residual circulation. The limitations of 

the model and the restrictions of its application because of the assumptions need to be better 

discussed. 

 

The model assumptions can now be seen in Fig. 6, and more in-depth discussion of the model 

derivation and assumptions are given in Supplement S.1. We use scaling to show in Supplement 

S.1 that residual circulation is a higher order effect on the distribution of SSC.  Residual 



circulation and dispersion do affect the DO model, as can be seen by the slight variation 

between DO minimum and SSC maximum in some of the results. 

 

Finally, we also acknowledge the limitations of the model in the discussion more clearly with this 

sentence:  “As discussed in more detail in Talke et al., (2009), the tidal averaged model of 

circulation and SSC distribution neglects tidally varying processes (e.g., settling lag, periodic 

salinity stratification, etc) that influence tidally averaged circulation and the fluxes of sediment 

in an estuary”  



 

 

Detailed reply to Reviewer #1 

 

My main concern however is that the model solution of the flow field is not provided.  Equation 

(5) needs to be derived clearly, or a reference used, and proper discussion about its applicability 

given.  The flow field is one of the most important ingredients of the driving force.  Therefore, I 

suggest that the authors add this part in their revision.   

 

We appreciate the reviewers comment, and agree that Eq. 5 was introduced rather abruptly.  We 

know have included the requested reference and have included a derivation in the supplemental 

section S.1.  An expanded discussion of assumptions has also been included. 

 

 

I would like to have enough information to evaluate the applicability of this model.  I do have 

my doubt about the applicability to an exponentially decreasing channel.  But that doesn't 

necessarily suggest in anyway a negative review.  It is also important that the authors think 

through on this issue and make sure the solution is correct for the channel they used (equation (1) 

for the channel width). I look forward to reading the revision. 

 

The more in-depth derivation of the model in supplement S.1 as well as references to Talke et al., 

2007b address this comment. Exponential models are often used in idealized models, and we 

have added a reference to Eq. 1 to justify its use.   

 

Detailed comments: 

 

1. Page 1, line 21, the last "in" should be deleted   

 

We have made the requested change 

 

2. Page 3, line 59, Humber Estuary, Loire Estuary, Yellow River Estuary 

We have made the requested change. 

 

3. Page 3, line 62, delete "observed and modeled" 

We have made the requested change. 

 

4. Page 4, line 79, define SSC first (the definition on the next page in line 106 should be 

moved to here. 

We have made the requested change. 



 

5. Line 80, what do you mean by "fast"?  Fast in calculation? 

 

We have made the description more clear. 

 

6. Line 93, specify what does it mean by "well mixed": vertically, horizontally? 

 

We added the qualifier “vertically” to this sentence. 

 

7. Figure 1, can you just use grayscale for the map? The colors are kind of odd. 

 

We have made the requested change 

 

8.Line 131, talking about the ebbing and flooding phase observations, can you first describe the 

tidal conditions there, rather than just specifying the tidal range being mesotidal?  Is it semi-

diurnal, mixed, diurnal?   

 

 We‟ve added the requested information about the tides, and removed the description 

„mesotidal‟, since this was redundant with the reported tidal range. 

 

9. The observations were not conducted instantaneously.  Can you describe the 

observations a little more, e.g.  How long did it take to run the ~ 50 km length transect?  How 

long did that take in reference to one tidal period?  Figures 3 and 4 show results from "ebb" and 

"flood" phases, but here the words "ebb" and "flood" are vague as running along a 50 km transect 

with water sampling, CTD casts etc will require extended length of time. That time may cover 

partial ebb and partial flood tide phases, or any period in between.  It is therefore important to 

indicate (e.g.  with a figure) the time segments.  This may not appear to be a big problem when 

Figures 3a and Figure 4a are compared: they appear to be almost identical, suggesting that the 

ebb and flood conditions were quite similar.  Figures 3b and 4b however do show some 

differences. This is a little bit surprising.  But this also highlights the need to describe the 

observations in more details to avoid confusion.  

 

We thank the reviewer for this observation, which is indeed pertinent for interpreting the data.  

We have added a brief discussion of the tidal phases of the measurements to the discussion of 

these two figures (now Fig. 2 and Fig. 3), both in the text and in the figure captions.  We also 

reference Talke et al., 2009, which discusses these measurements as well.   

 

10. The last statement at the end of page 6 and the top of page 7 is not quite convincing to 

me. The local minima is ~ 2, which can be found elsewhere in the figures, not just at the max 

SSC. 

 

We have changed our wording to avoid the word minima, since our primary observation is that 

depleted DO occurs in locations of elevated SSC—not that the absolute minimum of DO 

coincides with the absolute maximum of SSC.  We make this point clear now by pointing out that 

the minimum of oxygen is located 3.5 km upstream of the maximum SSC.  In fact, the model 

shows that horizontal advection and diffusion can move the DO minimum on the order of several 



km from the SSC maximum.  So while our primary conclusion holds, i.e., that DO depletion is 

proportional to SSC, second order affects slightly affect the position of the DO minimum. 

 

11. Line 181, equation (2), can you provide some reference for this formula, and discuss a 

little bit about the limitation of this equation? 

 

We have added a reference to Odd, 1988, and have added the term „linearized‟, which implies 

that the equation is a first order approximation. 

 

12. Line 184, can you specify what is /rho_s? 

 

Thanks for the observation--we have now defined this term. 

 

13. Line 200, equation (5) is given out of the blue, can you provide the 

derivation or a reference to an article, and describe its limitations?  This 

appears to be a modified gravitational circulation from a conceptual model, 

rather than from a strict analytic model.  But anyway, it should be described 

properly, or it is hard to assess the suitability and limitations, if any, of 

the following equations. 

 

We agree that the introduction of this equation was rather abrupt.  We now include several 

descriptive sentences about the momentum and mass balance equations, and make clear 

references to supplement S.1 and Talke et al., (2008,2009) which derive these equations. 

 

 



 

Detailed reply to Reviewer #2:  

 

I find this to be a very interesting paper, albeit a bit hard to read with all of the sensitivity 

analyses described in great detail.   

 

We thank the reviewer for these encouraging comments and have reworked the paper to be 

easier to read.  We have done this by focusing on fewer, but more salient, model results and by 

improving the figures.  The detailed sensitivity studies have been placed into supplementary 

sections.  In these ways the paper should be more accessible for the E&C community. 

 

I think the paper could be of significant importance, but I would like to have seen at last a few 

comparisons between the model and observations.  They apparently have access to a great deal 

of observations (see for example, Figures 3-5), but they want the readers to just believe, for 

example, that their assumptions of salinity (Equation 3) and SSC (Equation 4) physical structure 

are acceptable.  Some data would be more convincing. 

 

We have added data and analysis to justify our longitudinal salinity equation and vertical SSC 

equation to supplement S.2 (to put into the main text would distract from the primary purpose of 

the paper, which is to investigate oxygen depletion).  In addition, we reference Warner et al., 

2005, who use the same functional form of the longitudinal salinity equation.   

 

Also, before describing the many sensitivity tests, it would be nice to know if the 1D and 2D 

model actually reproduce the observed structure and dynamics. They show no comparisons.  

Even with good comparisons to observations, one always wonders if the internal controls in 

model are real, but without showing the model matches observations, it is not appropriate to 

imply that what controls the model, controls the environment.   

 

We now explicitly compare the 1D model results to data measured at fixed points, and use the 

experimental data to determine our estimates of the coefficients of aeration, sediment oxygen 

demand, and suspended organic material decay.  This has resulted in a new set of DO model 

parameters that we feel are more robust.  The overall conclusions of the paper have not been 

altered, however. 

 

In the discussion of the estuarine, 2D DO model we now make more explicit comparisons with 

data and show that the magnitudes and distribution of modeled DO and SSC are similar, 

qualitatively, to the longitudinal measurements in Fig. 2 and Fig. 3.  However, more direct 

comparisons are not possible because (a) the measured SSC and DO in Fig. 2 and Fig. 3 are 

snapshots during a tidal period, rather than a tidal average and (b) the idealized model is 

designed to investigate the underlying physics, rather than be rigorously predictive.  Hence, we 

feel a good qualitative agreement between the estuarine model and measurements is sufficient to 

validate the model and explore the underlying physics.  

 

I think the paper would be much more appropriate for this journal if it first demonstrated its 

ability to reproduce observed dynamics in the Ems.  While the last sentence of the abstract 

makes that claim, they do not provide evidence. 



 

We have addressed this comment in several ways, both by improving our presentation of 

historical changes and by more explicitly comparing the model to the measurements. 

 

First, we have established more clearly that the DO distribution has changed in the Ems over the 

past 20 years (Fig. 4 and Fig. 5), and that this change is primarily observed between 0.5 psu and 

2 psu, where the SSC maximum resides.  We now establish that the changes in DO are probably 

related to changes in the magnitude of SSC, which makes it possible to compare observed long-

term trends in the field data with our SSC and DO model results.   Our model produces results 

that are consistent with the observed changes, and shows that the primary cause of increased 

SSC and decreased DO was likely the increase in the depth of the shipping channel.     

 

Second, we now explicitly compare the modeled and measured variation in DO as a function of 

both SSC and temperature (section 4.1).  Hence, we model two important components of DO 

variation:  seasonal variations to temperature, and longer term variations due to SSC changes. 
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ABSTRACT 19 

 20 

The sensitivity of oxygen depletion in turbid estuaries to parameters like freshwater discharge, 21 

depth and sediment availability is investigated using an idealized model. The model describes 22 

tidally-averaged circulation and suspended sediment concentration (SSC), which are input 23 

into an advection-diffusion-sink module of dissolved oxygen (DO).  Based on the analysis of 24 

field data collected in the Ems estuary, the modeled oxygen depletion rates are proportional to 25 

SSC.  The model is calibrated to the observed variation of DO with SSC and temperature.  26 

Modeled DO closely tracks changes to the estuarine turbidity zone (ETZ): increased channel 27 

depth, decreased freshwater discharge, and decreased mixing move the ETZ upstream, 28 

amplify SSCs and decrease DO.  Summertime temperatures produce lower DO than cooler 29 

periods.  Model results are consistent with historical measurements in the Ems, which indicate 30 

that hypoxic events (DO concentrations < 2mg l
-1

) have occurred more frequently after 31 

deepening from 5 m to 7 m. 32 

  33 
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 34 

 INTRODUCTION 35 

 36 

Depleted levels of dissolved oxygen (DO) occur in many Asian estuaries (Fang & Lin, 2002, 37 

Dai et al., 2006, and Ni et al., 2007), North American estuaries (Engle et al., 1999, Borsuk et 38 

al., 2001, Hagy et al., 2004, Benoit et al., 2006, and Lin et al., 2006), and European estuaries 39 

(Uncles et al., 1998, Garnier et al., 2006).  These zones of hypoxia (DO concentration < 2 40 

 mg l
-1

) greatly degrade environmental conditions for benthic and pelagic fauna and alter 41 

redox conditions, which changes the cycling of nutrients and partitioning of pollutants 42 

throughout the estuary (de Jonge & Villerius, 1989, Diaz & Rosenburg, 1995, Nestlerode & 43 

Diaz, 1998, Fang & Lin, 2006).  Given the ecological consequences of hypoxic and anoxic 44 

conditions, there is a strong need to understand, on a process level, the physical and biological 45 

processes that are contributing to this problem. 46 

 47 

In many estuaries, oxygen depletion is tied to the inputs of organic matter caused by effluent, 48 

industry, or natural causes (Hagy et al., 2004, Dai et al., 2006, Fang & Lin, 2006, Wei et al., 49 

2007).  Other estuaries such as the Humber Estuary, Loire Estuary, and Yellow River Estuary 50 

show evidence of oxygen depletion due to the degradation of organic matter that is associated 51 

with the suspended sediment aggregates (Uncles et al., 1998, Thouvenin et al., 1994, Ni et al., 52 

2007).  Physical processes which affect DO concentrations include vertical mixing and 53 

stratification, river discharge, and baroclinic circulation.  In the Chesapeake Bay region, high 54 

river inflow causes greater influx of nutrients, greater primary production, and subsequent 55 

depletion of DO (Hagy et al., 2004, Lung & Nice, 2007).  In other estuaries, hypoxic 56 

conditions occur during low inflow conditions and are attributed to the increased residence 57 

time of water (Dai et al., 2006, Hagy & Murrell, 2007).  Vertical mixing often controls DO, 58 



 3 

with depletion occurring in highly stratified systems (Borsuk et al., 2001, Lin et al., 2006, 59 

Hagy & Murrell, 2007).  Finally, an idealized analytical model and a box model show that 60 

gravitational circulation, which drives near-bed flows of oxygenated seawater into the estuary, 61 

also alters the oxygen budget of estuaries (Lin et al., 2006, Hagy & Murrell, 2007). 62 

 63 

In this paper we investigate oxygen depletion that occurs in the estuarine turbidity zone (ETZ) 64 

of the Ems estuary.   Before the 1980s, hypoxic conditions occurred primarily in the Dollard 65 

sub-basin from the discharge of organic matter (e.g., sewage effluent), particularly when low 66 

freshwater discharge resulted in a large residence time of water (Helder & Ruardij, 1982).  67 

Though sanitation measures greatly reduced the organic load and oxygen depletion in the 68 

Dollard (Essink, 2003), we present measurements  which show that low DO concentrations 69 

are increasingly being measured in the brackish and freshwater portions of the river Ems, 70 

upstream of the Dollard.  Using a combination of field measurements and modeling, we 71 

investigate the cause of the renewed water quality problem , focusing on the connection 72 

between depleted DO and increased suspended sediment concentrations (SSCs) in the 73 

turbidity zone.   The physical mechanisms behind decreasing DO concentrations and 74 

increased turbidity  are investigated with  an idealized, tidally averaged model that estimates 75 

circulation, SSC (organic matter), and DO concentrations.  Estuarine geometry, physical, and 76 

biological processes are simplified to investigate first order effects, and result in a model of 77 

oxygen depletion that is transparent, computationally fast, and flexible.   Using sensitivity 78 

studies, we identify key parameters that govern observations.  For turbid estuaries, we show 79 

that the along-channel distribution of organic material—which is set by the sediment 80 

dynamics of turbidity zones—governs the depletion of DO.   81 

  82 
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2.  Observational Background 83 

 84 

The Ems-Dollard estuary, located on the border of the Netherlands and Germany, is forced by 85 

semidiurnal tides with tidal ranges increasing from 2.3 m at the inlet to ~ 3.5 m in the river 86 

(Fig. 1).  Approximately 80% of the Dollard sub-basin, and ~50% of the entire estuary, is 87 

covered by tidal flats.  Channel depth is maintained at a navigable depth of 8 m from the 88 

barrier island of Borkum (km 0) to the harbour town of Emden (km 46; Krebs and Weilbeer, 89 

2008), with a maximum depth of ~ 30 m and is maintained at ~ 7 m depth for shipping 90 

between Emden and Papenburg (km 87).  A tidal weir at Herbrum (km 100) marks the end of 91 

tidal influence.  Freshwater discharge average varies from 10-40 m
3
s

-1
 during the summer 92 

months to a maximum of ~ 600 m
3
s

-1
 during wet winter periods (yearly average is 80-110 93 

m
3
s

-1
).  The watershed of the Ems contains large areas of peat, which leads to highly 94 

refractory organic material in the estuary (van Es et al., 1980, Baretta & Ruardij, 1988).    95 

Water temperature varies from 0
o
-25

o
 Celsius between winter and summer. 96 

 97 

We use a combination of moored, monitoring data and cruise data to analyze oxygen 98 

depletion.  For the years 2005-2006, salinity, SSC, temperature, freshwater discharge, and DO 99 

concentration measurements at 5 - 30 minute increments were made available at 8 stations 100 

along the Ems by the Niedersächsisches Landesbetrieb für Wasserwirtschaft, Küsten-und 101 

Naturschutz (NLWKN), part of the German state of Niedersachsen (see Fig. 1).  We also use 102 

historical measurements of salinity, DO, and temperature from the stations at Leer- Leda 103 

(located 3.9 km upstream of Ems km 73.3 on the Leda tributary) and Terborg (km 62.7), 104 

which are available from 1984-2000 and 1988-2000, respectively, from the NLWKN.  105 

Historical measurements of turbidity and SSC are available at Leer-Leda and Terborg, 106 

respectively, from 1998-2000.    107 
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 108 

Beginning in February 2005 and running through December, 2007, 30 (nearly) monthly 109 

measurements of water quality and biological parameters were made along the longitudinal 110 

axis of the Ems estuary using a ship-board flow-through system (see Fig. 1).   On selected 111 

cruises we measured vertical profiles of turbidity, salinity, temperature, and dissolved oxygen 112 

(DO) concentration using an RBR Conductivity-Temperature-Depth Sensor (CTD) with an 113 

attached DO sensor.  Profiles of velocity and backscatter were also made with an RDI work-114 

horse ADCP.  Water samples from each cruise were filtered using a Whatman GF/C filter to 115 

determine the suspended sediment concentrations (SSCs) and calibrate the OBS using the 116 

method of Kineke & Sternberg (1992).  Here we focus on CTD/DO casts obtained during a 117 

cruise between km 45 (near the port of Emden) and km 100 (the tidal weir at Herbrum) on 118 

Aug. 2, 2006 during low freshwater discharge conditions (see Fig. 2 and Fig. 3).  The 119 

outgoing cruise progressed upstream with the ebb tidal wave (against the current), beginning 120 

at 4 hours before the local Low Water (LW) slack, and ending at local LW-slack.  The return 121 

cruise progressed against the flood tide wave (against the current), starting about 2 hours after 122 

local LW (~3.5 hrs before HW slack) and ending ~ 30 minutes after local HW slack.  Overall, 123 

25 CTD/DO casts were made in 2-3 km increments during the outgoing ebb cruise and 14 124 

casts were made during the return flood cruise.  Measurements near each other, particularly at 125 

the important transition from turbid to clear conditions and marine to freshwater, are nearly 126 

synoptic (see Fig. 2, Fig. 3); more information is available in Talke et al. (2009). 127 

 128 

 129 

2.2 Field Results  130 

 131 
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Measurements along the longitudinal axis of the Ems estuary from Aug. 2, 2006 show 132 

evidence of widespread hypoxia (DO < 2 mg l
-1

) and wide variation in SSCs (0.3-80 kg m
-3

) 133 

during both ebb (Fig. 2) and flood (Fig. 3) tides.  Water is relatively clear (SSC < 0.5 kg m
-3

) 134 

in the more marine portion of the estuary (salinity > 10 psu) but is extremely turbid with large 135 

SSCs and fluid mud (10-80 kg m
-3

) in the brackish regions (salinity < 2 psu ).  The elevated 136 

SSC, which forms an estuarine turbidity zone (ETZ) from the toe of the salt wedge (km 65 to 137 

km 75) to the tidal weir (km 100), coincides with a zone of depleted dissolved oxygen (DO) 138 

with concentrations less than 5 mg l
-1

 (with a minimum below 1 mg l
-1

).   More saline water 139 

(salinity > 5 psu) is well oxygenated.  Both SSC and DO vary vertically, with SSC increasing 140 

exponentially towards the bed (see Supplement S.2) and DO as much as  141 

2 mg l
-1

greater at the surface than near the bed.  Salinity over most of the estuary is vertically 142 

well mixed or partially mixed.  The depleted DO zone persists during both the ebb and the 143 

flood, over different phases of the tidal wave.  As sediment moves upstream during the flood 144 

tide in Fig. 2, the zone of depleted oxygen also moves upstream (compare Fig. 2 and Fig. 3).  145 

Other spatial patterns of SSC, such as the local maximum in SSC at km 65 during the ebb, 146 

also correspond with reduced oxygen concentration (Fig. 2).   The overall minimum DO 147 

during the quasi-synoptic ebb cruise is located at km 73.8, about 3.5 km upstream of the 148 

maximum SSC of ~ 80 kg m
-3

 (Fig. 2).  Water temperatures ranged from 21 
o
C (marine water) 149 

to 24 
o
C (at the weir).   150 

 151 

The observed relationship between high SSC and depleted oxygen concentrations indicates 152 

that organic matter in the fluid mud is controlling the depletion of oxygen in the water 153 

column, as also observed in other turbid estuaries such as the Humber (Uncles et al., 1998).   154 

Historical measurements at two fixed stations confirm that oxygen depletion correlates well 155 

with SSC (Fig. 4 and Fig. 5).  Figure 4a and 5a show envelopes of the average DO and its 156 
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standard deviation as a function of SSC, with DO measurements separated into water 157 

temperature bins reflecting typical summer conditions (18
o
-21

o
 C), spring and autumn 158 

conditions (9
o
-12

o
 C) and winter conditions (0

o
-3

o
 C).  At both locations, DO concentrations 159 

decrease approximately linearly with increasing SSC (Fig. 4a) and turbidity (proportional to 160 

SSC; Fig. 5a), although the slope decreases slightly at higher SSC.   Dissolved oxygen 161 

concentrations are a strong function of temperature:  colder water is more oxygenated at zero 162 

SSC and the rate of depletion as a function of SSC is smaller.  Significant variation (standard 163 

deviation of  ~ ± 1 mg l
-1

) is found in the trends observed in Fig. 4a and 5a.  A partial list of 164 

possible causes include changing aeration due to wind,  variable mixing due to tides (e.g.,  165 

spring-neap), advection and diffusion from upstream and downstream,  recent conditions (e.g., 166 

conditions over the previous time period), changes in biological factors, or other sources of 167 

DO depletion (e.g., patchiness in distribution of organic material or micro-organisms).  168 

Nonetheless, to first order, the depletion of DO can be considered to be proportional to SSC. 169 

 170 

The SSC which causes DO depletion is typically trapped within an estuarine turbidity zone 171 

which is centered within a band of salinity between 0.5 psu and 2 psu (Fig. 4c and 5c).  At 172 

low salinity (< 0.3 psu), which occurs during elevated freshwater discharge at these locations, 173 

SSC and turbidity decrease markedly.  Conversely, the salt wedge moves upstream during low 174 

discharge and the measured SSC decreases as salinity increases (> 2 psu).  Because the station 175 

of Leer-Leda (Fig. 5) is nearly 15 km upstream of Terborg (Fig. 4), salinity does not exceed 2 176 

psu.  177 

 178 

The SSC and turbidity distribution suggests a conceptual picture in which organic material 179 

(attached to SSC) produces a sag (minimum) in the along estuary distribution of DO, with 180 

more oxygenated conditions observed at the freshwater and saline boundaries of the ETZ (see 181 
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also Fig. 2 and Fig. 3).  Such a DO sag is confirmed by contemporary measurements from 182 

1998-2000, which show that DO concentrations increase markedly during freshwater 183 

conditions (Fig. 5b) and more marine conditions (Fig. 4b), with minimum DO concentrations 184 

occurring in brackish water between 0.5-2 psu.  Comparison with historical measurements 185 

from 1988-1990 (Fig. 4b) and 1984-1986 (Fig. 5b) show a downwards shift in DO in the ETZ 186 

of between 1-3 mg l
-1

, on average.  No significant change in DO is observed at the boundaries 187 

of the ETZ.  Hence, though historical measurements of SSC are unavailable, the results 188 

indicate that the increased oxygen depletion in the ETZ is likely occurring because of 189 

increased SSC (and not other factors).  The majority of increased oxygen demand apparently 190 

occurred after 1993, since mean DO concentrations in 1991-1993 are only slightly less than 191 

1984-1986 (Fig. 5b). The decrease in DO concentrations (particularly after 1994) coincides 192 

with progressive deepening of the river Ems in 1985-1986, 1991-1992, and 1994 from ~ 5 m 193 

to  ~ 7 m between Emden (km 46) and Papenburg (km 87; Jensen et al., 2003),  and increased 194 

maintenance dredging (de Jonge, 2000). 195 

 196 

The worsening DO conditions over the past 2 decades are confirmed by considering the time 197 

(measured in days per year) that DO concentrations are below the threshold of 5 mg l
-1

 and 2 198 

mg l
-1

 (Fig. 4d and Fig. 5d).  Whereas less than 20 days per year dipped below the 5 mg l
-1

 199 

threshold before 1991 at either station,  conditions worsen to a high of ~118 days in 2005 at 200 

Terborg (data is unavailable past 2000 for Leer-Leda).  Hypoxic conditions (< 2 mg l
-1

) never 201 

occurred at either station before 1997, but are becoming increasingly common and are 202 

occurring for longer time periods (~ 20 days in 2005).  Because DO concentrations of 5  203 

mg l
-1

and 2 mg l
-1 

are thresholds below which many fish and other organisms become stressed 204 

or killed, respectively, the environmental quality of the river Ems has clearly degraded.   205 

 206 
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Because the DO sag in the Ems estuary is linked to the magnitude of SSC and its longitudinal 207 

distribution, understanding the physical factors which change the ETZ (e.g., freshwater 208 

discharge or water depth) becomes essential for understanding DO dynamics.   The 209 

persistence of elevated SSC and depressed DO during both the flood and ebb (Fig. 2 and 210 

 Fig. 3) suggests that a tidally averaged model can capture the sub-tidal distribution of SSC 211 

and DO.  To identify and understand the physical factors controlling oxygen depletion, we 212 

next develop an idealized model for the distribution of SSC and DO in an estuary.  213 

 214 

 215 

3.  MODEL 216 

 217 

The oxygen depletion model we develop for an idealized estuary uses analytical solutions to 218 

tidally averaged circulation and SSCs developed by Talke et al. (2008, 2009).  Here we first 219 

outline the hydrodynamic and morphodynamic models (more details are available in 220 

Supplement S.1), and then develop the DO concentration model. 221 

 222 

3.1 Hydrodynamic and SSC model 223 

 224 

The tidally averaged hydrodynamic model of Talke et al. (2008, 2009) extends the classical 225 

definition of estuarine circulation (Hansen and Rattray, 1965, Officer, 1976) to include 226 

currents that arise due to longitudinal density gradients of SSC.  The model applies the rigid-227 

lid assumption, assumes no-slip at the bottom boundary, no shear at the top, and assumes that 228 

eddy viscosity Av, eddy diffusivity Kv, depth H, longitudinal dispersion Kh, and the settling 229 

velocity ws of sediment particles are constant throughout the model domain (see Fig. 6 for a 230 

review of key assumptions).  The x-axis points upstream and the origin x = 0 is at the seaward 231 
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boundary. The z-axis points upwards from the water surface.  Following other idealized 232 

studies (e.g., Friedrichs et al., 1998), we define a funnel shaped estuary such that the 233 

development of width b with distance is described by an exponential function,  234 

 235 

e

o
L

x
Bxb exp)( ,          (1) 236 

where Bo is the width at the estuary mouth (x = 0) and Le is the convergence length-scale of 237 

the estuary.  Following Odd (1988), the equation of state for the model is a linearized function 238 

of both salinity s(x) and suspended sediment concentration C(x,z): 239 

 240 

),()(),( zxCxszx o .        (2) 241 

 242 

In this expression, ρ(x,z) is the combined density [kg m
-3

], ρo[kg m
-3

] is the density of water, ß 243 

is ~ 0.83 kg m
-3

psu
-1

 and converts salt to density and γ= (ρs – ρo )/ ρs ~ 0.62 converts SSC into 244 

density, where ρs is the density of the sediment particles, here assumed to be sand for 245 

simplicity.  We assume that salinity is well mixed vertically (as suggested by Fig. 2 and  246 

Fig. 3) and is described longitudinally by a hyperbolic tangent (see also Warner et al., 2005): 247 

L

c

o
x

xx
Sxs tanh15.0)( ,        (3) 248 

where So [psu] is the salinity at the seaward boundary, xc [m] is the position of the maximum 249 

salinity gradient, and xL [m] scales the slope of the salinity gradient.  The parameters xc and xL 250 

are functions of freshwater discharge, as summarized in Table 1 and described in more detail 251 

in Supplement S.1.   252 

 253 
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The vertical distribution of SSC is modelled as an exponential profile, a consequence of 254 

assuming that the settling flux of particles is balanced by an upward flux from turbulent 255 

diffusion: 256 

 257 

)(exp)(),( Hz
K

w
xczxC

v

s
b ,        (4) 258 

where cb(x) is a function describing the distribution of SSC at the bed (located at z = -H) in the 259 

longitudinal direction.  As described in Supplement S.2, SSC measurements at a fixed 260 

location in Feb. 2006 show that, to first order, an exponential profile of SSC with depth is a 261 

valid approximation over a tidal period.  We assume that, to first order, there are no tidally 262 

averaged transverse variations in SSC.   263 

 264 

The tidally averaged momentum equation describes a balance between the barotropic pressure 265 

gradient induced by the time-averaged surface slope and the baroclinic pressure gradient 266 

induced by the combined longitudinal variation in SSC and salinity (Eq. 2).   Further, the 267 

cross-sectionally integrated flow at each point x is set equal to the freshwater discharge Q 268 

(which is taken as negative in our coordinate system).     Solving these expressions with 269 

appropriate boundary conditions, as discussed in more detail in Supplement S.1, yields:    270 

 271 

 

where   is the non-dimensional height, g is gravity, and vsv KHwPe / is the vertical 272 

Peclet number for SSC.  The first term on the rhs of Eq. 5 is baroclinic circulation due to the 273 

prescribed salinity gradient ds/dx , the second term is circulation due to gradients in bottom 274 

SSC (dcb/dx), and the third term is the contribution of freshwater discharge and is a function 275 
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of the width b(x).  The vertical structure of flows driven by longitudinal salinity gradients and 276 

longitudinal SSC gradients are described by the functions k1 and k2, respectively, and are 277 

defined in the appendix.  When dcb/dx is set to zero and b(x) is constant, the gravitational 278 

circulation model of Hansen and Rattray (1965) is recovered.   Flow is assumed uniform over 279 

the width. 280 

 281 

The function cb(x) is found by first assuming that the model estuary is in morphodynamic 282 

equilibrium, i.e., that tidally averaged SSC concentrations over time are constant for a given 283 

set of parameters (more detail is given in Supplement S.1).  Morphodynamic equilibrium 284 

occurs when net sediment transport over a transverse cross-section vanishes, and is defined 285 

for a variable width, constant depth model as follows: 286 

 287 

0 2/

2/

0
H

h

b

b

dydz
x

C
KuC ,         (6) 288 

where the first term in brackets (uC) is advective flux and the second term is dispersive flux. 289 

The model is closed by defining the total mass of SSC over the entire model domain, 290 

0 2/

2/ 0

* )(),(
H

b

b

L

dxdydzxbzxCbHLc ,                 (7)  291 

   292 

where <b> is the average width, L is the length of the model domain, and the user-defined 293 

parameter c* is the average SSC over the model domain.  For a given average concentration 294 

c*, the morphodynamic equilibrium (Eq. 6) is solved analytically, using Eq. 1, Eq. 4, and 295 

 Eq. 5, to define the equilibrium distribution of SSC: 296 

  297 

                                                            298 
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 299 

   300 

 

                     301 

where TS, TQ, TT, and TK  are parameters that are defined in the appendix.  The longitudinal 302 

distribution of salinity, SSC, and freshwater discharge all contribute to the equilibrium 303 

distribution of sediment.  The definition of c*  is used to find the constant A1:  304 

 305 

 

 306 

Equations 8-9 are solved iteratively, as described in Supplement S.1. 307 

 308 

3.2   Oxygen consumption by suspended sediment oxygen demand 309 

 310 

In typical rivers and estuaries, the depletion of oxygen occurs from the consumption of 311 

organic material and is expressed as biological oxygen demand (BOD), sediment oxygen 312 

demand at the consolidated bed (SOD), chemical oxygen demand (COD), and nitrogen 313 

oxygen demand (NBOD) (Cox, 2003).  BOD occurs on individual molecules, colloidal 314 

material, and on detritus associated with suspended sediment aggregates in the water column.  315 

Here we focus on oxygen depletion due to sediment-linked biological material that is trapped 316 

at the estuarine turbidity maximum.  Measurements show that the organic content of SSC in 317 

the Ems ranges from 10-20%, and consists of refractory (relatively ‗old‘) material with a slow 318 

degradation rate and rate of oxygen consumption (personal communication, A. Scholl; Wurpts 319 

& Torn, 2005).  However, because near bottom SSCs exceed 50 kg m
-3 

(see Fig. 3 and Fig. 4), 320 
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the total organic material and oxygen demand is capable of depleting oxygen.   To gain better 321 

understanding of the effect of elevated concentrations of organic material on DO 322 

concentrations, we explicitly neglect the oxygen depleted by NBOD.  Similarly, we neglect 323 

oxygen added by algal production and consumed through respiration, since high turbidity 324 

severely limits light and algal growth (Colijn, 1982; May et al., 2003).  These processes are 325 

left for future study. 326 

 327 

To model the depletion of oxygen (O2) due to organic material in the water column, we 328 

assume that the oxygen consumption within a control volume is proportional to the 329 

concentration of organic material, which in turn is proportional to SSC.  This rate of change is 330 

modified by a factor of O2/(km + O2), where km is a constant which is typically set equal to 0.7 331 

×10
-3

 kg m
-3

 (Cox, 2003). This factor ensures that the rate of oxygen consumption goes to 332 

zero in the limit of zero oxygen concentration.  Hence, we define the suspended sediment 333 

oxygen demand (SSOD) to be    334 

 335 

 

 336 

where p is the percent organic material in the SSC and is set to 0.1, and kr [s
-1

] is a (positive) 337 

rate of decay of organic (carbonaceous) material that varies with temperature T.   The 338 

temperature dependence is based on the Arrhenius relation, and is commonly modelled as 339 

, where θ is a parameter which ranges from 1.04 to 1.13, Tref  is a 340 

reference temperature of  20
o
 C, and To =1

o
 C is a dummy variable applied to retain non-341 

dimensionality (see Cox, 2003).   Reported values for the organic material decay coefficient 342 

(carbonaceous oxygen demand) at 20 degrees Celsius, kref, ranges from ~10
-7

 s
-1

 to 2.3∙10
-5

 s
-1

, 343 

or  0.01 day
-1

 to 2.0 day
-1

 (Williams, 1993; Cox, 2003).  We use a value of kref that is an order 344 
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of magnitude smaller (1.3 10
-8

 s
-1

), as described in section 4.1 (see Table 2).  To maintain 345 

consistency in the units, we express oxygen O2 in units of kg m
-3

 in the model; in the results 346 

section, we convert O2 to the more commonly reported units of mg l
-1

. 347 

 348 

Next we apply the control-volume approach to oxygen fluxes in the model estuary, applying 349 

the assumption that horizontal velocity u, vertical velocity w, O2, longitudinal dispersion Kh, 350 

and eddy diffusivity Kv are uniform over the width.    The kinematic conditions for velocity 351 

are applied at the side-walls (y = +/-
 
b/2), and no normal flux of oxygen is assumed through 352 

these boundaries.  Assuming steady conditions and integrating over width, the mass balance 353 

of O2 becomes   354 

.  355 

 

  356 

The first two terms on the right hand side are the convergence of width-integrated advective 357 

flux of DO, the third and fourth terms are the convergence of width-integrated diffusive flux 358 

of DO, and the last term is the sink of DO.  We simplify using the continuity equation (mass 359 

balance of water),           360 

 

           361 

which yields the following equation for O2(x,z), 362 

 363 
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The vertical velocity, w, is found from continuity (Eq. 12), using Eq. 1 and the solution from 366 

Eq. 5.  The term 
x

O

L

K

e

h 2   arises from the transport caused by the width convergence of the 367 

estuary; for channels (Le large), this term becomes negligible.  Because sediment 368 

concentration C(x,z) and the velocity u(x,z) are known analytically by Eq. 8 and Eq. 5, 369 

respectively, only DO concentrations are unknown and must be solved for using the 370 

appropriate boundary conditions.  At the consolidated bed, we assume that oxygen is 371 

consumed by the sediment oxygen demand, SOD, at the rate Sb(T), [kg O2  m
-2

 s
-1

],   372 

 373 

Hz

b

mHz

v TS
Ok

O

z

O
K )(

2

22 .        (14) 374 

 375 

In analogy with oxygen demand in the water column (Eq. 10), we model the effect of 376 

temperature as , where Sbr is a constant at the reference temperature 377 

of 20
o
 C, and add the corrective factor O2/(km + O2)  to ensure that negative DO 378 

concentrations cannot occur.  Typical river and estuary values of Sbr range from ~10
-9

  kg O2  379 

m
-2

 s
-1

 (sandy or mineral bed) to 10
-7

 kg O2  m
-2

 s
-1

 (organic deposits), with typical estuarine 380 

values of ~ 1-2∙10
-8

  kg O2  m
-2

 s
-1

 (Chapra, 1997).  In the muddy Seine estuary, 381 

measurements by Garban et al., 1995 reported an SOD value of 3.2∙ 10
-8

 kg O2  m
-2

 s
-1

, with a 382 

range of  1.7∙ 10
-8

 kg O2  m
-2

 s
-1

 to 8.3 ∙ 10
-8

 kg O2  m
-2

 s
-1

.   We calibrate our model using 383 

these reported ranges of SOD in section 4.1.  At the surface, the flux of oxygen between the 384 

atmosphere and the water column is proportional to the difference between saturated 385 

conditions (O2,sat) and actual conditions (O2|z=0):   386 

 387 
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 388 

where kL [m s
-1

] is an empirical constant that depends on climatic conditions, depth, and 389 

hydrodynamic conditions (see e.g. Cox, 2003).  The flux of oxygen at the surface is often 390 

assumed to be a constant on the order of 10
-8

 kg O2 m
-2

 s
-1

 (Lin et al., 2006).  Here, we allow 391 

the flux  to vary based on the oxygen deficit at the surface.  In the Seine 392 

River, Garnier et al. (2001) found values of the aeration coefficient kL along different reaches 393 

to be between 0-0.07 m hr
-1

, with averages between 0.02-0.07 m hr
-1

 (5 ∙10
-6

 m s
-1

 to 2∙ 10
-5

 m 394 

s
-1

).   Cox (2003) lists multiple studies with depth averaged values of the aeration coefficient 395 

that vary between 0-250 day
-1

 with an order of magnitude of ~ 0.4 day
-1

 for large rivers, or, 396 

when scaled by a depth of H = 7 m, approximately 3∙ 10
-5

 m s
-1

.  The saturated oxygen 397 

concentration is a function of temperature and salinity and is ~ 8.5 mg l
-1

at 20 
o
C (APHA, 398 

1992).  The downstream and upstream boundary condition (x = 0 and x = L) is found from the 399 

modelled SSC at the boundary, using the simplified 1D-DO model described below.  The 2D 400 

model is solved using an implicit finite difference algorithm with 100 along-channel grid 401 

points and 30 vertical grid points. 402 

 403 

To gain fundamental understanding of DO depletion and to obtain an upstream and 404 

downstream boundary condition, we simplify Eq. 13 by assuming that horizontal advection 405 

and dispersion terms are negligible, to first order (i.e., terms 1, 3, and 5 can be neglected).  406 

When applied as a boundary condition, the appropriateness of this assumption must be 407 

checked against results.  Also assuming negligible vertical velocities, the simplified 1D model 408 

requires that  409 

 410 
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 412 

This equation is solved numerically using the boundary conditions described in Eq. 14 and 413 

Eq. 15.  The vertical variation of SSC, C(z), is prescribed by the parameter c* (Eq. 7), which 414 

in this case reduces to the depth-averaged SSC.  For clarity, we denote this depth-averaged 415 

SSC by c*d, and reserve c* for the estuary-averaged SSC. 416 

 417 

Equation 16 is further simplified by assuming that the term 
2

2

Ok

O

m

~ 1, which is for 418 

approximately valid for DO concentrations above 2 - 3 ×10
-3

  kg m
-3

 (2 - 3 mg l
-1

).   Applying 419 

boundary conditions, we find the following analytical solution:   420 

 

 421 

To explore this expression we simplify it by noting that for the typical values of depth H, 422 

settling velocity ws, and eddy diffusivity Kv in an estuary, the sediment Peclet number  423 

Pev = wsH/Kv is much larger than one; physically, this simply means that most SSC is 424 

concentrated near the bed, rather than distributed through the water column.  Using the 425 

resulting simplification that exp(-Pev)~ 0, we find that oxygen concentration at the surface 426 

(z=0) and at the bed (z = -H) can be approximated as 427 

 428 

 

 

 429 
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These functions suggest that, for DO above above 2 - 3 ×10
-3

  kg m
-3

 (2 - 3 mg l
-1

), oxygen 430 

depletion near the surface is a linear function of the organic matter (carbonaceous) decay 431 

parameter kr, the average concentration of SSC in the vertical (c*d),  the depth H, and the 432 

sediment oxygen demand Sb, and is inversely proportional to aeration.  Near the bed,  433 

additional parameters such as eddy viscosity and settling velocity contribute to DO 434 

concentrations in the non-dimensional terms  
v

L

K

Hk
 and 

s

L

w

k
, and account for water column 435 

variation. 436 

 437 

4.  MODEL RESULTS 438 

 439 

The model presented in section 3 depends both on vertical water column processes (mixing, 440 

aeration, etc) and on the longitudinal structure of SSC and circulation.  We first calibrate and 441 

validate the model by comparing point measurements of SSC and DO using the vertical water 442 

column model described in Eq. 16 (Section 4.1), then address the effect of circulation on the 443 

distribution of SSC and DO concentration (Section 4.2). 444 

 445 

4.1   Model calibration and validation 446 

 447 

We test and calibrate our DO model by comparing model results (using the simplified, 1D 448 

vertical depletion model, Eq. 16) with the measured dependence of DO on SSC at three fixed 449 

stations in 2005 and 2006 (Fig. 7).  These upstream stations, located between km 72.6 and km 450 

86.9, are within the summertime turbidity zone measured in Fig. 2 and Fig. 3 and record the 451 

largest SSCs within the estuary (greater than 25 kg m
-3

 and 50 kg m
-3

, the measurement 452 

limits). The large SSC measurement range allows for comparison with the model over a large 453 

range of DO.  To compare with measurements, the modelled SSC (which uses the vertically 454 
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averaged SSC, c*d, as an input) is converted to an equivalent point measurement at the sensor 455 

depths using the default values of settling velocity, eddy diffusivity, and water depth (see  456 

Eq. 4 and Table 2).  The sensor depths are located  ~2 m, 1.5 m, and 1.5 m above the bed for  457 

Fig. 7a to Fig. 7c, respectively.  To obtain appropriate model parameters, we next vary the 458 

aeration parameter kL and the bottom sediment oxygen demand Sb within the range reported in 459 

the literature (see Eq. 14 and Eq. 15).  The carbonaceous decay parameter kr (see Eq. 10), 460 

which is less well established for estuarine conditions, is allowed to float.  Physical 461 

parameters such as eddy diffusivity and settling velocity are held fixed to remain consistent 462 

with the assumptions of the estuarine model.  To reduce the effect of temperature, only DO 463 

concentrations measured within a small band between 18 
o
C and 21 

o
C are considered (the 464 

model temperature is 20 
o
C).  The envelope around the mean measured DO indicates the 465 

standard deviation.   466 

 467 

Two parameter fits of the 1D model are shown in Fig. 7 (see Table 2 for parameter values) 468 

and are labeled ‗local fit‘ and ‗estuary fit‘.   Measurements and both fits show initially steep 469 

declines with SSC which level out as DO approaches hypoxic conditions (DO < 2 mg l
-1

).  470 

Over much of the measured range, both model estimates are within the average standard 471 

deviation of 1 mg l
-1

 for the measurement, and the overall root mean square (rms) difference is 472 

0.5 mg l
-1

 for the ‗local fit‘ and 0.8 mg l
-1

 for the ‗estuary fit‘.  Hence, to first order, both fits 473 

model the observed variation of DO with SSC.  Some divergence between measurements and 474 

the ‗estuary fit‘ occurs at zero SSC (y-intercept in Fig. 7), with the ‗estuary fit‘ over-475 

predicting the measured DO by 1-2 mg l
-1

 in Fig. 7b and Fig. 7c.  Compared to the ‗local fit‘, 476 

however, the ‗estuary fit‘ better represents the summertime DO data at zero SSC for Fig. 4a, 477 

Fig. 5a, and Fig. 7a, which are ~5.5  mg l
-1

,~7.5 mg l
-1

, and ~5.5 mg l
-1

, respectively.  Thus, 478 
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the ‗estuary fit‘ better represents the average oxygen demanded (by SOD) over the estuary 479 

when SSCs are small.    480 

 481 

The sediment oxygen demand and aeration in the ‗estuary fit‘, Sb = 3.0 10
-8

 kg O2  m
-2

 s
-1

 and 482 

kL = 10
-5

 m s
-1

, closely echo values from the muddy Seine estuary measured by Garban et al. 483 

(1995) (mean Sb = 3.2∙ 10
-8

 kg O2  m
-2

 s
-1

 ) and Garnier et al. (2001) (5 ∙10
-6

 m s
-1

 < kL <  484 

2∙ 10
-5

 m s
-1 

).   Both estimates of the organic material decay rate are an order of magnitude 485 

smaller than reported values of carbonaceous decay  (10
-7

 s
-1

 Williams, 1993; Cox, 2003), and 486 

confirm that the organic material attached to SSC is extremely refractory (see also van Es et 487 

al., 1980, Baretta & Ruardij, 1988).   488 

 489 

The simplified, analytical solutions of DO (Eq. 18 and Eq. 19) help explain differences 490 

between the measurement sites and models.   During clear conditions (zero SSC), the oxygen 491 

depletion is set by a balance between sediment oxygen demand (SOD) and aeration, i.e., Sb/kL 492 

(see Eq. 18).  Hence, the measurement sites in Fig. 7b and Fig. 7c may have less aeration, or 493 

greater SOD, than the site in Fig. 7a.   Similarly, the slope of DO versus SSC is set by the 494 

ratio of organic material decay to aeration, i.e., kr/kL (see Eq. 18).  Hence the sites in Fig. 7b 495 

and Fig. 7c, which have slightly less slopes of DO vs SSC than Fig. 7a, may be exposed to 496 

more refractory material (higher kr) or reduced aeration.  By contrast, the DO depletion slope 497 

in Terborg, km 62.7, is greater than those shown in Fig. 7 (see Fig. 4a), and suggests reduced 498 

aeration or higher degradation rates of organic material.  These considerations show that the 499 

assumption of constant conditions may oversimplify the estuarine model.  However, 500 

bathymetry, tidal mixing and transport, lateral circulation, and other factors may also affect 501 

the measured DO and SSC concentrations, and it is beyond the scope of this contribution to 502 

fully consider these factors.  Nonetheless, the fit of the model to measurement data (Fig. 7) 503 
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confirms that that the constant parameter values reasonably model the bulk oxygen depletion 504 

occurring due to SOD and SSC over a large portion of the turbid zone.   505 

 506 

The skill of the model in predicting oxygen depletion as a function of temperature is presented 507 

in Fig. 8 for both low SSCs (0 - 1 kg m
-3

) and elevated SSCs (18 - 25 kg m
-3

) at three 508 

locations (Papenburg, km 86.9;  Weener, km 80.1; and Leerort, km 72.6).  The measured DO 509 

at both low and high SSC is binned into 2 
o
C intervals, and the average is compared against 510 

modeled results.  The ‗local fit‘ to the ETZ is used for the model (see Table 2), and the 511 

average SSC over the water column, c*d, is adjusted to produce an SSC of 20 kg m
-3

 at the 512 

measurement heights.   We find that the parameter θ, used to adjust the DO depletion rates kr 513 

and Sb as a function of temperature (see Eq. 10 and Eq. 14), best reproduces measured results 514 

with a value of θ ~ 1.1.    515 

 516 

 Overall, the measured and modelled variation of DO with temperature agrees to within an 517 

rms difference of  ~1 mg l
-1

, with both depicting a nearly linear increase in DO as water 518 

becomes colder (Fig. 8).  Moreover, the model results move closer to saturated conditions as 519 

temperature falls and oxygen demand decreases, reflecting the same observation in the 520 

measured data.  Elevated SSC conditions, labeled ‗high SSC‘, are typically ~1-3 mg l
-1

 less 521 

than low SSC conditions in both model and measurements, though some scatter occurs in the 522 

data.  During warmer (summertime) conditions, DO concentrations approach zero and the 523 

observed variation with temperature asymptotes in both the modelled and measured results.  524 

Model and measurements of high SSC do not agree well below T = 19 
o
C in Papenburg 525 

(Fig. 8a), perhaps because of a paucity of high SSC data at lower temperatures.  In Leerort 526 

(Fig. 8c), modelled DO slightly overpredicts measurements for low SSC conditions.  Besides 527 

the processes discussed for Fig. 7, other sources of variation between the model and 528 
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measurements include variations in decay rates not capture by θ, and the super-saturated DO 529 

conditions that are observed to occur periodically at low SSC.  Overall, however, the bulk 530 

characteristics of the measured and modelled temperature variation agree, and further validate 531 

the DO model. 532 

 533 

4.2  Estuarine model 534 

 535 

Next, we analyze the patterns of circulation, SSC, and DO concentrations that result in a 536 

model 2D estuary from changing freshwater discharge, depth, and mixing.  Unless otherwise 537 

stated, all parameters are held to the ‗estuary fit‘ parameters displayed in Table 2 and Table 3 538 

(SSC model parameters).  The hydrodynamic variables in Table 3 represent low freshwater-539 

discharge conditions that occur during the summer months in the Ems estuary (see Talke et 540 

al., 2009 for discussion).  Parameter studies of settling velocity, horizontal dispersion, width 541 

variation, total sediment supply, and longitudinal salinity structure are described in 542 

Supplement S.3. 543 

 544 

Figure 9 shows examples of circulation, SSC, and DO concentrations that occur when 545 

standard parameters are used (Fig. 9b, Fig. 9d, and Fig. 9f) and when one parameter, depth, is 546 

reduced from H = 7 m to H = 5 m (Fig. 9a, Fig. 9c, and Fig. 9e).  The model estimates for 547 

SSC and DO in the H = 7 m case (standard parameters) qualitatively reproduce the field 548 

conditions observed in Fig. 2 and Fig. 3.  In both model and measurements, near bed SSCs 549 

with magnitudes greater than 10 kg m
-3

 cover the bottom to depths of 1-2 m from the salt 550 

wedge to the tidal weir at km 100, and produce a zone of depleted DO that coincides with 551 

elevated SSC.   The maximum SSC in each occurs between km 70 - 80 (Fig. 2, Fig. 3, Fig. 9).  552 

Compared to experimental results (Fig. 2 and Fig. 3), the length-scale of the modelled turbid 553 
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zone (Fig. 9) is larger, the DO minimum is ~ 0.8 mg l
-1

 greater (perhaps because model 554 

temperature is less), and the top-bottom differences in DO concentrations are less. 555 

Nonetheless, the overall agreement of the macroscopic (zero
th

 order) trends confirms that we 556 

can use our idealized model to investigate the underlying physical processes and resulting DO 557 

concentrations.    558 

 559 

A strongly non-linear response in DO and SSC is observed as H is altered from 5 m to 7 m; 560 

near bed circulation increases from a maximum of ~ 0.01 m s
-1

 to ~ 0.03 m s
-1

, the maximum 561 

SSC is amplified from ~ 9 kg m
-3

 to ~ 60 kg m
-3

, and the DO concentrations are reduced to 562 

nearly hypoxic (just over 2 mg l
-1

).   The observed changes are driven by the non-linear 563 

amplification of baroclinic circulation, which is proportional to H
3 

and thus increases by a 564 

factor of 2.5 (see Eq. 5).  By contrast, the magnitude of circulation caused by freshwater 565 

discharge is reduced between 5 m and 7 m, since the same inflow Q of -10 m
3
s

-1
 is distributed 566 

over a greater cross-sectional area.  Hence, the downstream penetration of the -0.05 m s
-1 

567 

velocity contour from the upstream boundary is greatly reduced for H = 7 m. 568 

 569 

The enhanced near-bed baroclinic flow, coupled with the reduced influence of freshwater 570 

discharge, alters the balance of sediment fluxes implied by the condition of morphodynamic 571 

equilibrium (Eq. 6).  Sediment flux in the upstream direction increases by 2.5 (due to 572 

baroclinic circulation), while sediment flux downstream decreases by 5/7 (freshwater 573 

discharge).  Moreover, for greater depths, sediment is distributed lower in the water column 574 

(sediment Peclet number, Pev, is increased), resulting in more upstream transport.  Together, 575 

these factors move the turbidity maximum upstream by ~ 10 km as depth is changed from 5 m 576 

to 7 m.  Because the width of the model decays exponentially upstream (e-folding scale of 577 

20∙10
3
 m), sediment is distributed over a smaller volume of water for H = 7m.  As the ETZ 578 
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moves upstream its longitudinal spread is increasingly halted by the upstream boundary.  579 

Finally, the spread of SSC around the maximum is reduced as H increases (see Talke et al, 580 

2008).  Combined, these effects amplify the magnitude of SSC by an order of magnitude, and 581 

cause longitudinal gradients in SSC that produce turbidity currents. 582 

 583 

The greatly amplified SSCs for a depth of H = 7 m implies an order of magnitude greater 584 

concentration of organic matter.  This organic material is primarily responsible for the greatly 585 

decreased DO concentrations compared to H = 5 m.  Particularly near the bed, deeper water 586 

also reduces the affect of aeration and leads to greater DO depletion, due to an increase in the 587 

ratios 
L

dr

k

Hcpk * and
v

L

K

Hk
, (see Eq. 19, Supplement S.3).    588 

 589 

For the model estuary, the minimum in oxygen concentration closely follows the position of 590 

the maximum SSC, and is 0.4 km and 1.5 km upstream for H = 5 m and H = 7 m, 591 

respectively.  Moreover, the modelled spread of the low DO area (< 5 mg l
-1

) coincides with 592 

the spread of the turbid zone.  Hence, for these parameter values, the distribution of sediment 593 

is the dominant predictor of DO and longitudinal advection and diffusion of oxygen are lower 594 

order effects.    595 

 596 

Variation in freshwater discharge (seasonally) and mixing (e.g., due to spring-neap tidal 597 

cycle) are ubiquitous features of an estuary.  Fig. 10 presents the modelled effect of  598 

increasing freshwater discharge (Figs. 10a,10c,and 10e), or decreasing eddy viscosity and 599 

eddy diffusivity (Figs. 10b, 10d, and 10f) from standard conditions (Fig. 9b, 9d and 9f).  600 

Increased freshwater discharge directly increases the downstream flow, particularly near the 601 

tidal weir where the width b is small.  In addition, the salinity field moves and its gradient 602 

becomes steeper, leading to a greater baroclinic circulation cell that is shifted downstream by 603 



 26 

~ 17 km (Table 1; Supplement S.2).   These circulation changes move the ETZ downstream,  604 

decrease the longitudinal spread of SSC, and decrease the magnitude of SSC (due to larger 605 

width b).  Increased DO concentrations result, with a smaller DO sag (in the longitudinal 606 

direction) shifted downstream with the ETZ. 607 

 608 

Reducing eddy viscosity (Av) increases baroclinic circulation (see Eq. 5), while decreasing 609 

eddy diffusivity (Kv= Av) causes sediment to accumulate closer to the bed (Fig. 10).  Together, 610 

the resulting increase in near bed sediment flux (term uC in Eq. 6) moves suspended sediment 611 

closer to the boundary, where smaller width and reduced longitudinal spread (due to the 612 

upstream boundary) amplify SSCs.  These patterns result in greater DO depletion, and an 613 

upstream movement in the DO minimum.   614 

 615 

A final sensitivity study (Fig. 11) shows changes to the longitudinal distribution of bottom 616 

DO (z = -H) as parameters associated only with the oxygen model (i.e., Sb, kL, kr, and T) are 617 

varied.  In each case, the tidally averaged circulation and equilibrium distribution of SSC 618 

resulting from Table 3 default conditions and displayed in Fig. 9b and Fig. 9d, respectively 619 

are used.   For Sb, kL, and T, the range of values in Fig. 11 reflects the reported range of each 620 

parameter (see section 3.2).   For the refractory decay coefficient of organic material, kr, we 621 

test the response of a factor of ~2.5 change in either direction.   622 

 623 

Increasing bed demand Sb (Fig. 11a), organic material decay coefficient kr (Fig. 11b), and 624 

temperature T (Fig. 11d) result in increased oxygen depletion throughout the model estuary, 625 

while increasing aeration kL (Fig. 11c) produces more oxygenated conditions (note that 626 

increasing T raises Sb and kr simultaneously).  The position of the DO minimum changes by 627 

several km between different cases, indicating the non-negligible—but 2
nd

 order—affect of 628 
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advection and horizontal diffusion.  An approximately linear response to changing conditions 629 

is observed for aeration above 2 - 3 mg l
-1

, as suggested by the simplified analytical 630 

expression (Eq. 18 & Eq. 19):  tripling the standard aeration coefficient results in a threefold 631 

increase in DO.   Decreasing bed demand Sb by an order of magnitude to 10-7 kg O2  m
-2

 s
-1  

632 

approximately doubles the DO concentration (Fig 11a).  The less than proportional response 633 

occurs because organic material in the water column (given by kr) continues to deplete 634 

oxygen.  A similar behaviour is observed for decreasing kr (Fig. 11b).    635 

 636 

However, the longitudinal extent of stressed (< 5 mg l
-1

) and hypoxic DO conditions responds 637 

non-linearly to changes in the parameters.  For example, halving the aeration coefficient from 638 

the standard condition produces hypoxic conditions over ~25 km, while tripling aeration 639 

removed the stressed area completely (Fig. 11c).   Increasing temperature decreases the 640 

saturation DO concentration and magnifies both Sb and kr;  hence a doubling of temperature 641 

from 12 
o
C to 25 

o
C shifts the system from well oxygenated to hypoxic.  Changes to water 642 

temperature T mirror seasonal changes observed in the river Ems (as low as 0 - 1 
o
C in winter, 643 

and 20 - 25 
o
C in summer), and explains why hypoxia occurs primarily in the summer months. 644 

    645 

5  Discussion 646 

 647 

The model we present differs from other models of oxygen depletion in that we consider the 648 

depletion of oxygen from a spatially variable SSC.  Other models, for example Lin et al. 649 

(2006), investigate how gravitational circulation and river discharge affect estuarine residence 650 

time and stratification, and therefore the vertical profile of oxygen.  In these environments, the 651 

mechanism of oxygen depletion is the decay of algae (and thus eutrophication driven) and a 652 
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constant sediment oxygen demand.  Hence, the interaction of nutrients and algae, and their 653 

residence time, controls oxygen depletion.  654 

 655 

In highly turbid estuaries, such as the Ems, enormous amounts of SSC are trapped in the ETZ 656 

(Figs. 2 - 5).  In this situation, a dominant control on the depletion of oxygen becomes the 657 

magnitude and distribution of organic matter that is attached to SSCs.  This oxygen demand 658 

from organic material is neither confined to the bed (as a boundary condition) nor spatially 659 

constant over the estuary.  A minimum of DO occurs near the turbidity maximum, which is 660 

formed when the vertically integrated fluxes of sediment from gravitational circulation and 661 

freshwater discharge balance each other.  The convergence of these sediment fluxes is 662 

balanced by counter-gradient fluxes caused by turbidity currents and longitudinal dispersion 663 

(i.e., fluxes proportional to dcb/dx; see Eq. 5 and Eq. 6).  Changes to the physical parameters 664 

that control these fluxes (e.g., salinity field, freshwater discharge, sediment supply, depth, 665 

mixing, etc.) produce a new distribution of SSC and a different spatial variation in oxygen 666 

demand and DO.  Hence, the factors which alter SSC distribution drive changes to DO, rather 667 

than the input of nutrients or the residence time of water.  668 

 669 

Qualitatively, the model results explain the plummet in DO concentrations since deepening 670 

the Ems estuary from 5 m to 7 m between 1985 and 1994.  The H
3 

dependence of gravitational 671 

circulation produces an inherently non-linear response in SSC transport, which is amplified 672 

further by the depth dependence of the area-averaged freshwater discharge and the vertical 673 

distribution of SSC.  Together, these physical processes cause an order of magnitude increase 674 

in SSC and produce a large zone of depleted DO for an increase from 5 m to 7 m (Fig. 9).   675 

Additional factors driving DO downwards include the likely decrease in eddy diffusivity and 676 

eddy viscosity that occurs due to sediment induced stratification (e.g., Munk and Anderson, 677 
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1948).  Other variations in mixing –such as the spring-neap cycle—likely drive changes to the  678 

ETZ and low DO zone.   679 

 680 

Seasonal variation in estuarine DO is driven both by hydrology and water temperature. 681 

Depleted DO concentrations occur during the summer months because of low freshwater 682 

discharge (which moves the turbidity maximum upstream and amplifies SSC) and elevated 683 

temperature (which lowers DO saturation and increases decay rates of suspended organic 684 

matter and SOD).  By contrast, greater discharge—which occurs during storm events in the 685 

winter— decreases SSC and organic matter concentrations by moving the ETZ downstream 686 

(van Beusekom & de Jonge 1998; Fig. 10).  These conditions combine together with lower 687 

temperatures to produce an oxygenated water column in winter. 688 

 689 

In ecological terms, the impact of a hypoxic zone is measured by the area of a water body that 690 

dips below a biologically critical threshold such as 5 mg l
-1 

or 2 mg l
-1

.  Since the modelled 691 

oxygen depletion depends on SSC distribution, this equivalently reduces to the length-scale 692 

for which SSC is above a certain threshold.  The idealized model suggest that the length-scale 693 

depends upon the total amount of sediment available for resuspension, the position of the 694 

turbidity maximum, and the relative spread of SSC from the maximum (see also Supplement 695 

S.3).   Changes to organic decay rates, reaeration, and temperature also affect the size of a 696 

depleted oxygen zone, and combine together with the SSC distribution to make the system 697 

sensitive to relatively small changes in its parameters. 698 

 699 

The idealized model we present for the depletion of oxygen makes simplifying assumptions 700 

about both physical and biological processes in order to understand, at a process level, the 701 

important factors that affect DO depletion from suspended organic matter.  The tidally 702 
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averaged model of circulation and SSC distribution neglects tidally varying processes (e.g., 703 

settling lag, periodic salinity stratification, etc) that influence circulation and the fluxes of 704 

sediment in an estuary.  Our assumption of constant eddy diffusivity possibly overestimates 705 

vertical mixing of DO, particularly in the fluid mud layer, though field results suggest that 706 

top-bottom variation is small and generally less than 2 mg l
-1

.   Depth and bathymetry effects 707 

are likely important, particularly in the less uniform outer estuary.  In the oxygen mass 708 

balance, we make the further simplifying assumption that model parameters such as the 709 

aeration coefficient, the organic matter decay coefficient, and the sediment oxygen demand 710 

are constant.  In a real estuary, input of organic matter from the rivers and ocean likely cause 711 

variation in the decay coefficient, as do phytoplankton detritus, zooplankton detritus, remains 712 

of vascular plants, peat, and other sources of carbon.  Measurements in the Ems show that 713 

organic material is ~ 10% of the SSC for most of the turbid zone, except near the weir where 714 

organic material is ~ 20% of SSC and has a larger rate of decay (A. Scholl, personal 715 

communication).  Greater concentrations of less refractory material near the weir may explain 716 

the divergence between modelled and measured results near the weir (compare Fig. 2 and  717 

Fig. 9).   718 

 719 

The model assumes that concentrations of algae and other input material are small compared 720 

to the mass of organic material trapped at the turbidity maximum, and contribute negligibly to 721 

oxygen demand.  Given the light limitation in highly turbid waters, phytoplankton production 722 

is significant only when SSC is low and is thus away from our zone of interest (e.g., the outer 723 

estuary).  Similarly, aeration caused by primary production is neglected since the available 724 

algae contribute primarily to respiration.   For simplicity, the effect of the reduction and 725 

oxidation of chemical compounds (e.g., Fe, Mn, and nutrient compounds) and neutrally 726 

buoyant colloidal matter on oxygen depletion are also not considered.  A complete model of 727 
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oxygen depletion must include these additional terms and vary them in time and space; 728 

however, we explicitly restrict the parameter complexity in order to gain insight into the 729 

fundamental effect of sediment dynamics on DO.   The overall good qualitative agreement 730 

between measurements and the model validates this approach. 731 

 732 

 733 

6.  Conclusions 734 

 735 

Measurements in the Ems estuary show that near-bed SSCs exceeding 50 kg m
-3

 coincide  736 

with stressed (< 5 mg l
-1

) and hypoxic (< 2 mg l
-1

) DO concentrations.   To a first order 737 

approximation, the oxygen depletion is proportional to SSC, with the depletion rate 738 

decreasing as temperature falls or as anoxic conditions are approached.  The zone of depleted 739 

oxygen occurs in the estuarine turbidity zone (salinity range of 0.5- 2 psu), which moves as 740 

freshwater discharge changes.  Over the past two decades, the duration of stressed conditions 741 

during summer has increased from 10-20 days to more than 100 days, likely from increased 742 

SSCs. 743 

   744 

The physical and biological processes that contribute to oxygen depletion in turbid estuaries 745 

are investigated with an idealized model that simplifies estuarine geometry and bathymetry 746 

and uses tidally averaged governing equations to investigate first order effects.  The depletion 747 

rate of DO is assumed to be proportional to SSC, and model calibration to the data shows that 748 

the decay rate is extremely refractory.  Aeration at the surface provides a source of oxygen, 749 

while a prescribed oxygen demand at the bed depletes oxygen.  Within the model domain, DO 750 

is found by numerically solving an advection-diffusion equation with a sink term, with 751 

analytical solutions used for velocity and SSC inputs.   At the upstream and downstream 752 
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model boundaries, DO is approximated by using a 1D vertical water column model which 753 

assumes that horizontal flux terms are negligible.   754 

 755 

The modelled depletion of oxygen in the water column is primarily a balance between 756 

aeration and the oxygen demand from both the bed (SOD) and suspended sediment.   757 

Horizontal advection and diffusion are second order effects that modify, but do not control, 758 

the distribution of DO.  Above 2 -3 mg l
-1

, the oxygen depletion near the surface increases 759 

approximately linearly with increases in the depth-averaged SSC, depth, organic material 760 

decay coefficient, and SOD.  Near bed DO concentrations are less than at the surface, and are 761 

further reduced by increasing depth or reducing mixing, which hinders the transmission of 762 

surface aeration.   763 

 764 

Over the estuary, increases in near bed, upstream directed currents move the ETZ upstream 765 

and amplify SSC and oxygen demand, primarily because suspended sediment is distributed 766 

over a smaller volume of water.  Hence, the non-linear dependency of baroclinic circulation 767 

on H
3
, coupled with the H

-1
 dependance of currents from freshwater discharge, results in a 768 

non-linear DO response as depth is changed.  Variations in the longitudinal spread of SSC 769 

around the maximum, which are set by hydrodynamic parameters, also affect oxygen demand.  770 

Increasing the relative amount of SSC near the bed (by increasing Pev = wsH/Kv ) both 771 

amplifies the effect of near-bed, upstream currents and alters the distribution of SSC.  772 

Therefore, the coupled effect of mixing (Av and Kv) on both circulation and vertical SSC 773 

distribution produces a non-linear DO response.   Hence, for a turbid estuary, a dominant 774 

control on oxygen depletion is the SSC dynamics, rather than the residence time of water or 775 

nutrient inputs.   776 

 777 
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Both model results and field measurements show a strong seasonal variation in DO 778 

concentrations that are caused both by temperature induced variation in the decay rates of 779 

organic material (ie., changing kr and Sb) and oxygen saturation, and by variation in the 780 

hydrologic cycle which typically produces low discharge—and high organic material 781 

concentrations—during the summer months.  This seasonal cycle has been altered by 782 

deepening the River Ems from 5 m to 7 m, which has moved the ETZ upstream and amplified 783 

SSC.  Thus, anthropogenically driven changes to the sediment dynamics explain the reduction 784 

in average summertime DO by as much as 2 - 3 mg l
-1

 over the past several decades, and the 785 

much greater occurrence of hypoxic events.   786 

 787 

  788 



 34 

Acknowledgments 789 
 790 
 791 

Many thanks to Verena Brauer, Robbert Schippers, Karin Huijts, Marcel van Maarseveen, 792 

and Frans Buschman for logistical support during experiments.  Thanks also to Martin Krebs 793 

and Helge Juergens from WSA Emden, Rewert Wurpts, Uwe Boekhoff and Baerbel Amman 794 

from Niedersachsen Ports (NP), Andreas Engels from NLWKN, and Christine Habermann 795 

from the Bundesanstalt fuer Gewaesserkunde (BfG).  Andreas Scholl of BfG is especially 796 

thanked for his extensive personal communication.  The crews of the Delphin (NP) and the 797 

WSA Friesland are also thanked. This work was funded by LOICZ project 014.27.013 (Land 798 

Ocean Interaction in the Coastal Zone), and administered by NWO-ALW, the Netherlands 799 

Organization for Scientific Research. 800 

  801 

 802 

7.  References 803 
 804 

APHA. 1992. Standard methods for the examination of water and wastewater, 18 ed. 805 

American Public Health Association, American Waterworks Association, Water Environment 806 

Federation.  807 

 808 

Baretta, J.W. and P. Ruardij (eds.), 1988. Tidal flat estuaries: Simulation and Analysis of the 809 

Ems Estuary. Ecological Studies 71. Springer Verlag. 353 pp. 810 

 811 

Benoit, P., Y. Gratton, and A. Mucci. 2006. Modeling of dissolved oxygen levels in the 812 

bottom waters of the Lower St. Lawrence Estuary: Coupling of benthic and pelagic processes. 813 

Marine Chemistry 102:13–32. doi:10.1016/j.marchem.2005.09.015. 814 

 815 

van Beusekom, J.E.E. & V.N. de Jonge, 1998. Retention of phosphorus and nitrogen in the 816 

Ems estuary. Estuaries, 21: 527-539. 817 

 818 

Borsuk, M.E., C.A. Stow, R.A. Luettich, Jr., H.W. Paerl, and J.L. Pinckney. 2001. Modelling 819 

oxygen dynamics in an intermittently stratified estuary: Estimation of process rates using field 820 

data, Estuarine, Coastal and Shelf Science 52:33–49. 821 

 822 

Chapra S.C. 1997. Surface water-quality modeling. McGraw-Hill International editions.  823 

 824 

Colijn, F., 1982. Light absorption in the waters of the Ems-Dollard estuary and its 825 

consequences for the growth of phytoplankton and microphytobenthos.  Netherlands Journal 826 

of Sea Research 15: 196-216. 827 

 828 

Cox, B.A. 2003. A review of dissolved oxygen modeling techniques for lowland rivers. The 829 

Science of the Total Environment 314 –316:303–334. doi:10.1016/S0048-9697(03)00062-7. 830 

 831 

Dai, M., X. Guo, W. Zhai, L. Yuan, B. Wang, L. Wang, P. Cai, T. Tang, and W.J. Cai. 2006. 832 

Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. 833 

Marine Chemistry 102:159–169. doi:10.1016/j.marchem.2005.09.020. 834 

 835 

Diaz, R.J., and R. Rosenberg. 1995. Marine benthic hypoxia: A review of its ecological 836 

effects and the behavioral responses of benthic macrofauna. Oceanography and Marine and 837 

Biology: An Annual Review 33:245–303. 838 



 35 

 839 

Engle, V.D., J.K Summers., and J.M. Macauley. 1999. Dissolved oxygen conditions in 840 

northern Gulf of Mexico estuaries. Environmental Monitoring and Assessment 57:1–20. 841 

 842 

van Es, F.B, M.A. van Arkel, L.A. Bouwman and H.G.J. Schröder, 1980.  Influence of 843 

organic pollution on bacterial macrobenthic and meiobenthic populations in intertidal flats of 844 

the Dollard.  Netherlands Journal of Sea Research 14: 288-304. 845 

 846 

Essink, K., 2003.  Response of an estuarine ecosystem to reduced organic waste discharge.  847 

Aquatic Ecology 37(1): 65-76 848 

 849 

Fang, T.H., and C.L. Lin. 2002. Dissolved and particulate trace metals and their partitioning 850 

in a hypoxic estuary: The Tanshui Estuary in northern Taiwan. Estuaries 25:598–607. 851 

 852 

Friedrichs, C.T., Armbrust, B.D., & de Swart, H.E., 1998. Hydrodynamics and equilibrium 853 

sediment dynamics of shallow, funnel-shaped tidal estuaries. In Physics of Estuaries and 854 

Coastal Seas Dronkers, eds. J. Dronkers, and M.B.A.M. Scheffers, 315–327. Rotterdam: 855 

Balkema.  856 

 857 

Garban, B., D. Olivon, M. Poulin, V. Gaultier, and A. Chesterikoff. 1995. Exchanges at the 858 

sediment-water interface in the river Seine, downstream from Paris. Water Research 29:473–859 

481. 860 

 861 

Garnier, J., P. Servais, G. Billen, M. Akopian, and N. Brion. 2001. Lower Seine River and 862 

estuary (France) carbon and oxygen budgets during low flow. Estuaries 24:964–976. 863 

 864 

Hagy, J. D., III, W. R. Boyton, C. W. Keefe, and K. V. Wood. 2004. Hypoxia in Chesapeake 865 

Bay, 1950–2001: Long-term change in relation to nutrient loading and river flow. Estuaries 866 

27: 634–658. 867 

 868 

Hagy, J.D., and M.C. Murrell. 2007. Susceptibility of a northern Gulf of Mexico estuary to 869 

hypoxia: An analysis using box models. Estuarine, Coastal and Shelf Science 74: 239–253. 870 

doi:10.1016/j.ecss.2007.04.013. 871 

 872 

Hansen, D.V., and M. Rattray Jr. 1965. Gravitational circulation in straits and estuaries. 873 

Journal of Marine Research 23:104–122. 874 

 875 

Helder, W. and P. Ruardij, 1982. A one-dimensional mixing and flushing model of the Ems-876 

Dollart estuary: calculation of time scales at different river discharges. Netherlands Journal of 877 

Sea Research 15: 293-312. 878 

 879 

de Jonge, V.N. 2000. Importance of temporal and spatial scales in applying biological and 880 

physical process knowledge in coastal management, an example for the Ems estuary. 881 

Continental Shelf Research 20:1655–1686. 882 

 883 

de Jonge, V.N. & L.A. Villerius, 1989.  Possible role of carbonate dissolution in estuarine 884 

phosphate dynamics. Limnology and Oceanography 34: 332-340. 885 

 886 



 36 

Jensen, J., C. H. Mudersbach, and C. Blasi. 2003. Hydrological changes in tidal estuaries due 887 

to natural and anthropogenic effects. In Proceedings of the 6. International MEDCOAST 2003 888 

Conference, Ravenna, Italy. 889 

 890 

Kineke, G.C., and R.W. Sternberg. 1992. Measurements of high-concentration suspended 891 

sediments using the optical backscatter sensor. Marine Geology 108:253–258. 892 

 893 

Krebs, M., and H. Weilbeer, 2008.  Ems Dollart Estuary.  Die Küste 74. 894 

 895 

Lin, J., L. Xie, L.J. Pietrafesa, J. Shen, M.A. Mallin, and M.J. Durako. 2006. Dissolved 896 

oxygen stratification in two micro-tidal partially-mixed estuaries. Estuarine, Coastal and 897 

Shelf Science 70:423–437. doi:10.1016/j.ecss.2006.06.032. 898 

 899 

Lung, W.S., and A.J. Nice. 2007. Eutrophication Model for the Patuxent Estuary: Advances in 900 

Predictive Capabilities. Journal of Environmental Engineering 133:917–930. 901 

doi:10.1061/(ASCE)0733-9372(2007)133:9(917). 902 

 903 

May, C.L., J. Koseff, L.V. Lucas, J.E. Cloern, D.H. Schoellhamer, 2003. Effects of spatial and 904 

temporal variability of turbidity on phytoplankton blooms. Marine Ecology Progress Series 905 

254, 111–128. 906 

 907 

Monismith, S.G., W Kimmerer, J.R Burau, and M.T. Stacey. 2002. Structure and flow-908 

induced variability of the subtidal salinity field in Northern San Francisco Bay. Journal of 909 

Physical Oceanography 32:3003–3019. 910 

 911 

Munk, W. H., and E.R. Anderson. 1948. Notes on a theory of the thermocline. Journal of 912 

Marine Research 7:276–295. 913 

 914 

Ni, J., L. Sun, and W. Sun. 2007. Modification of chemical oxygen demand monitoring in the 915 

Yellow River, China, with a high content of sediments. Water Environment Research 916 

79:2336–2342. doi:10.2175/106143007X183790. 917 

 918 

Nestlerode, J.A., and R.J. Diaz. 1998. Effects of periodic environmental hypoxia on predation 919 

of a tethered polychaete, Glycera americana: implications for trophic dynamics. Marine 920 

Ecology Progress Series 172:185–195. 921 

 922 

Odd, N.V.M. 1988. Mathematical modeling of mud transport in estuaries. In Physical 923 

Processes in Estuaries, eds. J. Dronkers, and W. van Leussen, 503–531. Berlin: Springer 924 

Verlag. 925 

 926 

Officer, C.B., 1976.  Two dimensional density gradient flow. In:  Physical oceanography of 927 

estuaries (and associated coastal waters):  125-129.  New York:  Wiley. 928 

 929 

Talke, S.A., H.E. de Swart, and H.M. Schuttelaars. 2009. Feedback between residual 930 

circulations and sediment distribution in highly turbid estuaries: An analytical model. 931 

Continental Shelf Research 29:119–135. doi:10.1016/j.csr.2007.09.002. 932 

 933 

Talke, S.A., H.E. de Swart, and H.M.Schuttelaars. 2008. An analytical model for the 934 

equilibrium distribution of sediment in an estuary. In River, coastal and estuarine 935 



 37 

morphodynamics, eds. C.M. Dohmen-Janssen, and S.J.M.H. Hulscher, 403–412. London: 936 

Taylor & Francis. 937 

 938 

Thouvenin, B., P. Le Hir, and L.A. Romana. 1994. Dissolved oxygen model in the Loire 939 

Estuary. In Changes in fluxes in estuaries, implications from science to management, eds. 940 

K.R. Dyer, and R.J. Orth, 169–178. Fredensborg: Olsen and Olsen. 941 

 942 

Uncles, R.J., I. Joint, and J.A. Stephens. 1998. Transport and retention of suspended 943 

particulate matter and bacteria in the Humber-Ouse Estuary, United Kingdom, and their 944 

relationship to hypoxia and anoxia. Estuaries 21:597–612. 945 

 946 

Warner, J.C., W.R. Geyer, and J.A. Lerczak. 2005. Numerical modeling of an estuary: A 947 

comprehensive skill assessment. Journal of Geophysical Research 110, CO50001. 948 

doi:10.1029/2004JC002691. 949 

 950 

Wei, H., Y. He, Q. Li, Z. Liu, and H. Wang. 2007. Summer hypoxia adjacent to the 951 

Changjiang Estuary. Journal of Marine Systems 67:292–303. 952 

doi:10.1016/j.jmarsys.2006.04.014. 953 

 954 

Wurpts, R., and P. Torn. 2005. 15 Years experience with fluid mud: Definition of the nautical 955 

bottom with rheological parameters. Terra et Aqua 99:22–32. 956 

 957 

 958 

Appendix 959 

 960 
The functions k1 and k2 produce the vertical structure of currents driven by salinity gradients 961 

and turbidity gradients, respectively (Eq. 5) and depend on the vertical coordinate   962 

and the sediment Peclet number Pev = wsH/Kv. 963 

 964 

                                                                                                    (A.1) 965 

 966 

 967 

       (A.2) 968 

 969 

where G1 is defined as 970 

 971 

 
      972 

 973 

The expressions Ts, Tt, TQ, and TK in Eqs. 13-15 are defined as follows: 974 
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Solving, these expressions reduce to functions of the sediment Peclet number Pev: 986 
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Figures 999 
 1000 

 1001 

Figure 1:  Map of the Ems-Dollard estuary.  Location of the longitudinal transect between 1002 

Emden and Herbrum is shown, along with the location of a cross-sectional cruise near Pogum.  1003 

The locations of long-term monitoring stations by the NLWKN are shown with an ‗X‘.  1004 

Moving downstream from Herbrum, these stations are: (a) Herbrum (km 100), (b) Papenburg 1005 

km 86.9, (c) Weener (km 80.4), (d) Leerort (km 72.6), (e) Terborg (km 62.7), (f) Gandersum 1006 

(km 55.6), (g) Pogum (km 52), (h) Emden (km 46.1), and (i) Knock (km 36.4).  The Dollard 1007 

is separated from the main channel of the Ems river by a semi-porous dike (the ‗Geisedam‘). 1008 

1009 
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 1010 

Fig. 2:  Salinity (a), SSC (b), and dissolved oxygen concentration (c) as a function of depth 1011 

below the surface along the longitudinal axis of the Ems estuary (km from North Sea) during 1012 

the ebb of Aug. 2, 2006.  Results are interpolated between 25 casts of the CTD/OBS/oxygen 1013 

sensor, whose locations are shown by vertical dotted lines.  The plots of salinity and SSC are 1014 

reproduced from Talke et al., (2009).   1015 

1016 
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 1017 

Figure 3:  Salinity (a), SSC (b) and dissolved oxygen concentration (c) as a function of depth 1018 

below the surface and the longitudinal position along the Ems estuary (km from North Sea) 1019 

during the flood tide on Aug. 2, 2006.  Plot follows format of Fig. 3. Differences in 1020 

bathymetry and water depth between Fig. 2 and Fig. 3 reflect differences in ship course and 1021 

tidal stage.    The salinity and SSC plots are adapted from Talke et al., (2009).   1022 

 1023 

 1024 

 1025 

1026 
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   1027 

 1028 

Figure 4:  Measurements from the fixed station in Terborg at km 62.7 showing variation in 1029 

DO vs. SSC for 1998-2000 (a), DO vs. salinity for 1988-1990 and 1998-2000 (b), SSC vs. 1030 

salinity for 1998-2000 (c), and the time period, measured in days, that DO was below 2 mgl
-1

 1031 

and 5 mgl
-1

 (d).   The bin-averaged data is depicted by solid lines in (a), (b), and (c), and the 1032 

standard deviation is depicted with an envelope.  For (a) and (b), data was also binned into the 1033 

depicted temperature ranges.  Measurements were collected by the NLWKN at a height of 1.5 1034 

m above the bed. 1035 
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 1036 

Fig.5:  Measurements from the fixed station in Leer-Leda showing variation in DO vs. 1037 

turbidity for 1998-2000 (a), DO vs. salinity for 1984-1986, 1991-1993 and 1998-2000 (b), 1038 

turbidity vs. salinity for 1998-2000 (c), and the time period, measured in days, that DO was 1039 

below 2 mgl
-1

 and 5 mgl
-1

 (d).   The bin-averaged data is depicted by solid lines in (a), (b), 1040 

and (c), and the standard deviation is depicted with an envelope or bars.  For (a) and (b), data 1041 

was also binned into the depicted temperature ranges.  Measurements were collected by the 1042 

NLWKN at a height of 1 m below the water surface.  The station is located approximately 3.9 1043 

km from the discharge of the Leda into the Ems at km 73.3. 1044 
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 1045 

 Figure 6:  Assumptions made during derivation of model. 1046 

 1047 

1048 
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 1049 

Fig. 7:  Measured average DO as a function of measured SSC at 3 stations along the Ems for 1050 

the temperature range 18 
o
C to 21 

o
C for data from 2005-2006, compared with 1D model 1051 

results.   The standard deviation of the measurement is shown by the envelope around the 1052 

mean. Two parameter fits are depicted:  a ‗local‘ fit that minimizes error in Weener (b) and 1053 

Leerort (c), and an ‗estuary fit‘ that better represents average DO over the estuary in the limit 1054 

of zero SSC.     1055 

  1056 
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 1057 

Fig. 8:  Variation in measured DO as a function of temperature, compared with 1D model 1058 

results.  A scatter plot of measurements shows total variation of data from 2005-2006.  1059 

Saturated conditions are shown by a solid black line.  ‗Low SSC‘ and ‗high SSC‘ 1060 

measurements correspond to average DO from SSC bins of 0-1 kgm
-3

 and 18-25 kgm
-3

, 1061 

respectively.  ―Low SSC model‖ and ―high SSC model‘ correspond to a modeled SSC of 0.5 1062 

kgm
-3 

and 20 kgm
-3

 at the measurement heights of 2 m, 1.5m , and 1.5 m for Figs. a,b, and c, 1063 

respectively.   The parameters corresponding to the local fit to the turbid zone were used, and 1064 

a temperature adjustment coefficient of θ = 1.1 was used.  Saturated DO concentrations are 1065 

depicted with a solid black line.   1066 

 1067 

 1068 

 1069 
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 1070 

Figure 9:  Variation in modeled circulation (top panels), SSC (middle panels), and dissolved 1071 

oxygen concentrations (bottom panels) when changing depth from 5 m (left panels) to 7 m 1072 

(right panels).  All other parameters are set to the standard values in Table 2. 1073 

  1074 
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 1075 

Figure 10:  Variation in modeled circulation (top panels), SSC (middle panels), and oxygen 1076 

concentrations (bottom panels) for a discharge of 160 m
3
 s

-1
 (a,c,e) and an eddy viscosity and 1077 

eddy diffusivity of 0.0005 m
2
 s

-1
 (b,d,f).    All other parameters are set to the standard values 1078 

in Table 2. 1079 

 1080 

 1081 

 1082 

 1083 

1084 



 49 

1085 
Figure 11:  Sensitivity in the modeled longitudinal profile of bottom (z = -H) DO 1086 

concentration to prescribed variations in sediment oxygen demand Sb (11a), suspended 1087 

sediment oxygen demand kr (11b), aeration kL  (11c) and temperature T (11d).  The SSC 1088 

profile for each case is found used the standard parameters in Table 2.  The solution using the 1089 

standard DO parameters in Table 1 is given by the solid magenta (dark shaded) profile in 11a, 1090 

11b, and 11c. 1091 

  1092 
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Table 1:  Variation of salinity parameters xL (length scale of salinity variation), xc (location of 1093 

maximum gradient), the maximum magnitude of the salinity gradient ds/dxmax, and the 1094 

position of the 2 psu isohaline X2 as a function of freshwater discharge Q.  These results are 1095 

found from an equilibrium fit to available long-term data, using the method described in 1096 

Monismith et al. (2002).   Units of length are in 10
3 m.  1097 

Q (m
3
s

-1
) -10 -20 -40 -60 -80 -100 -160 -240 -320 -600 

xL (10
3 

m) 

15.7 14.2 12.7 12 11.5 11 10.3 9.7 9.3 8.4 

xc (10
3 

m) 

47.9 43.1 38.7 36.4 34.9 33.7 31.4 29.5 28.2 25.6 

ds/dxmax 0.0095 0.0011 0.0012 0.00125 0.0013 0.00135 0.00145 0.00155 0.0016 0.0018 

X2 (10
3 

m) 

67.1 60.4 54.3 51.1 48.9 44.0 41.3 39.6 39.6 36.0 

 1098 

Table 2:  Standard parameters prescribed in the vertical model of oxygen depletion (Section 1099 

4.1):  Kv= eddy diffusivity, H = depth, ws = settling velocity, kL =  aeration coefficient, Sb = 1100 

bottom oxygen demand, kr = oxygen demand due to SSC, p = proportion of SSC that is 1101 

organic matter, T = water temperature.  1102 

 Kv 

(m
2
s

-1
) 

H 

(m) 

ws 

(ms
-1

) 

kL 

(ms
-1

) 

Sb 

 (kg O2  m
-2

 s
-

1
) 

kref 

 (s
-1

) 

p                

( - ) 

T 

(
o
C) 

‘local fit’ 0.001 7 0.001 10
-5

 5×10
-8

 8×10
-9

 0.1 20 

‘estuary 

fit’ 

0.001 7 0.001 10
-5

 3×10
-8

 1.3×10
-8

 0.1 20 
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 1104 

 1105 
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Table 3:  Standard parameters used to calculate circulation and the equilibrium distribution of 1107 

sediment in the 2D model.  The standard depth H, settling velocity ws, and eddy diffusivity Kv 1108 

are described in Table 2, as are the additional parameters needed for the oxygen model—kL, 1109 

kr, p, and Sb.  Here, S*  is the salinity at the seaward boundary, xL scales the salinity gradient, 1110 

xc is the location of the maximum salinity gradient relative to the seaward boundary, Av = eddy 1111 

viscosity, L = length of model domain, Q = freshwater discharge, Kh = horizontal dispersion 1112 

coefficient, c* is the average SSC over the estuary, Le is the convergence length-scale, and Bo 1113 

is the width at the estuarine mouth .  Note that discharge Q is negative in our coordinate 1114 

system.  1115 

So 

(psu) 

xL 

(m) 

xc 
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Av 

(m
2
s

-1
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L 

(m) 

Q 

(m
3
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2
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-1
) 
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(kgm
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Bo 

(m) 

30 14∙10
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 -10 100 0.5 20∙10
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Supplement S1:  Model Derivation 

In this supplement we derive our circulation and sediment transport models, first presented in 

Talke et al. (2008, 2009) and repeated here for the convenience of the reader.   

 

Circulation Model 

We begin by constructing an expression for tidally averaged momentum, defining the x-axis to 

be pointed upstream in the along-estuary direction, the z-axis to be pointed vertically upward 

from the undisturbed water surface, and the y-axis to be pointed transversely from the estuarine 

centerline.  Velocity components along the x and z axes are u and w, respectively.   Both water 

depth H and eddy viscosity Av are assumed constant over the model domain, and the rigid lid 

approximation is imposed.   The width b is assumed to vary smoothly with an exponential decay, 

and is defined from the observed width of the Ems estuary such that 
e

o L
xBxb exp)( , 

where Bo is the width of the estuary at the inlet (x=0) and Le is the e-folding scale.  Density, 

velocity, and surface slope are assumed to be constant in the y-direction.  Nonlinear terms such 

as u u/ x and w u/ z are neglected because of their small magnitude in a tidally averaged 
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system.  Using the shallow water approximation, the tidally averaged, width averaged 

momentum equation in the horizontal direction is:   

z

u
A

zx

p
zo0 ,          (S1.1) 

where p is pressure and ρo is a reference density (water).  In the vertical direction we assume a 

hydrostatic balance, 

 g
z

p
,           (S1.2) 

where g is gravity [m s
-2

] and ρ is the density [kg m
-3

].   Integrating Eq. S1.2, and substituting 

into the pressure term in Eq. S1.1 yields 

0

0 o o v

z

d u
g dz g A

x dx z z
 ,       (S1.3) 

where  dη/dx is the surface slope [-].  The no-slip condition is applied at the bottom boundary 

 (u =0  at z = -H) and momentum flux from wind-shear is assumed to be vanishingly small at the 

water surface ( 0
z

u
Avo    at z =0).    Circulation is thus defined as a balance between 

baroclinic forcing (term 1), the barotropic surface slope (term 2), and mixing (term 3).  

Baroclinic forcing is defined by the longitudinal density gradient, which is a function of both 

salinity s(x) and the suspended sediment concentration C(x,z): 

x

zxC

dx

xds

x

),()(
.      (S1.4) 

      

The factor ß ~ 0.83 kg/m
3
/psu and the relative density of sediment, γ= (ρs – ρo )/ ρs ~ 0.62 

convert salinity and SSC into density, where ρs is the density of fine-grained, non-cohesive sand 

particles with a single grain size and a density of 2650 kg/ m
3
.   The salinity gradient is applied 

diagnostically as described in Eq. 3 of the main text and supplement S2, while the longitudinal 

SSC distribution and gradient is solved by the model.  The vertical structure of SSC is found by 

assuming that the flux of sediment due to upwards diffusion is balanced by the flux caused by a 



  Talke et al., Supplement S.1 
 

3 
 

constant downwards settling velocity, and yields an exponential profile (see Eq. 4 of the main 

text and supplement S2). 

 

Next we apply the mass balance condition for water, which requires that a prescribed freshwater 

discharge Q [m
3
/s] must equal the tidally averaged flow of water through a cross-section: 

0

),()(
H

Qdzzxuxb       (S1.5) 

      

where u(x,z) is the tidally averaged current .  Because the x-axis is oriented in the upstream 

direction, the discharge Q is a negative quantity in the present coordinate system.   The tidally 

averaged current structure as a function of the surface gradient dη/dx is determined by integrating 

Eq. S1.3 twice in the vertical and applying the surface and bed boundary conditions.  The surface 

gradient dη/dx is solved by applying the mass balance equation, S1.5.   Solving yields the tidally 

averaged circulation equation described below (see also Eq. 5 of the main text): 

      
on circulatifreshwater

Hxb

Q

iond circulatSSC induce

dx

dc
Pek

A

Hg

ncirculatiobaroclinic

dx

ds
k

A

Hg
xu b

v

vovo

)1(
)(2

3

 

),(
48

)(
48

),( 2

2

3

1

3

, (S1.6) 

where Hz /  is the non-dimensional height, g is gravity, Q is the freshwater discharge, cb(x) 

is the variation in bottom SSC, and vsv KHwPe / is the vertical Peclet number for SSC.  The 

functions k1 and k2, which are found during integration, are defined in the appendix of the main 

text.  
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Sediment Concentration and Morphodynamic Equilibrium 

 

The remaining unknown, the horizontal variation in the bottom SSC, cb(x), is found using the 

condition of morphodynamic equilibrium.  For simplicity we start with the full equation for 

sediment mass balance, 

 

where Kh and Kv are the horizontal and vertical diffusion coefficients, and ws is the settling 

velocity of sediment.  Note that terms involving derivatives with respect to y are ignored, as we 

assume all variables to be independent of y.  We next apply the boundary condition that there is 

no flow and no sediment flux through either the top and bottom boundary (at z = 0 and z = -H) 

 

,                          (S1.8a) 

 

,                         (S1.8b) 

           

,                       (S1.8c) 

    

where E is the erosion and D is the deposition of sediment at the bed.  At the upstream boundary 

of x=L, we make the further assumption that the vertically integrated flux of sediment (sediment 

transport) into the model vanishes, 

       

.     (S1.9) 
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We next non-dimensionalize Eq. S1.7 by assuming the following scales:   

 

Lx

x
x~  ;  

H

z
z~ ; 

*

~

c

C
C ; 

*

~

W

w
w ;  

*

~

U

u
u ;  

oB

b
b
~

, (S1.10) 

where xL ~ 10 ∙ 10
3
 m is the length scale of the salinity gradient,   H ~ 10 m is the depth,  c* is the 

average bottom sediment concentration, U* ~ 0.01 m/s is the horizontal velocity scale, the 

vertical velocity scale W* = H U*/xL ~  10
-5

 m/s.  The typical magnitude for settling velocity ws is 

0.001 m/s. 

   

From these definitions, we can construct the non-dimensional mass balance equation, 

 

 

where the terms c* and Bo drop out because they are present in each term.  Assuming that the 

tidally averaged order of magnitude of Kh and Kv are 100 m
2
/s and 0.001 m

2
/s, we find that the 

order of magnitude of the three scaling terms in Eq. S1.11 are 

 

1*

2

10~
Lv xK

UH
 ; 

1* 10~
vK

HW
;  1

2

2

10~
vL

h

Kx

KH
.     (S1.12) 

 

From this scaling we find that ∂/∂ , ∂/∂ , and ∂/∂  are second order 

terms.   Thus, we conclude that the dominant, leading order balance must be between the terms 

 and .  Reverting to dimensional form (Eq. S1.7), the leading order balance 

reduces to: 
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0s v

C
Cw K

z z z
        (S1.13) 

 

Integrating this equation with respect to z yields: 

 

1

( , )
( , ) s v

C x z
C x z w K B

z
        (S1.14) 

 

where the term B1 is a constant of integration.   Using the boundary condition (S1.8b) yields      

B1 = 0.  Integrating again and applying the condition that the sediment concentration at the bed 

equals cb(x) produces an exponential profile of SSC in the vertical direction (Eq. 4 of the main 

text).  

 

To determine the condition of morphodynamic equilibrium, we next integrate the dimensional  

form of the mass-balance equation (S1.7) with respect to depth.  This yields: 

,   (S1.15) 

 

where we have pulled the / x term outside of the integral.  We next apply conditions S1.8a-

S1.8c and assume that the width integrated erosion E equals the width integrated deposition D at 

the bed (this is the condition of morphodynamic equilibrium).  Under these conditions, the 

second term in Eq. S1.15 vanishes.  Next we integrate the remaining (first) term with respect to 

x, which yields:  
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 ,                                                              (S1.16) 

where B2 is a constant of integration.  Using the condition that there is no vertically integrated 

flux of sediment at the upstream model boundary (Eq. S1.9), we find that B2=0.  This is 

equivalent to Eq. 6 in the main text, after integrating Eq. 6 with respect to y.   

 

We integrate Eq.  S1.16 with respect to z, which yields the following differential equation for the 

longitudinal distribution of suspended sediment, cb(x) 

32

1

)(

)()(

JxcJ

xcxJ

dx

dc

b

bb       (S1.17) 

       

The full expressions for J1(x), J2, and J3, found during integration, are 
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3

2
,      (S1.19) 

hK KTJ 3 ,      (S1.20) 

     

where J1(x) describes the effect of salinity gradients and freshwater discharge on vertically 

integrated SSC fluxes, J2 describes the effect of turbidity currents on vertically integrated SSC 

fluxes, and J3 describes the effect of horizontal dispersion on vertically integrated SSC fluxes.  

The parameters TS, TT, TQ, and TK are defined in the appendix of the main text and are functions 

of the vertical Peclet number for SSC, Pev=wsH/Kv.  The differential equation in S1.17 is solved 

by integration, which yields the following implicit relation for bottom concentration as a function 

of a constant, A1 (see also Eq. 8 of main text): 
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The constant A1 is found by defining the total mass of sediment available for resuspension (see 

also Eq. 7 of main text), 

0 2/

2/ 0

* )(),(
H

b

b

L

dxdydzxbzxCbHLc ,                  (S1.22)  

  

where c* represents the average SSC over the model domain and <b> denotes the mean width of 

the estuary.  Combining Eq. 4 of the main text with Eqs. S1.21 and S1.22 yields an expression 

for A1 (see also Eq. 9 of main text), 

 

L

v

s

v

dxxFxb
K

Hw

bLPec
A

0

*

1

)(exp)(exp1

.       (S1.23) 

 

As can be observed in Eq. S1.21, the the bottom concentration cb(x) occurs both in the left hand 

side (S1.21a) and right hand side (S1.21b) of the relationship.  Hence the solution for cb(x) must 

be found iteratively, with the difference between the left-hand size and the right hand side of the 

equation minimized to with-in a tolerance (in our case, 0.1%).   In practice, the solution is found 

by making an initial guess for the constant A1 and function F(x), for example by solving for the 

simpler, explicit case in which turbidity currents are negligible and the second term in F(x) 

vanishes.  The resulting initial solution for cb(x) is then used to find new estimates for A1 and 

F(x), and the process is repeated until the left hand and right hand sides of Eq. S1.21 agree to an 

acceptable tolerance. 
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Supplement 2:  Experimental Data 

 

This supplement presents data and analysis that justifies the functional forms of the tidally 

averaged longitudinal salinity gradient and the tidally averaged vertical profile of suspended 

sediment concentration (SSC) used in the circulation and sediment transport models. 

 

Fig. S2.1 displays measured SSC vs. depth over several tidal periods on Feb. 14
th

 and Feb. 15
th

, 

2006, at a fixed location near Pogum (km 54) on Feb. 14
th

, 2006.   SSCs vary from more than            

70 kg m
-3

 near the bed to 0.3 kgm
-3

 at the water surface.   Casts of optical backscatter (OBS) are 

calibrated to SSC, and are found to fit well to an exponential profile with a functional form of 

, where z is the vertical coordinate measured upwards from the 

surface, H is the water depth, cb is the bottom concentration, and r  is a decay coefficient.    The 

average goodness of fit for 21 casts ranged from  R
2
 = 0.56 to R

2
 = 0.97, with a mean of R

2
 = 0.8. 

Assuming that the upwards flux of sediment by mixing is balanced by downwards settling, Talke 

et al. (2009) show that the decay coefficient r is equal to the ratio of eddy diffusivity (Kv) and 
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settling velocity (ws), or r = Kv/ws.  As shown in Fig. S2b, the average ratio is r= (0.8  ± 0.3) m
-1

, 

with the largest values observed during the ebb and slack tides.    Thus, to first order, an 

exponential distribution of SSC in the vertical is reasonable. 

The diagnostic longitudinal salinity profile used to drive the analytical circulation model is found 

from salinity data measured at nine long-term monitoring stations between Knock (km 37) and 

the tidal weir at Herbrum (km 100) between Feb. 2005 and October 2005, as well as surface 

measurements of salinity at Borkum (km 0) during monthly cruises from 2005 to 2006.   We 

assume well mixed conditions over a tidal period. The average of 30.2 psu at km 0 is weighted to 

be of equal size as the fixed station measurements. Using the method described in Monismith et 

al. (2002), we normalize the location of tidally averaged salinity data by the X2 location, defined 

as the location at which the tidally averaged salinity is 2 psu.  As shown in Fig. S2.2a, this 

normalization collapses the tidally averaged salinity data to a parametric function of the ratio       

x* =x/X2, where x is measured from the estuarine boundary with the North Sea (km 0).  The data 

is then fit to a hyperbolic tangent with the form: 

*

*

*

* tanh15.0)(
L

c

o
x

xx
Sxs ,        (S2.1) 

where s is the salinity, So = 30 psu, 
*

cx  = 0.713, and 
*

Lx  = 0.235.  The dimensional values defined 

in Eq. 3 of the main text are found with 
*

2 cc xXx   and 
*

2 LL xXx  , respectively.  Hence, the 

longitudinal salinity profile is known if the position of the X2 isohaline is defined.  

  

We next construct an equilibrium relationship between the X2 isohaline and freshwater discharge.  

Using the measured X2 position and the daily-averaged freshwater discharge Q, and following 

Monismith et al., (2002), we define the following non-linear regression: 
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where X2(t -1) is the position of the X2 isohaline one day before day t.  For our choice of 

estuarine boundary, a non-linear regression finds that the coefficients a, b, and c are  0.78, 21.0, 

and -.152, respectively, with a goodness of fit of R
2
 = 0.93.  We next define an equilibrium 

relationship between X2 and Q by recognizing that during equilibrium conditions, the position of 

the X2 isohaline at time t and (t-1) are equal.  This yields: 

cdQX 2 ,           (S2.3) 

where d = b/(1-a) = 95.  The fit to Eq. S2.3, as well as a scatterplot of X2 vs. Q, is shown in Fig. 

S2.2b.  By substituting Eq. S2.3 into Eq. S2.1, we find an equilibrium relationship between 

freshwater discharge and the longitudinal salinity profile.  This is used to generate Table 1 in the 

main text.  
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Figure S2.1:  Vertical distribution of SSC (a) and the tidal variation of the exponential fitting 

parameter r [m
-1

] (b) found from 21 OBS/CTD casts and 103 water samples on Feb. 14
th

 and 

Feb. 15
th

, 2006.  Water samples collected during the flood, slack period, and ebb are denoted by 

squares, diamonds, and triangles, respectively.  High-Water Slack lags High Water by ~ 30 

minutes.  The average of 21 Optical Backscatter profiles (green solid line) and an exponential fit 

with r = 0.8  (dashed blue line) is shown in (a).  This figure is reprinted from Talke et al., 2009. 
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Figure S2.2:   Scatter plot of salinity as a function of the normalized coordinate x/X2, (a) and a 

scatter plot of the X2 isohaline with discharge Q (b).  A hyperbolic tangent is fit to the salinity 

data in (a), while the equilibrium relationship between Q and X2 is given in (b). 
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Supplement S.3:  Sensitivity studies of the vertical and estuarine DO model 

 

The dissolved oxygen (DO) model presented in the main text can be analyzed using a full 

advection-diffusion equation (Eq. 13) which uses inputs from the circulation and morpodynamic 

model described in Eqs. 1-9, or can be can be simplified to consider vertical balances only.   In 

this supplement we present full sensitivity studies of the vertical and estuarine DO model.  These 

sensitivity studies provide insights into the processes that create or ameliorate hypoxic conditions 

and describe the fundamentally non-linear response of both SSCs and DO in an estuary to small 

changes in parameters.  

 

Vertical DO Model Sensitivity Studies 

 

Figure S3.1 presents the sensitivity of dissolved oxygen (DO) to variations in the water-column 

averaged SSC (c*d ) (a), bottom oxygen demand Sb (b), depth H (c), settling velocity ws of 
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sediment (d), surface re-aeration coefficient kL (e), organic decay coefficient kr (f), eddy 

diffusivity Kv (g), and temperature T (h), with other parameters held constant to the standard 

parameters described in Table 2.   To estimate the individual oxygen demand of the bed only (b), 

we set c*d = 0 in case (b).  For cases c-h, the sensitivity of each parameter is depicted for three 

different values of c*d:  c1 = 1.0 kgm
-3

, c2 = 2.5 kgm
-3

 and c3 = 5 kgm
-3

.   The envelope of oxygen 

concentrations throughout the water column is depicted, with a wider band indicating greater 

difference between the surface (maximum) and bottom (minimum) DO concentrations.   

 

Fig. S3.1 shows that DO concentrations decrease as the total organic material in the water 

column (proportional to c*d) increases or as either the rate of oxygen uptake in the water column 

(kr) or at the bed (Sb) is magnified.  As temperature (T) increases, DO concentrations plummet 

due to both greater organic decay (kr) and a reduced oxygen saturation condition, which reduces 

the total DO available for consumption and limits aeration (proportional to O2,sat – O2,z=0).  

Greater depth results in decreased DO, while increased aeration (kL) causes DO to rise at both the 

water surface and bed.  More mixing (Kv) in the water column raises DO at the bed.  Only the 

settling velocity of sediment has a negligible effect on DO.  For all parameter studies, increasing 

the depth-averaged SSC (c*d) causes greater oxygen depletion.  The magnitude of increased 

oxygen depletion is nonlinear over each parameter range (see Fig. S3.1c-Fig. S3.1h), with a 

weak dependence occurring at nearly saturated and nearly anoxic conditions, and a strong 

dependence observed at intermediate DO concentrations.  Changing the depth-averaged SSC 

shifts the range of parameter values which produce the intermediate (most sensitive) condition.  

 

The difference between top to bottom concentrations of DO are observed to increase as c*d, H, kr, 

and Sb increase, though the differences are less than 1 mg l
-1

over most of the observed parameter 

space.  A negligible difference between top to bottom concentrations of DO are observed for 

variations in kL and ws.  Only for small values of mixing Kv do top to bottom differences of more 

than 2 mg l
-1

occur, and surface DO concentrations actually increase.    Physically, oxygen poor 

water near the bed does not diffuse through the water column during poorly mixed conditions 
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(small Kv).  Since mixing in the water column decreases strongly as sediment induced 

stratification increases, river waters with high SSC are likely to see vertical variation in DO (as 

can be observed in Fig. 2 and Fig. 3 of the main text).   

 

At the surface, the depletion of oxygen depends on the ratio of oxygenation (as parameterized by 

kL) to the oxygen demand from the bottom boundary (Sb) and the total organic matter in the water 

column ( HcpK avgr ).  As shown in Eqs. 18-19 of the main text and Fig. S3.1, increases in bed 

DO demand (Sb), organic decay coefficient (kr), average sediment concentration c*d and depth H 

cause a nearly linear decrease in oxygen concentration.  By contrast, the oxygen deficit is 

inversely proportional to the aeration coefficient (kL); a doubling of the aeration coefficient leads 

to a halving of the surface oxygen deficit (Fig.S3.1e). 

 

Near the bed, the depletion of oxygen depends on the same parameters as at the surface but also 

shows a functional dependence on mixing (Kv) and on the settling velocity of sediment (ws).  

However, for the particles considered here, the term kL /ws is <<1.   Consequently, there is 

negligible change in DO concentrations as settling velocity is varied in Fig. S3.1d.   Similarly, 

the term H kL /Kv , which we term the aeration Peclet number, is much smaller than one for much 

of parameter range modelled in Fig. S3.1.  In this situation, the dissolved oxygen concentration 

at the bed and surface are identical and do not vary as mixing changes (for example, see the case 

of Kv = 0.001 m
2
/s in Fig. S3.1b).   However, as mixing becomes small (i.e., approaches 10

-4
 m

2
s

-

1
), H/Kv becomes significant compared to 1/kL.  As a result, bottom and surface concentrations of 

DO diverge and the bed becomes significantly less oxic than the surface (see Fig. S3.1b).    

 

By subtracting Eq. 18 from Eq. 19 in the main text, we find the top to bottom difference in DO, 

under the idealized conditions of a constant decay rate kr (no correction at small oxygen 

concentrations) and a sediment Peclet number  >>  1: 
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Hence, the difference between the surface and bottom DO concentration depends both on the bed 

oxygen demand, Sb and on the decay rate kr of the total organic material in the water column, 

pc*dH.   As sediment is concentrated closer to the bed (due to an increase in the ratio H/Kv for a 

constant settling velocity), the difference between surface and bed DO concentrations is 

magnified.  Interestingly, aeration has no effect on modelled oxygen differences.  Under the 

condition that Pev >> 1, the factor 1/ws is smaller than the ratio H/Kv , and has little effect on the 

oxygen differences.  In this situation, the difference in DO concentrations due to SSC is 

inversely proportional to mixing Kv and nearly proportional to H
2
. 

 

Estuarine DO Model Sensitivity Studies 

 

A comparison between sensitivity studies of SSC and DO (Figs. S3.2, S3.3 and S3.4) shows, for 

a wide range of parameter values, that the factors which alter the distribution of SSC dominate 

the variation in DO.  In each figure, the longitudinal profile of depth and width averaged SSC is 

displayed on the left column, and the DO concentration at the bed (z = -H) is depicted on the 

right column.  Each subplot shows the default condition (solid, magenta (dark) line) and the 

perturbation caused by increasing or decreasing one parameter. For the case of varying discharge 

Q (Fig. S3.3a and S3.3b) the salinity field (Eq. 3 in the main text) is varied according to a best-fit 

of available long-term data (see Table 1 of the main text and Supplement S2). 

 

Fig. S3.2a shows that increasing sediment supply (c*) increases the spread and magnitude of 

depth-averaged SSC, while the location of the estuary turbidity maximum (ETM) remains the 

same.  Similarly, DO concentrations plummet as the sediment supply is increased, and the zone 



  Talke et al., Supplement S.3 

 

5 

 

of stressed (< 5 mg l
-1

) and hypoxic (< 2 mg l
-1

) conditions becomes larger (Fig. S3.2b).   

Increasing depth moves the turbidity maximum upstream and amplifies SSC; correspondingly, 

oxygen draw-down intensifies and the zone of depletion becomes larger and moves upstream 

(Fig. S3.2c and S3.2d).  A doubling of depth (from 5 m to 10 m) moves the system from well 

oxygenated to hypoxic over nearly 40 km.  By contrast, increased mixing (eddy viscosity and 

eddy diffusivity) causes a downstream movement in the ETM, and hence decreased SSC and 

increased DO concentrations (Fig. S3.2e and S3.2f).   The downstream movement occurs 

because sediment is distributed higher in the water column (increased Kv) and because baroclinic 

circulation decreases (increased Av). 

 

Figs. S3.3a and S3.3b show that as freshwater discharge Q increases, both the ETM and the DO-

minimum move downstream.  The longitudinal spread of SSC and O2 is decreased, while smaller 

SSCs result in increased DO concentrations.  Greater freshwater discharge increases the 

downstream flux of sediment, and moves the location of the salt wedge downstream (see Table 1 

of the main text).  The resulting downstream shift in the turbidity zone also reduces the cross-

sectionally averaged SSC (greater width), and thus the oxygen demand from organic material.  

 

Fig. S3.3c shows that increasing longitudinal dispersion produces larger spread of turbidity 

around the maximum, while decreasing SSC.  Similarly, Fig. S3.3d shows spatially 

circumscribed, intense oxygen depletion for small dispersion (Kh = 25 m
2
s

-1
), and a more spread, 

less intense depletion for large dispersion (Kh = 500 m
2
s

-1
).  For all cases, the spatial spread of 

elevated SSC and depleted oxygen are similar, and the location of the SSC maxima and DO 

minima are nearly identical (the location of the turbidity maximum is independent of Kh, since 

dcb/dx and hence dispersive fluxes vanish at a maxima, and the morphodynamic balance occurs 

between freshwater discharge and gravitational circulation).  Thus, even for large values of 

dispersion (Kh = 500 m
2
s

-1
), the zeroth order balance of O2 is set by the distribution of SSC, and 

longitudinal advection and dispersion are higher order effects.  Hence, the distribution of DO can 
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be approximated as a vertical balance (Eq. 16 in the main text), and the processes described in 

section 4.1 of the main text and in Fig. S3.1 control the modelled oxygen depletion.      

 

Fig. S3.3e and S3.3f show that both large (e.g., 0.006 m s
-1

) and small (0.0002 m s
-1

) values of 

settling velocity result in relatively small SSCs and a well oxygenated model domain.  In 

between, the maximum SSCs and minimum DO concentrations are observed for a settling 

velocity of ~ 0.001 m s
-1

.   For small settling velocity, sediment is distributed higher in the water 

column (smaller sediment Peclet number, Pev = wsH/Kv) and the ETM is located downstream.  

The resulting smaller SSCs produce little oxygen depletion.  As settling velocity increases, 

sediment is concentrated closer to the bed, which moves the ETM upstream and reduces the 

longitudinal spread of turbidity around the maximum.  The resulting amplified SSCs cause DO 

concentrations to decline.  However, above 0.001 m s
-1

, the longitudinal spread of the turbidity 

increases and SSCs decrease, resulting in more oxygenated conditions.  The minimum in 

longitudinal spread of SSC versus settling velocity (and hence the deepest oxygen deficits) 

occurs because of a minimum in the transport ratio TK/TS at a sediment Peclet number of Pev ~ 

5.9, which occurs just above ws ~ 0.0008 m s
-1

 for our standard parameters (see Talke et al., 

2008).   

 

The effect of changing the salinity field and the geometry of the model estuary are investigated 

in Fig. S3.4.  Upstream intrusion of the salt field (increased xc) moves the ETM upstream and 

amplifies SSCs, hence producing greater oxygen depletion (Fig S3.4a and S3.4b). Increasing the 

salinity gradient (decreasing xl) moves the toe of the salt wedge (xL + xc) downstream and causes 

downstream migration of the ETM and DO minimum (Fig. S3.4c and S3.4d).  Simultaneously, 

the greater salinity gradient results in greater near-bed (baroclinic) circulation, and compresses 

the downstream extent of elevated SSC and depleted DO (i.e., increases magnitude of dcb/dx and 

 ).  The maximum SSC and minimum DO remain nearly constant.   
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Changing the width convergence from large (more channel like, larger Le) to small (more funnel 

shaped, smaller Le) causes a downstream migration of the ETM and DO minimum, and amplifies 

SSC while decreasing DO concentrations (Fig S3.4e and S3.4f).   The downstream movement of 

sediment occurs because sediment fluxes from freshwater discharge are increased as width 

becomes smaller at any given x location, while the flux induced by baroclinic circulation remains 

constant.  However, the absolute width at which sediment fluxes from freshwater discharge and 

baroclinic circulation balance is decreased, causing increased SSC and decreased DO. 

Adjusting the width of the estuary mouth (Bo) causes similar changes to the balance between 

SSC fluxes due to freshwater discharge and baroclinic circulation (Fig. S3.4g and S3.4h).  As 

width Bo is increased, SSC fluxes from freshwater discharge (inversely proportional to width) 

decrease at every location x, causing upstream movement of the ETM and DO minimum.  SSCs 

are slightly increased, and DO minimum slightly decreased, because the upstream boundary 

constrains upstream movement of sediment and amplifies SSCs. 

Next we investigate the parameter dependence of two characteristic features of the longitudinal 

profile of DO:  the global minimum in DO in the along channel direction (Fig. S3.5) and the 

longitudinal spread of the zone of oxygen depletion (Fig. S3.6).   Results show that the near bed, 

minimum DO concentration in the along-channel direction decreases as sediment supply c* and 

depth H increase, or as freshwater discharge Q, dispersion Kh, and mixing Kv decrease (Fig. 

S3.5).  These parameter changes amplify SSC and organic material concentrations at the ETM, 

causing greater oxygen depletion (Eqs. 18-19 of the main text) and producing greater differences 

between surface and bed values of DO (Eq. S3.1).    

At the surface, the parameters H and Kv produce minima in dissolved oxygen  at H ~ 11 m and 

Kv ~ 0.0008 m
2 
s

-1
.  For smaller H or greater Kv, the maximum SSC is less and DO 

concentrations are higher. Greater values of H and lesser values of Kv increasingly limit aeration 

to the upper water column, leading to increased DO near the surface and greater depletion near 

the bed (see also Fig. S3.1).  The parameter study of ws (Fig. S3.5) shows a DO minimum at ~ 

0.001 m s
-1

 both at the surface and bed, which occurs because smaller SSC is observed for both 

lower and higher values of settling velocity (because of a downstream movement in the ETM 
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and a larger spread around ETM, respectively; see Fig. S3.3).  Because the water column model 

(Fig. S3.1) predicts little change in DO with settling velocity, the observed change in oxygen 

depletion is driven primarily by the sediment dynamics.    

 

As salinity is translated upstream (xc  increases), the minimum in DO concentration generally 

decreases because of upstream movement and amplification of the ETM.   As xL decreases, the 

salinity gradient steepens and produces greater SSC (due to reduced spread) and a decreasing DO  

minimum (Fig. S3.5h).  For gentle salinity gradients (large xL), the SSC downstream of the ETM 

becomes more spread, and overall values drop.   

 

 The spread of DO concentration below the threshold of 5 mg l
-1

 (which is the concentration 

below which aquatic organisms are stressed) and below 2 mg l
-1

 (the threshold for hypoxic 

conditions) are shown in Fig. S3.6.   In the simplest cases, the maximum size of the stressed and 

hypoxic zones corresponds with the parameter value that maximizes SSC and minimizes DO 

concentrations.   Hence, decreased Q and increased  c*  result in larger turbidity zones and greater 

zones of depleted DO.   Similarly, the diminished SSCs and hence oxygen demand observed for 

both small and large settling velocities produces both a minimum DO estimate and maximum 

depleted zone at an intermediate value of ws ~ 0.001 m s
-1

 (see Fig. S.3.5e and Fig. S3.6e).   The 

behaviour of depth, eddy viscosity, and longitudinal dispersion are more complex (Fig. S3.6).   

For example, increasing dispersion from Kh =25 m
2 

s
-1

 to Kh = 100 m
2 
s

-1
 causes an increased 

spread of turbidity and hence a greater zone of oxygen stressed conditions (< 5 mg l
-1

), even 

though the magnitude of the minimum DO concentration has increased.  As dispersion is further 

increased, SSCs become spread over the model domain in such a way that the oxygen 

concentrations increasingly remain above the 5 mg l-1 threshold.  Hence, the size of the depleted 

oxygen zone decreases.  The decrease in the stressed DO zone at large depths (H> 11 m) and 

small mixing (Kv <= 0.0004 m
2 

s
-1

) occurs because the ETM becomes compressed at the 

upstream model boundary and the spread of turbidity is decreased.  
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Fig. S3.6 also shows the non-linear coupling between the size of the depleted oxygen zone and 

the distribution of SSC.   Depending on the starting value, incremental changes in SSC supply 

(Fig. S3.6a), depth (Fig. S3.6c), discharge (Fig. S3.6b) or eddy diffusivity (Fig. S3.6f), can either 

greatly increase the zone of oxygen depletion, or have no effect.  This variable sensitivity to 

changing conditions occurs because of the complex relationship between the location of the 

ETM and the longitudinal spread of SSC for different parameter combinations.  For example, 

increasing depth from 5 m to 8 m causes an upstream migration in the ETM, a 10-fold spike in 

SSC and organic matter, and produces ~40 km and ~55 km of hypoxic and stressed oxygen 

zones, respectively (Fig. S3.6c).  However, an additional increase to 11 m, while doubling SSC 

concentrations,  changes the zone little because the zone of elevated SSC changes little and the 

DO demand at 8 m depth already produces a large depleted zone.    Though these results are 

particular to the parameters chosen for the sensitivity study, they nonetheless show the 

complexity and non-linearity of the processes which create zones of depleted oxygen.   
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Figures, Supplement S.3 

 

Fig. S3.1:  Envelope of dissolved oxygen concentrations in the vertical-only DO model as a 

function of depth-averaged sediment concentration c*d (a), bottom oxygen demand Sb (b), depth 

H (c), settling velocity ws (d), reaeration coefficient kL (e), organic decay coefficient kr (f), eddy 

viscosity Kv (g) and temperature T (h).  As a parameter is varied, all other parameters are held at 

default values found in Table 2 of the main text.  Case c1, c2 and c3 refer to sensitivity studies 

with depth averaged concentrations of 1.0 kgm
-3

, 2.5 kgm
-3

, and 5.0 kgm
-3

.  The range of DO 

concentrations for a set of parameters is depicted by a shaded line, with the maximum occurring 

at the surface and the minimum at the bed.  The dashed line in (g) refers to the minimum DO 

concentration of case c1 and c2.  In (b), c*d is set to zero.   
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Fig. S3.2:  Sensitivity in the modeled longitudinal profile of cross-sectionally averaged SSC (a, c 

and e) and bottom (z = -H) DO concentration (b, d, and e) to variations in prescribed, estuary-

averaged SSC  c* (a and b), depth H (c and d) and eddy diffusivity Kv (e and f).  In the model, 

eddy viscosity and eddy diffusivity are held equal to each other.  Default values are used for all 

other parameters (Tables 1-3 of the main text). 
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Fig. S3.3:  Sensitivity in the modeled longitudinal profile of cross-sectionally averaged SSC (a, c 

and e) and bottom (z = -H) DO concentration (b, d, and e) to prescribed variations in freshwater 

discharge Q (a and b), longitudinal dispersion Kh (c and d) and settling velocity Kv (e and f).   

Default values are used for all other parameters (Table 1-3). 
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Fig. S3.4:  Sensitivity in the modeled longitudinal profile of cross-sectionally averaged SSC (a, 

c, e, and g) and bottom (z = -H) DO concentration (b, d, e, and h) to prescribed variations in the 

location of the maximum salinity gradient xc (a and b), length scale of over which salinity varies 

xL (c and d), convergence length-scale of the estuary Le (e and f), and width Bo at the seaward 

boundary (x = 0 ) of the estuary (g and h) . Default values are used for all other parameters 

(Table 1-3). 
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S3.5:  Variation in the modeled minimum of longitudinal DO concentrations at the bed (z = -H) 

and at the surface (z = 0) as a function of average concentration c* (a), freshwater discharge Q 

(b), depth H (c), dispersion Kh (d), settling velocity ws (e), mixing Kv (f), location of maximum 

salinity gradient xc (g), and the length scale of the salinity gradient xL(h). 
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S3.6:  The spread of the hypoxic zone vs. model parameters, as measured by the longitudinal 

distance over which the bottom (z = -H) concentration of DO is below either 5 mg l
-1

 or 2 mg l
-1

.  

The model parameters are:  average concentration c* (a), freshwater discharge Q (b), depth H (c), 

dispersion Kh (d), settling velocity ws (e), mixing Kv (f), location of maximum salinity gradient xc 

(g), and the length scale of the salinity gradient xL(h). 
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